New Probability Distributions in Astrophysics: XI. Left Truncation for the Topp-Leone Distribution

Lorenzo Zaninetti
Physics Department, University of Turin, Turin, Italy
Email: 1.zaninetti@alice.it

How to cite this paper: Zaninetti, L. (2023) New Probability Distributions in Astrophysics: XI. Left Truncation for the Topp-Leone Distribution. International Journal of Astronomy and Astrophysics, 13, 154-165.
https://doi.org/10.4236/ijaa.2023.133009
Received: June 9, 2023
Accepted: August 28, 2023
Published: August 31, 2023

Copyright © 2023 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Abstract

The Topp-Leone (T-L) distribution has aided the modeling of scientific data in many contexts. We demonstrate how it can be adapted to model astrophysical data. We analyse the left truncated version of the T-L distribution, deriving its probability density function (PDF), distribution function, average value, r th moment about the origin, median, the random generation of its values, and its maximum likelihood estimator, which allows us to derive the two unknown parameters. The T-L distribution, in its regular and truncated versions, is then applied to model the initial mass function for the stars. A comparison is made with specific clusters and between proposed functions for the IMF. The Topp-Leone distribution can provide an excellent fit in some cases.

Keywords

Stars: Normal, Stars: Luminosity Function, Mass Function Stars: Statistics

1. Introduction

A family of univariate J-shaped probability distributions was introduced by Topp \& Leone in 1955 [1], in the following T-L. After 50 years, a derivation of the moments of the T-L distribution was done by [2] in terms of the Gauss hypergeometric function, and a numerical analysis of its skewness was done by [3]. At the moment of writing, the study of the generalizations of the T-L distributions is an active field of research, we cite among others some approaches: the introduction of two sides and a generalization [4], a new family of distributions called the Marshall-Olkin Topp Leone-G family [5], a new trigonometric family of distributions defined from the alliance of the families known as sine-G and

Topp-Leone generated distributions [6]. This paper introduces in Section 2 the scale for the T-L distribution, which is originally defined in the interval $[0,1]$. Section 3 introduces a left truncation of the T-L distribution and Section 4 applies the derived results to the mass distribution for stars.

2. Topp-Leone Distribution with Scale

Let Y be a random variable taking values y in the interval $[0,1]$. The Topp-Leone probability density function (PDF), (in the following T-L) is

$$
\begin{equation*}
f(y)=\beta(2-2 y)\left(-y^{2}+2 y\right)^{\beta-1} \tag{1}
\end{equation*}
$$

where $\beta>0$ is the shape parameter [1]. We now introduce the scale, b, with the change of variable $y=\frac{x}{b}$: the T-L PDF with scale defined in $[0,1]$ is

$$
\begin{equation*}
f(x ; b, \beta)=\frac{\beta\left(2-\frac{2 x}{b}\right)\left(-\frac{x^{2}}{b^{2}}+\frac{2 x}{b}\right)^{\beta-1}}{b} \tag{2}
\end{equation*}
$$

where $b>0, \beta>0$. The distribution function, (DF), of the T-L with scale is

$$
\begin{equation*}
F(x ; b, \beta)=\left(\frac{x}{b}\right)^{\beta}\left(2-\frac{x}{b}\right)^{\beta} \tag{3}
\end{equation*}
$$

its average value or mean, μ, is

$$
\begin{equation*}
\mu(b, \beta)=-\frac{b\left(\sqrt{\pi} \Gamma(\beta+1)-2 \Gamma\left(\frac{3}{2}+\beta\right)\right)}{2 \Gamma\left(\frac{3}{2}+\beta\right)} \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
\Gamma(z)=\int_{0}^{\infty} \mathrm{e}^{-t} t^{z-1} \mathrm{~d} t \tag{5}
\end{equation*}
$$

is the gamma function. Its variance, σ^{2}, is

$$
\begin{equation*}
\sigma^{2}(b, \beta)=-\frac{\left(-4 \Gamma\left(\frac{3}{2}+\beta\right)^{2}+\pi \Gamma(\beta+1)^{2}(\beta+1)\right) b^{2}}{4(\beta+1) \Gamma\left(\frac{3}{2}+\beta\right)^{2}} \tag{6}
\end{equation*}
$$

