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Abstract 
Lifetime analyses frequently apply a parametric functional description from 
measured data of the Kaplan-Meier non-parametric estimate (KM) of the sur-
vival probability. The cumulative Weibull distribution function (WF) is the 
primary choice to parametrize the KM. but some others (e.g. Gompertz, lo-
gistic functions) are also widely applied. We show that the cumulative two- 
parametric Weibull function meets all requirements. The Weibull function is 
the consequence of the general self-organizing behavior of the survival, and 
consequently shows self-similar death-rate as a function of the time. The on-
togenic universality as well as the universality of tumor-growth fits to WF. 
WF parametrization needs two independent parameters, which could be ob-
tained from the median and mean values of KM estimate, which makes an 
easy parametric approximation of the KM plot. The entropy of the distribu-
tion and the other entropy descriptions are supporting the parametrization 
validity well. The goal is to find the most appropriate mining of the inherent 
information in KM-plots. The two-parameter WF fits to the non-parametric 
KM survival curve in a real study of 1180 cancer patients offering satisfactory 
description of the clinical results. Two of the 3 characteristic parameters of 
the KM plot (namely the points of median, mean or inflection) are enough to 
reconstruct the parametric fit, which gives support of the comparison of sur-
vival curves of different patient’s groups. 
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1. Introduction 

The driving force of the overall spontaneous progressions in nature is the at-
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tempt to minimize the actual energy and maximize the entropy in the actual 
processes. In this sense, life follows the basic thermodynamic laws: the living 
process continuously “burns” the incoming “nutrition”. Only the energy-pump 
of the incoming sun-energy makes the difference: creates original gradients which 
are later divided into other inhomogeneities by spontaneous processes. 

Life process tries to diminish the working energy of the sunlight by increasing 
the overall entropy of the environment. Living process lowers the electron ener-
gy by the oxidation producing outgoing (waste) final “products”. The gradual 
loss of electron energy of the “nutrition” molecules is the energy to sustain life. 
Simply speaking, the living process is a dissipative entropy producer. As the Nobel 
laureate physiologist A. Szentgyorgyi states “Life is nothing but an electron look-
ing for a place to rest” [1].  

Living objects are open systems among various environmental surroundings, 
adapting themselves to the conditions around, forming self-organized structures 
[2], and forcing evolution [3]. The approach of complexity becomes a useful tool 
for the description of nature [4] [5]. Self-organization appears in various scien-
tific problems [6]. The self-organization explains multiple structural and dy-
namical challenges in biology [7]; it is observed in broad range of research from 
the gene-regulatory networks [8], through the cells [9], to the general evolution 
of living objects [10]. 

The invariance of magnification (scale invariance, when the up or down mag-
nification shows similar structures) is the form of self-similarity, which is a typi-
cal consequence of the self-organizing processes, [11] [12]. It has developed a 
new discipline, the fractal physiology [13] [14] [15]; where stochastic processes 
are applied instead of the deterministic actions, so the predictions of the distant 
future always have random, unpredictable elements. 

Random stationary, stochastic, self-organizing processes form dynamic beha-
viors [16], define a spatiotemporal-fractal structure, which is self-similar both in 
space and time [17]. The spatiotemporal fractal structure is a fingerprint of the 
self-organizing [18], and especially characteristic for the living matter [19]. The 
basal metabolism as the energy consumption of the living objects has a central 
role in system biology [20] and describes the biosystems by definite properties 
[21]. According to the system biology: 
• life is complexly organized in a wide range of magnification and different le-

vels of interactions, 
• life is self-regulated with various feedback processes, 
• the living systems are open, dissipative objects with multilevel interactions 

with the environment, 
• the activity of life processes has intensive cross-talks of different levels of its 

organization,  
• the specific forms and properties are complexly environment dependent 

These points are important for the universality of life, for the dynamic fluctu-
ations and scaling too [22], and as a character of life, it could be used in its di-
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agnosis as well [23]. Dynamical interactions have a spatiotemporal fluctuation 
which also has a scaling behavior. Homeostatic time-fluctuation is the so-called 
pink noise [24], that characterizes the noise of homeostasis. 

The above complex biological processes connect to the biological allometry, 
scaling, non-equilibrium, and non-linear thermodynamics. Special self-similarity 
characterizes the mass-allometry by universal scaling, and it appears in a large 
category of living structures and processes [25], which rigorously optimizes the 
metabolic power in a universal frame, [26]. Scaling is a simple power function, 
(like ( ) bP x ax= ), where a and b are constants, therefore the form of ( )P x  
remains the same during any magnification of x. This scaling condition charac-
terizes the biomaterials, which is indeed scaled universally on a very wide range 
of magnifications from the subcellular energy-consumption through mitochon-
dria and respiratory complexes to the largest animals by scaling exponent α = 
3/4, [27]. The fingerprint of complexity can be found in various fields of biology, 
showing unified principles of self-organization [28]. Note, that mitochondria 
probably has a key-role in this complex behavior of living objects, because the 
non-mitochondrial respiration scaling factor is lower, (α = 2/3), characterizing 
the simple surface-volume ratio in these processes, [29], however the robust cat-
egory of living systems is scaled by complex manner [30]. Different conditions 
modify the power function [31], forming various universality classes by self-simi- 
larity. 

Self-organized processes are widely investigated in solid-state reactions (pre-
cipitations, phase-transitions, aggregations, nucleation, growth, etc.). The theory 
of phase-transition involving simultaneous random nucleation and growth was 
pioneered by Kolmogorov [32], Johnson, Mehl [33] and Avrami [34]. It is called 
Johnson-Mehl-Avrami-Kolmogorov (JMAK) model, revised later by others, [35], 
[36]. It describes the kinetics of phase transformation when nucleation is spa-
tially random. The JMAK theory and one of its formulation called Avrami-func- 
tion (AF) were introduced for solids to serve as mathematical models of different 
biological processes, [37] [38] and even for DNA replication process, [39] too. 
Experimental data [40] [41] [42] [43], prove a certain universality of the Avra-
mi-equation to describe the real processes, which could be a useful tool for fur-
ther research, [44]. It is generally useful for studying different processes with no 
known special system parameters, similarly to the critical phenomena of the 
physical-laws near to the phase-transition [45]. 

