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Abstract 
The Topp-Leone (T-L) distribution has aided the modeling of scientific data 
in many contexts. We demonstrate how it can be adapted to model astro-
physical data. We analyse the left truncated version of the T-L distribution, 
deriving its probability density function (PDF), distribution function, average 
value, rth moment about the origin, median, the random generation of its 
values, and its maximum likelihood estimator, which allows us to derive the 
two unknown parameters. The T-L distribution, in its regular and truncated 
versions, is then applied to model the initial mass function for the stars. A 
comparison is made with specific clusters and between proposed functions 
for the IMF. The Topp-Leone distribution can provide an excellent fit in some 
cases. 
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1. Introduction 

A family of univariate J-shaped probability distributions was introduced by 
Topp & Leone in 1955 [1], in the following T-L. After 50 years, a derivation of 
the moments of the T-L distribution was done by [2] in terms of the Gauss 
hypergeometric function, and a numerical analysis of its skewness was done by 
[3]. At the moment of writing, the study of the generalizations of the T-L distri-
butions is an active field of research, we cite among others some approaches: the 
introduction of two sides and a generalization [4], a new family of distributions 
called the Marshall-Olkin Topp Leone-G family [5], a new trigonometric family 
of distributions defined from the alliance of the families known as sine-G and 
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Topp-Leone generated distributions [6]. This paper introduces in Section 2 the 
scale for the T-L distribution, which is originally defined in the interval [ ]0,1 . 
Section 3 introduces a left truncation of the T-L distribution and Section 4 ap-
plies the derived results to the mass distribution for stars. 

2. Topp-Leone Distribution with Scale 

Let Y be a random variable taking values y in the interval [ ]0,1 . The Topp-Leone 
probability density function (PDF), (in the following T-L) is  

 ( ) ( )( ) 122 2 2 ,f y y y y
β

β
−

= − − +                   (1) 

where 0β >  is the shape parameter [1]. We now introduce the scale, b, with 

the change of variable xy
b

= : the T-L PDF with scale defined in [ ]0,1  is  

 ( )

12

2
2 22

; , ,

x x x
b bb

f x b
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β
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−
  − − +  

  =               (2) 

where 0, 0b β> > . The distribution function, (DF), of the T-L with scale is  

 ( ); , 2 ,x xF x b
b b

β β

β    = −   
   

                    (3) 

its average value or mean, µ , is  
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is the gamma function. Its variance, 2σ , is  
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and its standard deviation, std, is  

 2 .std σ=                            (7) 

Its rth moment about the origin, rµ′ , is  

 ( ) ( )( )

2 1
12 1, ;1 ; 2 2
2, ,

2

r
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F r r r r b
b

r r

ββ β β β β
µ β

β β

  − + + + + − −    ′ = −
+ +

  (8) 

where ( )2 1 , ; ;F a b c v  is a regularized hypergeometric function [7] [8] [9] [10]. 
Its skewness is  
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Figure 1 shows the behaviour of the skewness as a function of the parameter 
β ; the transition from positive to negative values is at 2.563β =  and [3] quotes 

2.56β = . 
The kurtosis of the T-L has a complicated expression and we limit ourselves to 

a numerical display, see Figure 2; the minimum value is at 1.843β =  when 
1b = .  

The median, 1 2q , is at  

 ( )
1

1 2 , 1 1 2 ,q b bββ
− 

 = − −
 
 

                     (12) 

and the mode is at  
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Figure 1. Skewness of the T-L distribution with scale as a function of β  when 1b = . 

 

 
Figure 2. Kurtosis of the T-L distribution with scale as a function of β  when 1b = . 

 
The random generation of the T-L variate X is given by  

 
1

: , 1 1 ,X b R bββ
 
 ≈ − −
 
 

                     (14) 
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where R is the unit rectangular variate. The two parameters b and β  can be de-
rived by the numerical solution of the two following equations, which arise from 
the maximum likelihood estimator (MLE),  
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where ix  are the elements of the experimental sample with i varying between 1 
and n. 