and its standard deviation, $s t d$, is

$$
\begin{equation*}
s t d=\sqrt{\sigma^{2}} \tag{7}
\end{equation*}
$$

Its I th moment about the origin, μ_{r}^{\prime}, is

$$
\begin{equation*}
\mu_{r}^{\prime}(b, \beta)=-\frac{\beta\left(2_{2}^{\beta} F_{1}\left(-\beta+1, \beta+r ; 1+\beta+r ; \frac{1}{2}\right) r-2 \beta-2 r\right) b^{r}}{(\beta+r)(2 \beta+r)} \tag{8}
\end{equation*}
$$

where ${ }_{2} F_{1}(a, b ; c ; v)$ is a regularized hypergeometric function [7] [8] [9] [10]. Its skewness is

$$
\begin{equation*}
\text { skewness }=\frac{N}{D} \tag{9}
\end{equation*}
$$

where

$$
\begin{align*}
& N=768\left(3 \left(\frac{4(\beta+2)(\beta+1)^{3} \Gamma\left(\frac{5}{2}+\beta\right)^{3}}{3}-2(\beta+1)^{2} \sqrt{\pi}(\beta+2)\right.\right. \\
& \times \Gamma(\beta+2)\left(\frac{3}{2}+\beta\right) \Gamma\left(\frac{5}{2}+\beta\right)^{2}+(\beta+1) \pi \Gamma(\beta+2)^{2}\left(\frac{3}{2}+\beta\right)^{3} \Gamma\left(\frac{5}{2}+\beta\right) \\
& \left.-\frac{\pi^{\frac{3}{2}}\left(\beta+\frac{5}{4}\right) \Gamma(\beta+2)^{3}\left(\frac{3}{2}+\beta\right)^{3}}{6}\right)(\beta+1)(\beta-1) 2^{\beta} \Gamma\left(\frac{5}{2}+\beta\right)\left(\beta+\frac{7}{3}\right) \\
& \times{ }_{2} F_{1}\left(\beta,-\beta+2 ; \beta+1 ; \frac{1}{2}\right)+8(\beta+1)^{4} \beta(\beta+2)\left(\beta+\frac{7}{3}\right) \Gamma\left(\frac{5}{2}+\beta\right)^{4} \\
& -8(\beta+1)^{2} \sqrt{\pi}(\beta+2)\left(\beta^{4}+\frac{29}{6} \beta^{3}+\frac{79}{12} \beta^{2}+\frac{8}{3} \beta-\frac{11}{24}\right) \Gamma(\beta+2)\left(\frac{3}{2}+\beta\right) \Gamma\left(\frac{5}{2}+\beta\right)^{3} \\
& +12\left(\beta^{3}+\frac{5}{2} \beta^{2}+\frac{1}{2} \beta-\frac{1}{2}\right)(\beta+1)^{2} \pi \Gamma(\beta+2)^{2}\left(\beta+\frac{7}{3}\right)\left(\frac{3}{2}+\beta\right)^{2} \Gamma\left(\frac{5}{2}+\beta\right)^{2} \\
& -6(\beta+1) \pi^{\frac{3}{2}}\left(\beta^{4}+\frac{38}{9} \beta^{3}+\frac{301}{72} \beta^{2}-\frac{19}{36} \beta-\frac{23}{24}\right) \Gamma(\beta+2)^{3}\left(\frac{3}{2}+\beta\right)^{3} \Gamma\left(\frac{5}{2}+\beta\right) \tag{10}\\
& \left.+\pi^{2}\left(\beta+\frac{1}{2}\right)\left(\beta+\frac{5}{4}\right)\left(\beta-\frac{1}{2}\right) \Gamma(\beta+2)^{4}\left(\beta+\frac{7}{3}\right)\left(\frac{3}{2}+\beta\right)^{4}\right) b^{3} \\
& D=\operatorname{std}^{3}(\beta+1)^{3} 512\left(4 \beta^{2}-1\right)(3+2 \beta)(\beta+1) \Gamma\left(\frac{5}{2}+\beta\right)^{4} . \tag{11}
\end{align*}
$$

Figure 1 shows the behaviour of the skewness as a function of the parameter β; the transition from positive to negative values is at $\beta=2.563$ and [3] quotes $\beta=2.56$.