The AF (A(t)) [46] in its most applicable forms: 

( )( )( ) ( )

( ) ( )
ln ln ln ln

1 exp n

A t n t

A t t

κ

κ

− = +

= −
                    (1) 

where t is the elapsed time of the process, κ  depends linearly on the nucleation 
rate and on the growth-rate by the power of three. The so called “Avrami con-
stant” (n) was introduced in simple model n = 4, and so originally in solids it 
was considered an integer [47]. It is interesting, that the space-fractal dimension 
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dependens on AF [48]. Here n value is not necessarily an integer and depends 
well on the processes that are described by it. The fractal dimension, and the 
power-law of self-similarity are tightly connected [49]. Experimental data show, 
that the progression of many reactions in biology also follow the A(t) AF with 
various, non-integer characteristic constants [40]. It was observed universally in 
different processes from a wide range of structural and dynamical situations of 
living systems [44] [50] [51] [52]. 

The non-equilibrium thermodynamical formalism could be applied to a self- 
organized system of malignancy in space and time [53]. Cancer breaks the net-
work of normal cells, while the cooperative tissue harmony changed to non-co- 
operative competitiveness forms a new complex structure non-linearly far from 
the thermodynamic equilibrium. Cancer could be described as a dynamical phase 
transition from healthy to cancerous [54], described with a clear analogy with 
phase transitions in a lifeless nature. Starting with an avascular situation and 
forming a dormant microscopic cluster [55], it continues to develop new angi-
ogenetic formations by epithelial-mesenchymal cell transition, induced by bio- 
electromagnetic forces, [56]. Tumor leaves the dormant state by an allometric 
transformation [57], and the previously almost undetectable phase becomes tra-
ceable. An Avrami-like function in time describes its development [58]. This 
idea was used to show the validity of Avrami description [59] and extended to 
metastases while studying the transition of avascular appearance of tumorous 
clusters [60] to vascular phase, which bases the dissemination of malignant cells, 
[61]. Metastases are developed by a first order phase transition of cells from 
non-cancerous to metastatic ones [62]. The development of this new phase 
needs a great amount of energy. The energy dissipates in the system, produces a 
high rate of entropy development. 

The general transport structure (blood-vessel network) of the tissues forms 
fractals by allometric scaling, including the angiogenetic processes in tumor 
formation [57]. In oncological applications, the available metabolic transport 
and the fractal dimensions of the angiogenetic network determine the average 
survival of a tumor. The average survival of the tumor-cells shortens by the 
growing fractal dimension of the transport network and modified by some kind 
of an alimentation of the tumor, [63]. The tumor-growth follows the universal 
law of scaling [64], which can be used in cancer-research [65]. 

The dynamics of the evolution of cancer produces various phases of the growing 
structures due to the genetic instability, leading to phase transitions [66]. Tumor 
development operates near the threshold of phase transition, destabilizing the 
actual structure, making it highly heterogeneous [67], producing a large variety 
of random mutations [68], finding the most optimal conditions of the further 
proliferation. Their development is based on competition, a “fight” for the indi-
vidual survival. The optimal strategy is well known in the game-theory [69] where 
the mixed-strategy forms Nash equilibrium in the non-cooperative game by ran-
dom variation behind [70]. This situation is typical for topological phase transi-
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tions [71], where the cooperation emerges despite the selfish, non-cooperative 
individual participating cells [72]. 

Our objective in this article is to find a parametric description of overall sur-
vival, which fits the self-organized processes and able to show the inherent in-
formation of survival measurements of cancer patients. 

2. Method 

Most of the survival analyses in medical evaluations use the Kaplan-Meier (KM) 
non-parametric estimator [73] [74], used for incomplete observations. KM is 
useful to examine the probability of lifetime and effectivity of the chosen treat-
ment for such lethal diseases like cancer. The computed probability of an event 
in a definite point of time: 

Probability at actual
time of observation

Number of participants living Number of participants died or
at the strat of observation censored during the of observation

Number of participan

 
 
 
   

−   
   =

ts living
at the strat of observation

 
 
 

 

KM estimator is defined by multiplying the above described successive proba-
bilities by any earlier point of time obtaining the final estimate: 

( ) 1
i

i

t t i

d
KM t

n≤

 
= − 

 
∏                       (2) 

where id  is the number of deaths at the time it ; it  is a time when at least one 
death had happened in the examined cohort, and in  is the number of individu-
als known to survive (not censored, exists in the study) at time it . Some mod-
ifications were done in tails (pessimistic approach when short-tailed) [75], and 
optimistic approach, a fat-tailed [76] is in use having a difference in survivals at 
the end of the trial. 

The best method for mining data could be when the non-parametric KM sur-
vival plot can be parameterized. The description of survival curves by parametric 
distribution function is a long-term effort [77] allowing the optimization of the 
information from the measured dataset. For the correct parametrization, we 
have to take an overview on the scientific facts that we can use for the research of 
the optimal parametrization. The most important result available is the parame-
tric solution that is connected to the spatiotemporal self-organization and the 
self-similarity of developed structures. 