The kurtosis of the T-L has a complicated expression and we limit ourselves to a numerical display, see Figure 2; the minimum value is at $\beta=1.843$ when $b=1$ 。

The median, $q_{1 / 2}$, is at

$$
\begin{equation*}
q_{1 / 2}(b, \beta)=\left(1-\sqrt{1-2^{-\frac{1}{\beta}}}\right) b \tag{12}
\end{equation*}
$$

and the mode is at

$$
\begin{equation*}
\operatorname{mode}(b, \beta)=\frac{(\sqrt{2 \beta-1}-1) b}{\sqrt{2 \beta-1}} \tag{13}
\end{equation*}
$$

Topp-Leone

Figure 1. Skewness of the T-L distribution with scale as a function of β when $b=1$.

Figure 2. Kurtosis of the T-L distribution with scale as a function of β when $b=1$.

The random generation of the T-L variate X is given by

$$
\begin{equation*}
X: b, \beta \approx\left(1-\sqrt{1-R^{\frac{1}{\beta}}}\right) b, \tag{14}
\end{equation*}
$$

where R is the unit rectangular variate. The two parameters b and β can be derived by the numerical solution of the two following equations, which arise from the maximum likelihood estimator (MLE),

$$
\begin{gather*}
-2 n-\left(\sum_{i=1}^{n} \frac{(2 \beta-2) x_{i}^{2}+(-4 \beta+5) b x_{i}+2 b^{2}(\beta-2)}{\left(b-x_{i}\right)\left(2 b-x_{i}\right)}\right) \tag{15a}\\
b \tag{15b}
\end{gather*}=0,
$$

where x_{i} are the elements of the experimental sample with i varying between 1 and n.

3. Truncated Topp-Leone Distribution with Scale

Let X be a random variable defined in $\left[x_{l}, b\right]$; the left truncated two-parameter T-L DF, $F_{T}(x)$, is

$$
\begin{equation*}
F_{T}\left(x ; \beta, x_{l}, b\right)=\frac{b^{-2 \beta}\left(x_{l}^{\beta}\left(2 b-x_{l}\right)^{\beta}-x^{\beta}(2 b-x)^{\beta}\right)}{x_{l}^{\beta} b^{-2 \beta}\left(2 b-x_{l}\right)^{\beta}-1} \tag{16}
\end{equation*}
$$

and its PDF, $f_{T}(x)$, is

$$
\begin{equation*}
f_{T}\left(x ; \beta, x_{l}, b\right)=\frac{\beta\left(2-\frac{2 x}{b}\right)\left(-\frac{x^{2}}{b^{2}}+\frac{2 x}{b}\right)^{\beta-1}}{b\left(1-x_{l}^{\beta} b^{-2 \beta}\left(2 b-x_{l}\right)^{\beta}\right)} \tag{17}
\end{equation*}
$$

Its average value or mean, μ_{T}, is

$$
\begin{align*}
\mu_{T}\left(\beta, x_{l}, b\right)= & \frac{1}{2(\beta+1)(\beta+2) \Gamma\left(\frac{3}{2}+\beta\right)\left(x_{l}^{\beta}\left(2 b-x_{l}\right)^{\beta}-b^{2 \beta}\right)} \\
& -x_{l}^{\beta+2} \Gamma\left(\frac{3}{2}+\beta\right) \beta 2^{\beta+1} b^{\beta-1}(\beta+1)_{2} F_{1}\left(-\beta+1, \beta+2 ; \beta+3 ; \frac{x_{l}}{2 b}\right) \tag{18}\\
& +x_{l}^{\beta+1} \Gamma\left(\frac{3}{2}+\beta\right) \beta b^{\beta}\left(\beta 2^{\beta+1}+42^{\beta}\right){ }_{2} F_{1}\left(\beta+1,-\beta+1 ; \beta+2 ; \frac{x_{l}}{2 b}\right) \\
& +b^{2 \beta+1}(\beta+1)(\beta+2)\left(\sqrt{\pi} \Gamma(\beta+1)-2 \Gamma\left(\frac{3}{2}+\beta\right)\right),
\end{align*}
$$

Its r th moment about the origin, $\mu_{r, T}^{\prime}$, is

$$
\begin{align*}
& \mu_{r, T}^{\prime}\left(\beta, x_{l}, b\right) \\
&= \frac{1}{\left(x_{l}^{\beta}\left(2 b-x_{l}\right)^{\beta}-b^{2 \beta}\right)(\beta+r)(2 \beta+r)}\left(2 \beta x_{l}^{\beta+r} b^{\beta}\left(\frac{2 b-x_{l}}{b}\right)^{\beta}\right. \\
&+2 r x_{l}^{\beta+r} b^{\beta}\left(\frac{2 b-x_{l}}{b}\right)^{\beta}-{ }_{2} F_{1}\left(\beta+r,-\beta+1 ; 1+\beta+r ; \frac{x_{l}}{2 b}\right) r x_{l}^{\beta+r} 2^{\beta} b^{\beta} \tag{19}\\
&\left.+{ }_{2} F_{1}\left(\beta+r,-\beta+1 ; 1+\beta+r ; \frac{1}{2}\right) r b^{2 \beta+r} 2^{\beta}-2 \beta b^{2 \beta+r}-2 r b^{2 \beta+r}\right) \beta
\end{align*}
$$

Its variance can be evaluated with the usual formula:

$$
\begin{equation*}
\sigma_{T}^{2}\left(\beta, x_{l}, b\right)=\mu_{2, T}^{\prime}-\left(\mu_{1, T}^{\prime}\right)^{2} . \tag{20}
\end{equation*}
$$

The random generation of the truncated T-L variate X is obtained by solving the following nonlinear equation in x :

$$
\begin{equation*}
F_{T}\left(x ; \beta, x_{l}, b\right)=R, \tag{21}
\end{equation*}
$$

where R is the unit rectangular variate. The three parameters x_{l}, b and β can be obtained in the following way. Consider a sample $\mathcal{X}=x_{1}, x_{2}, \cdots, x_{n}$ and let $x_{(1)} \geq x_{(2)} \geq \cdots \geq x_{(n)}$ denote their order statistics, so that $x_{(1)}=\max \left(x_{1}, x_{2}, \cdots, x_{n}\right), x_{(n)}=\min \left(x_{1}, x_{2}, \cdots, x_{n}\right)$. The first parameter x_{l} is

$$
\begin{equation*}
x_{l}=x_{(n)} . \tag{22}
\end{equation*}
$$

One method, the MLE, allows us to derive the two remaining parameters maximizing the log-likelihood:

$$
\begin{align*}
& \ln \left(\mathcal{L}\left(x_{i} ; \beta, x_{l}, b\right)\right) \\
& =n \ln (2)+n \ln (\beta)-2 n \ln (b)+\left(\sum_{i=1}^{n} \ln \left(-\frac{\left(b-x_{i}\right)\left(\frac{x_{i}\left(2 b-x_{i}\right)}{b^{2}}\right)^{\beta-1}}{x_{l}^{\beta} b^{-2 \beta}\left(2 b-x_{l}\right)^{\beta}-1}\right)\right), \tag{23}
\end{align*}
$$

where $\mathcal{L}\left(x_{i} ; \beta, x_{l}, b\right)$ is the likelihood function. The two parameters b and β are derived by the numerical solution of the two following equations,

$$
\begin{align*}
& \frac{\partial \ln \left(\mathcal{L}\left(x_{i} ; \beta, x_{l}, b\right)\right)}{\partial \beta}=0 \tag{24a}\\
& \frac{\partial \ln \left(\mathcal{L}\left(x_{i} ; \beta, x_{l}, b\right)\right)}{\partial b}=0 \tag{2ab}
\end{align*}
$$

where x_{i} are the elements of the experimental sample with i varying between 1 and n. Another method is the method of moments, which derives β and b from the following two non-linear equations:

$$
\begin{gather*}
\mu_{T}\left(\beta, x_{l}, b\right)=\bar{x} \tag{25a}\\
\sigma_{T}^{2}\left(\beta, x_{l}, b\right)=\operatorname{Var} \tag{25b}
\end{gather*}
$$

where \bar{x} and Var are, respectively, the average value and the variance of the experimental sample [11].

4. Astrophysical Applications

This section reviews the adopted statistics; the lognormal distribution is also used here for the sake of comparison. The new results are applied to the initial mass function (IMF) for stars.