The parametrization of survival measures we use to the universality of life 
consideres its self-organized self-similarity. The progression of life involves non- 
linear and non-equilibrium thermodynamical consequences including the fractal 
description and similar processes of the phase transitions in non-living systems. 
For calculating the survival-time, let T be the stochastic variable defined on the 
set of individuals, (lifetime). The lifetime distribution function is the probability 
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of the lifetime being less than or equal to t, namely 

( ) { }Lp t P T t= ≤                             (3) 

Thus, the survival probability distribution (survival function) can be defined 
by the probability of the T lifetime being higher than t, that can be expressed in 
the form of 

( ) ( ) { }1S Lp t p t P T t= − = >                       (4) 

The density function of the lifetime distribution function is the 

( ) ( )d
d
Lp t

f t
t

=                              (5) 

probable density, therefore, the average lifetime is: 

( ) ( )
0 0

d dST tf t t p t t
∞ ∞

= =∫ ∫                       (6) 

Introducing the h(t)dt death rate is the probability that in case of a t length 
survival time, death occurs at (t + Δt) and (h(t) is the “hazard function” or 
“death rate”). Therefore, the probability is that in the case of a t length time sur-
vival, death occurs at (t + Δt) is 

( ) ( )
( )

( )

( )

( )

( )
( )
( )

d 1
d

d d1

LS

S

S S S S

p tp t
p t t f tt th t t t t t

p t p t p t p t

−  
+ ∆

∆ = − = − ∆ = − ∆ = ∆     (7) 

From this: 

( )
( )

( )
( )
( )

d
d 
S

S S

p t
f tth t

p t p t
= − =                         (8) 

It’s cumulative form is 

( ) ( ) ( )( )
0

d ln
t

SH t h p tτ τ= = −∫                       (9) 

or 

( ) ( )e H t
Sp t −=                            (10) 

Biological systems are strictly self-organized [78]. The inherent property of 
the living objects is the self-organizing and the consequent self-similarity of the 
living structures [11], which could be the basis of the proper parameterization of 
survival. 

Taking the self-similarity into consideration, death-rate (failure rate in (8)) 
must be a self-similar time function [44], mirrored by a scaling like:  

( )h t tβα=                            (11) 

Its self-similarity is obvious because it gives the same function by magnifica-
tion m: 

( ) ( ) ( )h mt mt m t m h tβ β β βα α= = =                 (12) 
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The survival probability distribution function from (9) and (10) is: 

( ) ( )0 de
t h

Sp t τ τ−∫=                             (13) 

The self-similar death rate (hazard function) is: 

( ) 1

0

d
1

t

H t tβ βαατ τ
β

+= =
+∫                       (14) 

Substituting (14) with survival (13), we get: 

( )
1

0 d 1e e
t t

Sp t
ββ

α
ατ τ β

+−− +∫= =                       (15) 

Introducing 
1

0 and 1
nnt n β

α
 = = + 
 

                      (16) 

Hence: 

( ) 0e

n
t
t

Sp t
 

−  
 =                            (17) 

which has two parameters for one curve, 0t , is the scale parameter, which is the 
natural scale of the time-function variation, and n is the shape parameter. Con-
sequently, the lifetime distribution function ( )Lp t , by (3) and (4) is the well- 
known AF (A(t)) or cumulative form of the two-parametric cumulative Weibull 
distribution (W(t)): 

( ) ( ) ( ) ( )01 e 1

n
t
t

L Sp t A t W t p t
 

−  
 = = = − = −              (18) 

with additional conditions 0t ≥ , ( ) ( ) 0A t W t= = , when 0t < . The inverse 
function, when the t-time is calculated from a given p probability is: 

( ) ( )( )0
1

ln 1
n

invt W p t p= = − −                     (19) 

There are various parameters characterizing the WF from the time of devel-
opment independently. The shape parameter of WF is usually 1n > , following a 
sigmoid curve, which form is a psychometric function [79] anyway. In cases 
when 1n ≤  the survival is a simple exponential function with rapid decrease by 
the decreasing of n.  

The cumulative Weibull distribution (Weibull function, WF) is highly uni-
versal and represents all the features described in the introduction above. The 
formal identity of WF with the AF in JMAK inherently involves the phase tran-
sition approach, and the mechanics follow the tumor kinetics, [59]. 

The AF and WF have been used for a long time for survival/reliability descrip-
tion. Originally Weibull’s statistics was developed to describe the fracture of 
brittle materials [80], [81] and to calculate the probability of the damage-free 
survival of the given material. It can be derived from geometric scale invariance 
(fractal organized structures) by physical principles, [82] in mechanical mills. It 
is frequently applied in the study of mechanical fatigue and failure [83]. 
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The fit of WF to the non-parametric KM is completely rigorous when a strict-
ly homogeneous cohort of patients is investigated, with unified equivalence of 
the participating individuals followed until the decease or censoring. This group-
ing selection apparently limits the applicability of WF. The parametrization of 
the aging and natural death has no such grouping selection, it is related to every 
human being and their survival. The epidemiological studies in gerontology re-
fer to the Gompertz-distribution, [84]. The Gompertz function (GF) is a func-
tion of time. When G(t) represents the number of individuals in the given period 
of time, t, 0G  is the number of subjects at the start of the counting time, then 
GF is:  

( ) ( )( )( )0 exp exp 1G t G a b t= − ⋅ ⋅ −                   (20) 

The parameters a and b are positive and a is connected to the growth, while b 
is connected to the displacement in variable t. GF is also a double-parametric 
function, similarly to the n and 0t  in WF.  

During the historical development of WF, it has started to characterize the 
aging of the non-living components and machineries (reliability) while the GF 
was initially developed for the ageing of living objects [85]. By developing the 
statistical methods, soon, both the Weibull and Gompertz distribution have 
started to be applied for description of tumor-development and cancer-death. 
The comparison of the two distributions shows that the best fit of GF is  
( 9.03a = , 2.58b = ) and the best fit of WF is ( 1.11n = , 0 0.04t = );  
( 2 61 3.6 10r −− = × , SE 0.002= ); where SE is the standard error of the regres-
sion estimate minimizing the sum of squares of measured and estimated data- 
pairs. Due to their applicability, the Gompertz and Weibull distributions are 
both commonly used in biological and engineering reliability investigations [86], 
[87]. 