4.1. Statistics

The merit function χ^{2} is computed according to the formula:

$$
\begin{equation*}
\chi^{2}=\sum_{i=1}^{n} \frac{\left(T_{i}-O_{i}\right)^{2}}{T_{i}}, \tag{26}
\end{equation*}
$$

where n is the number of bins, T_{i} is the theoretical value, and O_{i} is the experimental value represented by the frequencies. The theoretical frequency distribution is given by

$$
\begin{equation*}
T_{i}=N \Delta x_{i} p(x) \tag{27}
\end{equation*}
$$

where N is the number of elements of the sample, Δx_{i} is the magnitude of the size interval, and $p(x)$ is the PDF under examination. A reduced merit function $\chi_{\text {red }}^{2}$ is given by

$$
\begin{equation*}
\chi_{\text {red }}^{2}=\chi^{2} / N F, \tag{28}
\end{equation*}
$$

where $N F=n-k$ is the number of degrees of freedom, n is the number of bins, and k is the number of parameters. The goodness of the fit can be expressed by the probability Q, see equation 15.2 .12 in [11], which involves the number of degrees of freedom and χ^{2}. According to [11] p. 658, the fit "may be acceptable" if $Q>0.001$. The Akaike information criterion (AIC), see [12], is defined by

$$
\begin{equation*}
\mathrm{AIC}=2 k-2 \ln (L) \tag{29}
\end{equation*}
$$

where L is the likelihood function and k the number of free parameters in the model. We assume a Gaussian distribution for the errors. The likelihood function can then be derived from the χ^{2} statistic $L \propto \exp \left(-\frac{\chi^{2}}{2}\right)$ where χ^{2} has been computed by Equation (29), see [13] [14]. Now the AIC becomes:

$$
\begin{equation*}
\mathrm{AIC}=2 k+\chi^{2} \tag{30}
\end{equation*}
$$

The Kolmogorov-Smirnov test (K-S), see [15] [16] [17], does not require the data to be binned. The K-S test, as implemented by the FORTRAN subroutine KSONE in [11], finds the maximum distance, D, between the theoretical and the astronomical DF, as well as the significance level $P_{K S}$; see formulas 14.3 .5 and 14.3.9 in [11]. If $P_{K S} \geq 0.1$, then the goodness of the fit is believable.

4.2. Lognormal Distribution

Let X be a random variable defined in $[0, \infty]$; the lognormal PDF, following [18] or formula (14.2) in [19], is

$$
\begin{equation*}
\operatorname{PDF}(x ; m, \sigma)=\frac{\mathrm{e}^{-\frac{1}{2 \sigma^{2}}\left(\ln \left(\frac{x}{m}\right)\right)^{2}}}{x \sigma \sqrt{2 \pi}} \tag{31}
\end{equation*}
$$

where m is the median and σ the shape parameter. Its CDF is

$$
\begin{equation*}
\operatorname{CDF}(x ; m, \sigma)=\frac{1}{2}+\frac{1}{2} \operatorname{erf}\left(\frac{1}{2} \frac{\sqrt{2}(-\ln (m)+\ln (x))}{\sigma}\right) \tag{32}
\end{equation*}
$$

where $\operatorname{erf}(x)$ is the error function, defined as

$$
\begin{equation*}
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} \mathrm{e}^{-t^{2}} \mathrm{~d} t \tag{33}
\end{equation*}
$$

see [10]. Its average value or mean, $E(X)$, is

$$
\begin{equation*}
E(X ; m, \sigma)=m \mathrm{e}^{\frac{1}{2} \sigma^{2}}, \tag{34}
\end{equation*}
$$

its variance, $\operatorname{Var}(X)$, is

$$
\begin{equation*}
\operatorname{Var}=\mathrm{e}^{\sigma^{2}}\left(\mathrm{e}^{\sigma^{2}}-1\right) m^{2}, \tag{35}
\end{equation*}
$$

and its second moment about the origin, $E^{2}(X)$, is

$$
\begin{equation*}
E\left(X^{2} ; m, \sigma\right)=m^{2} \mathrm{e}^{2 \sigma^{2}} \tag{36}
\end{equation*}
$$

4.3. The IMF for Stars

The first test is performed on NGC 2362, where the 271 stars have a range of $1.47 M_{\odot} \geq M \geq 0.11 M_{\odot}$, see [20] and CDS catalog J/MNRAS/384/675/table1. According to [21], the distance of NGC 2362 is 1480 pc .

The second test is performed on the low-mass IMF in the young cluster NGC 6611, see [22] and CDS catalog J/MNRAS/392/1034. This massive cluster has an age of 2-3 Myr and contains masses from $1.5 M_{\odot} \geq M \geq 0.02 M_{\odot}$. Therefore, the brown dwarfs (BD) region, $\approx 0.2 \mathcal{M}_{\odot}$, is covered. The third test is performed on the γ Velorum cluster where the 237 stars have a range of $1.31 M_{\odot} \geq M \geq 0.15 M_{\odot}$, see [23] and CDS catalog J/A+A/589/A70/table5. The fourth test is performed on the young cluster Berkeley 59, where the 420 stars have a range of $2.24 M_{\odot} \geq M \geq 0.15 M_{\odot}$, see [24] and CDS catalog J/AJ/155/44/table3. The results are presented in Table 1 for the lognormal distribution, in Table 2

Table 1. Numerical values of $\chi_{\text {red }}^{2}$, AIC, probability Q, D, the maximum distance between theoretical and observed CDF, and $P_{K S}$, the significance level, in the K-S test of the lognormal distribution, see Equation (34), for different mass distributions. The number of linear bins, n, is 10 .

Cluster	parameters	AIC	$\chi_{\text {red }}^{2}$	Q	D	$P_{K S}$
NGC 2362	$\sigma=0.5, \mu_{L N}=-0.55$	27.77	2.97	2.5×10^{-3}	0.073	0.105
NGC 6611	$\sigma=1.03, \mu_{L N}=-1.26$	23.66	2.45	1.16×10^{-2}	0.093	0.049
γ Velorum	$\sigma=0.5, \mu_{L N}=-1.08$	31.73	3.46	5.27×10^{-4}	0.092	0.034
Berkeley 59	$\sigma=0.49, \mu_{L N}=-0.92$	33.16	3.64	2.96×10^{-4}	0.11	6.46×10^{-5}

Table 2. Numerical values of $\chi_{\text {red }}^{2}$, AIC, probability Q, D, the maximum distance between theoretical and observed DF, and P_{K}, the significance level, in the K-S test of the T-L distribution with scale, see Equation (2), for different astrophysical environments. The last column (F) indicates a $P_{K S}$ higher (Y) or lower (N) than that for the lognormal distribution. The number of linear bins, n, is 10 .

Cluster	parameters	AIC	$\chi_{\text {red }}^{2}$	Q	D	$P_{K S}$	F
NGC 2362	$b=1.47, \beta=1.73$	19.61	1.95	4.83×10^{-2}	7.35×10^{-2}	0.1	N
NGC 6611	$b=1.46, \beta=0.796$	9.71	0.713	0.679	0.0627	0.377	Y
γ Velorum	$b=1.317, \beta=0.812$	167	20.3	3.5×10^{-31}	0.297	5.2×10^{-19}	N
Berkeley 59	$b=2.24, \beta=0.467$	418	51.82	0	0.42	0	N

Table 3. Numerical values of $\chi_{\text {red }}^{2}$, AIC, probability Q, D, the maximum distance between theoretical and observed DF, and $P_{K S}$ the significance level, in the K-S test of the truncated T-L distribution with scale, see Equation (18), for different astrophysical environments. The last column (F) indicates a $P_{K S}$ higher (Y) or lower (N) than that for the lognormal distribution. The number of linear bins, n, is 10 .

Cluster	parameters	AIC	$\chi_{\text {red }}^{2}$	Q	D	$P_{K S}$	F
NGC 2362	$b=1.47, \beta=1.73$	20.61	2.08	4.12×10^{-2}	6.09×10^{-2}	0.25	Y
NGC 6611	$b=1.46, \beta=0.796$	10.55	0.65	0.714	0.0627	0.377	Y
γ Velorum	$b=1.317, \beta=0.812$	99	13.33	2.58×10^{-17}	0.291	5.56×10^{-18}	N
Berkeley 59	$b=2.24, \beta=0.467$	188	26.01	7.11×10^{-36}	0.32	0	N

Table 4. Numerical values of D, the maximum distance between theoretical and observed DF , and $P_{K s}$ the significance level, in the K-S test for different distributions in the case of γ Velorum cluster.