The study of Gompertzian distribution for tumors supports a hypothesis that 
the fractal structure weakens and, in the end, it disappears by the growth of the 
tumor [88]. In general, the tumor-growth follows a universality, [64] [89], which 
prefers to use the WF. The clear fitting of allometric scaling by the fractal struc-
ture of the tumor [64] shows not only the tumor growth but the validity of the 
allometry in the growth of the axillary lymph node involvement in breast cancer 
[90]. In consequence, we choose to use the WF for modelling the KM plot of the 
overall survival. 

The Gompertz distribution could be obtained by the reduction of the genera-
lized exponential Weibull distribution [91], which formulated in a more general 
form, proposing to derive both distribution from one single [92] and it is applied 
for survival data with pretty good results. 

The GF does not satisfies the self-similarity (formulated in (11)), and there-
fore, it is not in harmony with self-organizing biological dynamics, which is a 
certain character of the harmonized biological development, [2]. This might be 
the reason, why the WF describes the intrinsic causes of age-related mortality 
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better (following the homeostasis in the healthy aging process) while the Gom-
pertz distribution reflects the extrinsic factors [93]. Due to the self-similarity of 
WF, we expect, that the self-organized biological development of tumors intrin-
sically developing in a healthy environment from where it derives, prefers the 
WF to describe the KM in malignant diseases accurately. It is a further support 
for the primary importance of Weibull distribution, that it is derived from the 
ontological law, and so it is directly connected to the self-organized structure of 
the living matter [28]. The self-similarity, as the basic fingerprint of self-orga- 
nizing is not valid in Gompertz distribution. The “mystery” of Gompertz func-
tion is probably the equilibrium between the predictable and unpredictable (chao-
tic) dynamisms, [94]. Contrary to the exponential origin of GF, the self-simi- 
larity (power function) of WF’s origin hypothesizes some parallels with the op-
posite pictures of fractal-like organizations and general scale-free (small-words, 
[95]) large networks (exponential function). Despite the structural preference of 
WF, GF also fits well to allometry, represented by power-function [96], shown in 
the development of rats [97]. Although WF fits very well to the growth function 
of the general ontogenic model, using the data for rat [98] ( 2 0.99965r = ,  
SE 0.949= ); the fit of GF shows the same result ( 2 0.99967r = ,  SE 0.884= ) 
for the same allometric curve. The difference is negligible in this regime of de-
velopment. In the case of animals with larger masses, the difference is also not 
significant. It is subtle, favoring only the WF for the description of the best re-
gression fit to the allometric scaling result, using the available data from [98]. 
(The best WF and GF fits to allometry for cow are ( 2 0.99978r = , SE 1.021= ) 
and ( 2 0.99972r = , 2 0.99972r = ), respectively.) 

WF is successfully applied to the living processes as the psychological function 
[99], describing the sensing processes well in connection with Weber-Fechner 
law [100], establishing psychometry [101]. Lifetime estimations are frequently 
approached by WF [86] and WF is also successfully used for clustering gene ex-
pression [102]. 

WF describes the non-parametric KM plot with appropriate accuracy in ger-
ontology [103] [104]. A mathematical link of natural death-rate, aging and com-
plexity is a fundamental tool of lifetime estimation [105] [106], using time-de- 
pendent shape-factor ( ( )07 lnn t t≅ ) to describe the natural death at the end 
of life. Cancer-death was also described by WF with time-dependent shape-factor, 
using a similarity between the fracture survival of brittle materials and the spe-
cific survival characteristics of a cohort of cancer patients [107] [108]. In this 
model the shape factor linearly depends on the time and gives surprisingly accu-
rate fit to the data from the cancer-registers. 

Due to its self-similar behavior, fractals could be used for modeling cancer 
[109], and the KM survival plot divided significantly by fractal dimension shows 
the prognostic value of the fractal analysis well [110]. Consequently, it is possible 
to evaluate the various images in oncology by the fractal structure and these im-
ages can be characterized by Weibull distribution as well [111]. 
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Due to the self-similarity, the parametric distribution generally fits well with 
the KM plot, and so it is successfully used in oncology [112] [113]. The applica-
tion of the parametric WF approximating the survival curve is a standard ap-
proach for the evaluation of clinical trial data, and so it is established theoreti-
cally and practically, [34] [86] [99] [114]. Comparing various parametric fits to 
KM survival plot, the WF was the most accurate [115]. The model was used to 
analyze the prognostic factors of the survival of cancer patients, and it was 
proved in a large retrospective analysis with n = 746 gastric cancer cases, [116]. 

Summarizing the above, the self-organizing and the self-similarity are univer-
sal laws fingerprinted in the fractal description and can be described by cumula-
tive Weibull distribution. This universality of WF is applied to parametrize the 
KM plot. Due to the universality, the WF parametric regression fits the KM plot 
with sufficient accuracy and so determines the KM curve by two parameters ( 0t  
and n). On the regression, a considerable improvement could be made by smoo- 
thing the KM with the hazard data (patients at risk), [117]. Other improvements 
of the bivariant fit are also available [118], but for simplicity we use the original 
WF fit to KM insisting on showing the roots that are the universality of WF in 
survival investigations. Further smoothing and corrections are additional to the 
clearly established basis, due to the deviations in real cases. 