Figure 3. Empirical DF of the mass distribution for NGC 6611 (blue histogram) with a superposition of the T-L DF (red dashed line). Theoretical parameters as in Table 2.
for the T-L distribution with scale, and in Table 3 for the truncated T-L distribution with scale. In Table 2 and Table 3 the last column shows whether the results of the K-S test are better when compared to the Weibull distribution (Y) or worse (N). As an example, the empirical DF visualized through histograms and the theoretical T-L DF for NGC 6611 is presented in Figure 3.

5. Conclusions

The Truncated Distribution

We derived the PDF, the DF, the average value, the r th moment, and the MLE for the left truncated T-L distribution with scale.

Astrophysical Applications

The application of the T-L distribution to the IMF for stars gives better results than the lognormal distribution for one out of four samples, see Table 2. The truncated T-L distribution gives better results than the T-L distribution for two out of four samples, see Table 2 and Table 3.

The results for the mass distribution of γ Velorum cluster compared with other distributions are shown in Table 4, in which the truncated T-L distribution occupies the 7th position.

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this paper.

References

[1] Topp, C.W. and Leone, F.C. (1955) A Family of J-Shaped Frequency Functions. Journal of the American Statistical Association, 50, 209-219.
https://doi.org/10.1080/01621459.1955.10501259
[2] Nadarajah, S. and Kotz, S. (2003) Moments of Some J-Shaped Distributions. Journal of Applied Statistics, 30, 311-317. https://doi.org/10.1080/0266476022000030084
[3] Kotz, S. and Seier, E. (2007) Kurtosis of the Topp-Leone Distributions. Interstat, 1, 1-15.
[4] Vicari, D., Van Dorp, J.R. and Kotz, S. (2008) Two-Sided Generalized Topp and Leone (TS-GTL) Distributions. Journal of Applied Statistics, 35, 1115-1129. https://doi.org/10.1080/02664760802230583
[5] Khaleel, M.A., Oguntunde, P.E., Abbasi, J.N.A., Ibrahim, N.A. and AbuJarad, M.H.A. (2020) The Marshall-Olkin Topp Leone-G Family of Distributions: A Family for Generalizing Probability Models. Scientific African, 8, e00470.
https://doi.org/10.1016/j.sciaf.2020.e00470
[6] Al-Babtain, A.A., Elbatal, I., Chesneau C and Elgarhy M. (2020) Sine Topp-Leone-G Family of Distributions: Theory and Applications. Open Physics, 18, 574-593. https://doi.org/10.1515/phys-2020-0180
[7] Abramowitz, M. and Stegun, I.A. (1965) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York.
[8] von Seggern, D. (1992) CRC Standard Curves and Surfaces. CRC, New York.
[9] Thompson, W.J. (1997) Atlas for Computing Mathematical Functions. Wiley-Inter-

Science, New York.
[10] Olver, F.W.J., Lozier, D.W., Boisvert, R.F. and Clark, C.W. (2010) NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge.
[11] Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (1992) Numerical Recipes in FORTRAN. The Art of Scientific Computing. Cambridge University Press, Cambridge.
[12] Akaike, H. (1974) A New Look at the Statistical Model Identification. IEEE Transactions on Automatic Control, 19, 716-723.
https://doi.org/10.1109/TAC.1974.1100705
[13] Liddle, A.R. (2004) How Many Cosmological Parameters? MNRAS, 351, L49-L53. https://doi.org/10.1111/j.1365-2966.2004.08033.x
[14] Godlowski, W. and Szydowski, M. (2005) Constraints on Dark Energy Models from Supernovae. In: Turatto, M., Benetti, S., Zampieri, L. and Shea, W., Eds., 1604-2004: Supernovae as Cosmological Lighthouses, Astronomical Society of the Pacific, Vol. 342 of Astronomical Society of the Pacific Conference Series, ASP, San Francisco, 508-516.
[15] Kolmogoroff, A. (1941) Confidence Limits for an Unknown Distribution Function. The Annals of Mathematical Statistics, 12, 461-463. https://doi.org/10.1214/aoms/1177731684
[16] Smirnov, N. (1948) Table for Estimating the Goodness of Fit of Empirical Distributions. The Annals of Mathematical Statistics, 19, 279-281.
https://doi.org/10.1214/aoms/1177730256
[17] Massey Jr., F.J. (1951) The Kolmogorov-Smirnov Test for Goodness of Fit. Journal of the American Statistical Association, 46, 68-78. https://doi.org/10.1080/01621459.1951.10500769
[18] Evans, M., Hastings, N. and Peacock, B. (2000) Statistical Distributions. 3rd Edition, Wiley, New York.
[19] Johnson, N.L., Kotz, S. and Balakrishnan, N. (1994) Continuous Univariate Distributions. 2nd Edition, Vol. 1, Wiley, New York.
[20] Irwin, J., Hodgkin, S., Aigrain, S., Bouvier, J., Hebb, L., Irwin, M. and Moraux, E. (2008) The Monitor Project: Rotation of Low-Mass Stars in NGC 2362-Testing the Disc Regulation Paradigm at 5 Myr. Monthly Notices of the Royal Astronomical Society, 384, 675-686. https://doi.org/10.1111/j.1365-2966.2007.12725.x
[21] Moitinho, A., Alves, J., Huélamo, N. and Lada, C.J. (2001) NGC 2362: A Template for Early Stellar Evolution. The Astrophysical Journal, 563, L73-L76. https://doi.org/10.1086/338503
[22] Oliveira, J.M., Jeffries, R.D. and van Loon, J.T. (2009) The Low-Mass Initial Mass Function in the Young Cluster NGC 6611. Monthly Notices of the Royal Astronomical Society, 392, 1034-1050. https://doi.org/10.1111/j.1365-2966.2008.14140.x
[23] Prisinzano, L., Damiani, F., et al. (2016) The Gaia-ESO Survey: Membership and Initial Mass Function of the γ Velorum Cluster. Astronomy \& Astrophysics, 589, Article No. A70. https://doi.org/10.1051/0004-6361/201527875
[24] Panwar, N., Pandey, A.K., Samal, M.R., et al. (2018) Young Cluster Berkeley 59: Properties, Evolution, and Star Formation. The Astronomical Journal, 155, Article No. 44. https://doi.org/10.3847/1538-3881/aa9f1b
[25] Zaninetti, L. (2022) New Probability Distributions in Astrophysics: X. Truncation and Mass-Luminosity Relationship for the Frèchet Distribution. International Journal of Astronomy and Astrophysics, 12, 347-362.
https://doi.org/10.4236/ijaa.2022.124020
[26] Zaninetti, L. (2021) New Probability Distributions in Astrophysics: V. The Truncated Weibull Distribution. International Journal of Astronomy and Astrophysics 11, 133-149. https://doi.org/10.4236/ijaa.2021.111008
[27] Zaninetti, L. (2021) New Probability Distributions in Astrophysics: VI. The Truncated Sujatha Distribution. International Journal of Astronomy and Astrophysics, 11, 517-529. https://doi.org/10.4236/ijaa.2021.114028
[28] Zaninetti, L. (2020) New Probability Distributions in Astrophysics: II. The Generalized and Double Truncated Lindley. International Journal of Astronomy and Astrophysics, 10, 39-55. https://doi.org/10.4236/ijaa.2020.101004
[29] Zaninetti, L. (2019) New Probability Distributions in Astrophysics: I. The Truncated Generalized Gamma. International Journal of Astronomy and Astrophysics, 9, 393-410. https://doi.org/10.4236/ijaa.2019.94027
[30] Zaninetti, L. (2017) A Left and Right Truncated Lognormal Distribution for the Stars. Advances in Astrophysics, 2, 197-213. https://doi.org/10.22606/adap.2017.23005
[31] Zaninetti, L. (2013) A Right and Left Truncated Gamma Distribution with Application to the Stars. Advanced Studies in Theoretical Physics, 23, 1139-1147. https://doi.org/10.12988/astp.2013.310125
[32] Zaninetti, L. (2013) The Initial Mass Function Modeled by a Left Truncated Beta Distribution. The Astrophysical Journal, 765, Article No. 128.
https://doi.org/10.1088/0004-637X/765/2/128