3. Results 

The characterization of WF has four special points, the value at 0t , the mean, 
the median and the inflection point. The median, the mean and the mode (the 
maximum point in the distribution function is an inflection point in the cumu-
lative curve) are calculable from the parametric formulas, (see Figure 1): 

( ) ( )

( )

( )

1

0

1

0 00

1

0

median ln 2

1mean e d Γ 1

1mode

n
S

x n
S

n

S

p t t

p t t x x t
n

np t t
n

∞ −

=      

 = = +      

− =     

∫                 (21) 

The corresponding probabilities when 0 1t =  and n = 2, are 0.5, 0.607 and 
0.456 for the median, mode and mean, respectively. The quantile of this function 
is ≈0.632 and it independent from n value. Limit ( )0lim 0n Sp t→ =  through a 
step-function at t = 0, while ( )limn Sp t→∞  is a step function at 0t t= , (Figure 
2). All the noteworthy points are proportional to 0t , so the natural units of the 
elapsed time are 0 1t = , when the single n-parameter defines the function. The 
hazard function (9) is constant when n = 1 (or β = 0, which means the parameter 
has no effect on the hazard), and it is increasing and decreasing when n > 1 
(meaning the event is more likely to occur) and n < 1, (meaning the event is less 
likely to occur), respectively. The limit ( )0lim 0n H t→ =  is a step-function at t 
= 0, and ( )limn H t→∞  is a step function at 0t t= , (Figure 2). 
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Figure 1. The noteworthy points of the Avrami-Weibull function, when 0 1t =  and n = 
2. The reference point of the Avrami-Weibull function is the value (1/e ≈ 0.37), where 

0t t= . The inflection point marks the mode of the distribution, which is the most fre-
quent probability. When 0 1t =  is chosen, it will be the unit of the elapsed time. 

 

 
(a)                                         (b) 

Figure 2. The limits of (a) survival ( ( )Sp t ) and (b) hazard (H(t)) functions ( 0 1t = ). 

 
The various parameter-pairs of WF are shown in Figure 3. 
The inflection point in the WF (cumulative Weibull distribution) is the mode 

of the probability distribution function. It is the most likely appearing value in 
the Weibull probability distribution function. The inflection in the WF of sur-
vival divides the speed of developing death, which reaches its maximum at this 
point and the transfer of inflection is slowed by the elapsed time. 

Programming calculates the result or makes it graphical (Figure 4). This makes 
it possible to generate the Weibull fit for the Kaplan-Meier routinely by knowing 
its median and mean values. 

https://doi.org/10.4236/ijcm.2020.115031


O. Szasz, A. Szasz 
 

 
DOI: 10.4236/ijcm.2020.115031 327 International Journal of Clinical Medicine 
 

 
(a)                                                      (b) 

Figure 3. WF with various parameters (a) changing 0t  (scale parameter) at constant n = 1 (shape parameter); (b) 
n = 3. 

 

 
(a)                                                        (b) 

Figure 4. Graphical solution of reestablishing the Weibull parametric survival curve from the median and mean 
values. (a) example: 0

at  and 0
bt  are the time curves from median and mean expressions, respectively. Their 

common point (crossing) gives the 0t  and n parameters of the WF, which—in this case is when the mean is 130 

and median is 100, the 0 137t′ =  and 1.16n′ = ; therefore, it looks like this: ( )
1.16

0 137e e

n
t t
tW t

   −  −  
   = = . (b) a few so-

lutions to show the trend of the graphical results. 

 
The data at the particular points vs. n are shown in (Figure 5). The mode 

changes rapidly in the interval of n (1, 2), so reading accurately is difficult, 
therefore the median and mean are proposed to reestablish the entire WF. 
However, in a value of 3.35n ≈  at 0 1t =  the values of mode, mean and me-
dian are practically identical, so the WF could be characterized with a single pa-
rameter. Increasing 0t  does not lead to a significant change of the situation, so 
in virtually every case, we may approach WF only with one parameter over 

3.35n ≈ . 
In conclusion from the above, the parametric regression KM is universally 

determined by two parameters (the shape parameter (n) and the scale parameter 
( 0t ) of WF), due to the basic behaviors of living processes: their self-organizing  
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(a) 

 
(b) 

Figure 5. Characteristics by shape-parameters at 0 1t = . (a) function 
vs. n; (b) derivatives vs. n. 

 
and self-similarity, which is characterized well by their spatio-temporal fractal 
structure. When a clinician tries to describe the main info of the KM survival 
curves, takes the median value of survival, as a significant parameter characte-
rizing the actual survival result into account. This is, in fact, an automatic cha-
racterization by a single parameter of the non-parametric estimation. However, 
the median alone cannot characterize the long tail of the KM plot; it does not 
consider the history of the patients in the remaining second half of the cohort, 
which could be essential for measuring the “cured” [119] anyway. Studying the 
median alone disregards the real measurable success at the end of the study. 
Correcting this “mistake” the average (mean) of the KM non-parametric distri-
bution is considered. The mean is affected more by the “tail” of the distribution, 
so it gives a more accurate idea on the cure rate. The median is more responsible 
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for the information about the rapidity of the loss of the patients, while the mean 
has more part in the information about the length of the effect of the high-success 
patients, Figure 6. 

Sometimes the inflection of KM is studied too, having the highest death-rate 
in the study at that point. All are important for characterization, but two of them 
are independent, and the third could be calculated from the chosen two. The 
distribution curve must be characterized by two parameters at least. 

Two of the three noteworthy points (median, mean, inflection) of the KM 
may parametrize the non-parametric plot. Measuring or guessing these charac-
teristic points (mainly the median and mean) is a standard comparison of the 
KM-plots and usually accepted as the result of the actual study. These points re-
ally characterize the non-parametric distribution and give the possibility to pa-
rametrize, so, in fact, this is a “hidden” parameterization of the KM plot by WF. 

A simple approach of Weibull fit could be made on the KM plot by its deriva-
tive in the 0t  reference point, which is proportional to –n. (The derivative there  

is exactly ( )0

0 0

d 1 0.368
d e

W t n n
t t t

 = − ≅ − 
 

.) Therefore, the parametric evaluation  

could be checked well at the 0t t=  point, and the complete parametrization 
could be established approximately by the value of the 0t  point and the value of 
its slope, Figure 7. 

The regression could be simplified to linear by double logarithmic approach:  

( )( ) ( ) ( )0
0

ln ln ln ln lntW t n n t n t
t

 
 − = = −  

 
         (22) 

The regression is shown in Figure 8. Note, that this approach is less precise 
than the function fit, because the double logarithm suppresses the accuracy in 
real KM fit. 

However, the obvious deviation of the regressions from the measured OS is in 
 

 
Figure 6. The mean and median changes according to the n and 0t  parameters. Parabo-
la fits rather well, which connects the two parameters (n and 0t ) at different medians and 
means. 

https://doi.org/10.4236/ijcm.2020.115031


O. Szasz, A. Szasz 
 

 
DOI: 10.4236/ijcm.2020.115031 330 International Journal of Clinical Medicine 
 

 
Figure 7. A quick check of the parameters of the Weibull-fit to 
KM. real process on a KM (n = 1.5, 0 150t = ). 

 

 
Figure 8. Logarithmic determination of the Weibull parameters (n = 1.5, 0 150t = ). (a) original WF, (b) 

( )( )ln ln W t −   vs. ( )ln t . 

 
the tail of KM, which is similarly not followed by both functions. The universal 
WF idea offers regression fit to the KM for a group of patients who have had an 
event or have censored until the end of the study. This is, of course, limited in 
real trials. We consider any chosen cohorts inhomogeneous because of the huge 
variability of living conditions. A homogenous group of patients, which has 
identical individuals could never be selected. However, there is a possibility to 
divide the cohort to subgroups with very similar patients, and fit WF on these 
independently, while the measured KM is, of course, a sum of the results of all 
the subgroups. With M subgroups in the complete cohort of N patients, and 
every group containing 21, , , Mk k k  patients, the WF for the actual measured 
non-parametric KM will be: 

( ) ( )
( )

( ) ( )

( )

( )

( ) ( )
( )

( )

1 2

1 (2)
0 0 0

0

1 2

1 1

e e e

or e and
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By taking extra care to have a homogeneous cohort, at least the time-limit of 
the study forms a group from patients, who had no event (or are not censored). 
The “remaining” patients in the given treatment study have the highest benefit 
from the performed treatment or they were in a definitely different condition 
when they were selected into the cohort. We call this group “remained group” 
(RG) due to the lack of proof of complete recovery. However, this group is 
sometimes regarded (incorrectly) as a cured fraction (according to the endpoints 
of the study). In a rigorous approach the disease-free survival (DFS) has to be 
compared with the matched healthy control group, and the cure-rate on this 
comparison must be decided [120]. An alternative way to determine the group of 
“cured” patients and the connected value of the “cure” time is when the hazard 
rate of the studied group corresponds to the hazard in the general population 
[121]. When it fits, we may talk about the real cure rate, which does not mean 
that an event cannot happen due to independent reasons from the investigated 
disease. 

The KM curve in an RG situation obviously does not fit to the strict WF, 
which must be decreased to a zero cumulative probability. When the ratio of the 
remaining individuals is RG

RGc n N= , the KM plot can be approximated with 
reasonable accuracy by the weighted sum of two WFs. In the RG fraction, the 
time-parameter is longer than in the fraction of patients having an event or cen-
sored. 

( ) ( ) ( )
( )

( )

0 01 e e

RGn
n

RG
tt

ttc
RG RGW t c c

 
   − −    

   = − +                (24) 

In this case, the composition of the time-parameter of the long survival WF fit 
is practically infinite (compared to the time-length of the study): 

( ) ( )
( )

( )

0e 1

RGn

RG
t

tRGW t

 
 −  
 = ≅                      (25) 

In this case, the correction by a survived fraction of the patients is constant. 
Denoting the constant correction c, the plot will be composed by this: 

( ) ( ) ( )
( )

( )

01 e

cn

c
t

tcW t c c

 
 −  
 = − +                    (26) 

The variation of c shows different fitting functions, Figure 9: 
Characterization of the curative effect of the treatment making a WF fit to the 

non-parametric KM survival could be done with the Shannon-entropy. Entropy 
measures the information carried by the probable density function (pdf,  
( )0, ,p t n t ) behind the WF ( ( )0, ,W t n t ). It measures the probability of realiza-

tion of an event or censoring 

( ) ( )

( )

1
0

0
0 0 0

0
0

d , ,
, , exp ;

d

, , d 1

n nW t n t n t tp t n t
t t t t

p t n t t

−

∞

     = = −        

=∫

          (27) 
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(a) 

 
(b) 

Figure 9. The WF with various c concentration of the patients 
in the RG group. 

 
The quantity of information is ( ) ( )( )0 0, , ln , ,I t n t p t n t= −  which is realized 

by ( )0, ,p t n t , so the complete information from the system is the classical Shan-
non-entropy, [122] is: 

( ) ( ) ( )( )0 0 00
, , , ln , , dShS n t p t n t p t n t t

∞
= −∫             (28) 

A higher entropy shows less information (more uncertainty). When an event 
has a lower probability to occur, it carries more information, so its Shannon- 
entropy is lower than the effects of the frequent occurrence. The expectation of a 
random variable is characterized by this entropy, so by this meaning it is a direct 
analog for the entropy definition in physics (statistical thermodynamics). When 
the informational entropy decreases, (its change becomes negative) it means that 
the probability distribution differs from the uniformed distribution, concentrat-
ing to some data. 

The entropy growth in physics usually happens when the system approaches 
equilibrium, while in pdf the increase of entropy shows a lack of information 
when the average rate of information produced by the stochastic source of the 
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data decreases. 
The Shannon entropy (28) measures the diversity of probability distribution 

function (pdf) behind WF (in fact the derivative of WF). It is a sum of the n and 

0t  dependent parts: 

( ) ( ) ( )

( ) ( ) ( ) ( )

0
0 1 2 0

1 2 0 0

1,

where

1 ln 1

11 ln 1; ln

Sh Sh Sh

Sh Sh

t
S n t S n S t

n n

S n n S t t
n

γ

γ

  = − + + = +      
 = − − + = 
 

          (29) 

and γ  is the Euler-Mascheroni constant: 0.577γ ≅  The special points of this 
entropy function are: 

( ) ( )( ) ( )
( ) ( ) ( ) ( )

( ) ( )
0

2 1 1

1 1 1 1

0,

1 0; max 1.127

0.173 0; 4.223 0; 0.363 1; 1 1

lim , 1

Sh Sh Sh

Sh Sh Sh Sh

Shn t

S S n S

S S S S

S n t

γ

γ
→∞ →∞

= = ≈

≅ ≅ ≅ =

= − +

     (30) 

The entropy (diversity) monotonically grows by 0t  in a logarithmic way, 
while it rapidly grows by n reaching the maximum at n γ=  (when 0 1t = ) and 
decreases from that point reaching zero at n = 4.223 (when 0 1t = ) and building 
information from that point (decreasing), so the step-function of WF (definite 
step) starts to dominate. The division of the entropy of a shape and scale (time) 
dependent part gives a possibility to define the role of these parameters. While 
the scale (time) parameter increases the Shannon-entropy monotonically, the 
shape parameter (n) after a maximum at γ , decreases the entropy, showing an 
increasing amount of information about the death (decreasing info about being 
alive) of the participants in the cohort. The growing shape-factor n definitely 
worsens the survival over the value γ , while the growth of the scale (time) fac-
tor gives longer survival expectations. 

The Shannon entropy could be calculated real-time t ( ( )0,ShS n t ) and also 
could be relative to 0t  time, meaning, that the time is measured in 0t  units 
( ( ) ( )0 ,1Sh ShS n S n= ), estimating the self-time. A higher entropy value means a 
higher uncertainty of death (therefore, a lower certainty of being alive). We ex-
pectthe growth of Shannon entropy of the parametric probability distribution 
function in cases of better results of the treatment. 

4. Discussion 

To demonstrate the parametrization, we use a large number of patients (1180 
individuals), with various tumors treated by numerous standard therapies, but 
having one thing in common: they are treated by complementary modulated 
electro-hyperthermia (mEHT), when the standard treatment fail to deliver the 
desirable results, [123] [124]; Figure 10. 

Using the approximate parametrization by the evaluation of this KM plot with 
the slope in 0t , we get 0 43t ≈  and 0.9n ≈ . median ≈ 28, Figure 11. 

The fit of single parametric WF curve to the KM plot, (Figure 12). The single  
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Figure 10. The overall survival KM-plot of a large number of patients (Pts.) = 1180 patients (various advanced solid malignancies, 
treated by complementary modulated electro-hyperthermia (mEHT), [117] [118]. The KM-plot contains very long (25 y) survival 
too. (a) with censored cases, (b) without censoring (for clarity). 
 

 
Figure 11. Rough determination of the parameters of the Weibull-fit to KM. Real 
process on a KM of Pts. = 1180 patients suffering in various malignant diseases [117], 
Figure 10. The obtained parameters are: 0 43t ≈  and ( )tg 0.7 85 0.008α ≈ ≈ , hence 

0.9n ≈ . Control: median ≈ 28, which is approximately correct. (The principle of the 
process is in the insert in the figure). 

 

 
(a) 
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(b) 

Figure 12. WF fit (dashed line) to KM solid line to the overall sur-
vival KM-plot of pts. = 1180 patients (Figure 10) (a) Regression by 
deviation minimum SE = 1.6544; r2 = 0.9850, n = 1.043; t0 = 42.28; 

4.726ShS = ; (b) regression by correlation maximum. SE 15.422= ; 
2 0.9969r = , 1.013n = , 0 31.142t = ; 4.433ShS = . 

 
WF fits with an acceptable accuracy; the largest deviation is less than 0.007, 
(0.7%). 

Note, that there is a difference, when we fit by minimalizing the deviation of  

the curves, ( ){ }2
SE min KM WF

i ii x x= −∑  or  

( )( )
( ) ( )

2

2
KM KM WF WF
i ii

KM KM WF WF
i ii i

x x x x
r

x x x x

 − − =  
− − 

 

∑

∑ ∑
 the square of Pearson correlation  

(where the  bracket means the mean of the variable). The obvious differ-
ence is due to the different meaning of fit. The parameter SE minimizes the dif-
ference between the curves, while the 2r  minimizes the shape difference 
(maximizes the similarities) of the curves. A comparison with Shannon entropy 
shows more certainty (less uncertainty) by about 6% in the regression by mini-
mizing SE than maximizing 2r . In the following, when we do not note the op-
posite, we use the minimal SE regression. 

The fit is accurate, having no more difference in any compared points of the 
curves than 1%, but it is not accurate enough at the end of the observed time, 
due to the RG group of the patients. The deviation could be less with applying 
the RG principle of (26), Figure 13. The 4.543ShS = , which is 2.5% higher, 
mirrors the RG part of the patient distribution.  

The parametric decomposition gives better fit by two WFs according to (24), 
Figure 14, where the r2 has reduced drastically. The result shows the responding 
group (response rate (RR) 48%) and the non-responding one (52%). Note, that 
the less-responding group could be regarded as a non-responding control-arm. 

The long-survival part of KM-plot has a higher entropy and shows more un-
certainty of the death in both approaches. A better fit can be achieved when we  
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Figure 13. WF fit (dashed line) to KM solid line) from Figure 10. The applied RG is 7%. 
SE 0.9059= ; 2 0.9918r = , 1.135n = , 0 36.632t = ; 4.543ShS = . The largest square of 
deviation of the point-pairs (LD) is 0.002 (0.2%). 

 

 
(a)                                                        (b) 

Figure 14. (a) The double Weibull fit to the overall survival of n = 1180 patients in malignant diseases complementary treated by 
the mEHT method. The longer survival (solid line) is the group of responding patients for the treatment; while the shorter surviv-
al time (dashed line) is a component of the composite fit of WF regarded as a non-responding group, that could be used as a ref-
erence cohort of patients. The sum of the two components (dotted line) fits to the measured overall survival. Deviation of the re-
gression is shown in light solid line with values on the secondary axes. (a) Decomposition using both WF without RG ( RG 0= , 
RR 48.4%= , SE 0.0968= ; 2 0.99954r = ); longer survival component ( 1.17n = , 0 89.52t = ; 5.423ShS = ); shorter survival 
component ( 1.59n = , 0 21.74t = ; 3.831ShS = ); (b) Decomposition using RG ( RG 10.7%= , RR 52.6%= , SE 0.0596= ;  

2 0.99954r = ); longer survival component ( 1.34n = , 0 68.89t = ; 5.086ShS = ); shorter survival component ( 1.62n = , 

0 20.02t = ; 3.734ShS = ). KM-plot and the sum of decomposed Weibull curves suppressed are remarkable (solid line) compare to 
the single fit (dotted line). 
 

count RG. The RG is obtained from the remaining survival fraction in most of 
the actual cases, and it has measurably longer survival than the study follows the 
patients who had no event or were not censored earlier. RG is a part of the 
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“censored” patients at the end of the study. 
For an easier calculation of the WF fractions (components) of the KM-plot, 

we may use the logarithmic evaluation of the survivals, which modifies the group-
ing more than the above decomposition. A linearly fit function ( )( )ln ln W t −   
by ( )ln t  of KM is shown in Figure 10. According to (22) it shows rather large 
deviations at the start and at the end of the curve, Figure 15. 

The original WF fit shown in Figure 12(a), and the linear fit from the loga-
rithmic approach of Figure 15. differs from each other, Figure 16. The deviation 
of the logarithmic fit is more than double in some intervals, so the direct fit of 
WF to KM is more accurate. 

 

 
Figure 15. The logarithmic fits of WF to KM of Figure 10. The li-
near fit to the complete curve gives two parameters: SE 1.6544= ; 

2 0.9850r = , 1.2429n = ; 0 43.33t = ; 4.664ShS = . 
 

 
Figure 16. The logarithmic fits of WF to KM of Figure 10. The linear fit to the complete 
curve gives two parameters: SE 3.93= ; 1.2429n = ; 0 43.33t = ; 4.664ShS = . The devi-

ation from the parameters of the original fit ( SE 1.6544= ; 2 0.9850r = , 1.043n = ; 

0 42.28t = ; 4.726ShS = ) shown in Figure 12(a). 
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Despite the inaccuracy of the logarithmic evaluation, it has a great advantage 
of guessing the subgroups of the patients by an optimal decomposing of the KM 
plot. The logarithmic curve on Figure 15. shows three well distinguishable parts, 
for which the linear is accurate, and divides the original KM into three sub-
groups, Figure 17. 

The WF fit to Figure 17 of the three parts of the KM is shown on Figure 18. 
The logarithmic fit by (22) shows different results than the direct fit. The rea-

son is simply that the logarithmic fit considers only a part of the whole curve, 
and fits to that, consequently the accurate fit to that part of the KM will not fit to 
the other parts at all, if the logarithmic curve was approached in different parts. 
The observed KM is, of course, considers all the patients. The overlapping fits 
from the logarithmic approach modifies the KM plot. Consequently, only the fit 
for original KM plot has a relevance. 

However, the logarithmic analysis is very useful for detecting the subgroups of 
the patients. It became clear that the survival contains three subgroups, Figure 
17. Consequently, three partitions of the KM curve (Figure 10) would give a 

 

 
Figure 17. The various logarithmic fits to KM of Figure 10. (a) Linear fit to three fraction of the KM curve, 2

1 0.9856r = , 
2

2 0.9927r = , 2
3 0.9919r = , (b) Using the linear fits, the original curve may be fractioned to the three subgroups, (solid, dots and 

dashed lines). 
 

 
Figure 18. Fitting the KM by WFs according to the logarithmic fit on Figure 17. (a) curves, 1 2.344n = , 01 17.347t = ; 1ShS =  
3.332 ; 2 1.321n = , 02 36.328t = ; 2 4.454ShS = ; 3 0.6364n = , 03 37.913t = ; 3 4.758ShS = . (b) deviations by groups. 
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Figure 19. Decomposition of the KM on Figure 10. (Pts. = 1180) to three groups 
(long 18%: n1 = 1.46, 1 1.46n = , 1median 151.02= , 1 6.071ShS = ; medium (36%): 

2 1.58n = , 02 53.87t = , 2median 42.73= , 2 4.741ShS = ; short (46%): 3 1.63n = , 

03 18.9t = , 3median 15.09= , 3 3.674ShS = . The deviation of the fit remains un-
der 0.0005 (0.05%). 

 
more accurate fit, than the RG (Figure 13) or the two-group decomposition 
(Figure 14) had allowed. This fit to KM is very accurate, the deviation remains 
under 0.0005 in the complete fit, Figure 19. 

5. Conclusions 

We had shown the applicability of the two-parameter cumulative Weibull dis-
tribution for approximating the non-parametric Kaplan-Meier plot with a higher 
accuracy. We had shown the universality of the Weibull approach based on the 
general behaviors of the living organisms, including the cancer-tissue develop-
ment. The self-organizing and self-similarity with their consequences determine 
the strict connection of the parametric approach well with the experimental 
non-parametric observations. Informational entropy allows the distinguishing of 
the subgroups in a general set of patients by their overall survival. 

We have demonstrated that applying the two-parameter WF provides a suffi-
cient fit to the non-parametric KM survival curve in a real case of 1180 patients 
suffering in various malignant diseases. Two of the 3 characteristic parameters of 
the KM plot (namely the points of median, mean or inflection) are enough to 
reconstruct the parametric fit.  

In summary, Weibull parametric distribution with satisfactory refinement can 
accurately approximate a KM survival plot with surviving individuals at the end- 
point of the study. 
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