3. Truncated Topp-Leone Distribution with Scale 

Let X be a random variable defined in [ ],lx b ; the left truncated two-parameter 
T-L DF, ( )TF x , is  
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and its PDF, ( )Tf x , is  
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Its average value or mean, Tµ , is  
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Its rth moment about the origin, ,r Tµ′ , is  
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Its variance can be evaluated with the usual formula:  

 ( ) ( )22
2, 1,, , .T l T Tx bσ β µ µ′ ′= −                       (20) 

The random generation of the truncated T-L variate X is obtained by solving the 
following nonlinear equation in x:  

 ( ); , , ,T lF x x b Rβ =                          (21) 

where R is the unit rectangular variate. The three parameters lx , b and β  can 
be obtained in the following way. Consider a sample 1 2, , , nx x x=   and let 

( ) ( ) ( )1 2 nx x x≥ ≥ ≥  denote their order statistics, so that  

( ) ( )1 21 max , , , nx x x x=  , ( ) ( )1 2min , , , nnx x x x=  . The first parameter lx  is  

 ( ) .l nx x=                              (22) 

One method, the MLE, allows us to derive the two remaining parameters max-
imizing the log-likelihood:  
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where ( ); , ,i lx x bβ  is the likelihood function. The two parameters b and β are 
derived by the numerical solution of the two following equations,  

 
( )( )ln ; , ,

0,i lx x bβ
β

∂
=

∂


                      (24a) 

 
( )( )ln ; , ,

0,i lx x b
b
β∂

=
∂


                      (2ab) 

where ix  are the elements of the experimental sample with i varying between 1 
and n. Another method is the method of moments, which derives β and b from 
the following two non-linear equations:  

 ( ), , ,T lx b xµ β =                          (25a) 

 ( )2 , , ,T lx b Varσ β =                         (25b) 

where x  and Var are, respectively, the average value and the variance of the 
experimental sample [11]. 

4. Astrophysical Applications 

This section reviews the adopted statistics; the lognormal distribution is also 
used here for the sake of comparison. The new results are applied to the initial 
mass function (IMF) for stars. 

4.1. Statistics 

The merit function 2χ  is computed according to the formula:  
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=∑                        (26) 

where n is the number of bins, iT  is the theoretical value, and iO  is the expe-
rimental value represented by the frequencies. The theoretical frequency distri-
bution is given by  

 ( ) ,i iT N x p x= ∆                         (27) 

where N is the number of elements of the sample, ix∆  is the magnitude of the 
size interval, and ( )p x  is the PDF under examination. A reduced merit func-
tion 2

redχ  is given by  

 2 2 ,red NFχ χ=                         (28) 

where NF n k= −  is the number of degrees of freedom, n is the number of bins, 
and k is the number of parameters. The goodness of the fit can be expressed by 
the probability Q, see equation 15.2.12 in [11], which involves the number of 
degrees of freedom and 2χ . According to [11] p. 658, the fit “may be acceptable” 
if 0.001Q > . The Akaike information criterion (AIC), see [12], is defined by  

 ( )AIC 2 2ln ,k L= −                       (29) 

where L is the likelihood function and k the number of free parameters in the 
model. We assume a Gaussian distribution for the errors. The likelihood function  

can then be derived from the 2χ  statistic 
2

exp
2

L χ 
∝ − 

 
 where 2χ  has been 

computed by Equation (29), see [13] [14]. Now the AIC becomes:  

 2AIC 2 .k χ= +                        (30) 

The Kolmogorov-Smirnov test (K-S), see [15] [16] [17], does not require the da-
ta to be binned. The K-S test, as implemented by the FORTRAN subroutine 
KSONE in [11], finds the maximum distance, D, between the theoretical and the 
astronomical DF, as well as the significance level KSP ; see formulas 14.3.5 and 
14.3.9 in [11]. If 0.1KSP ≥ , then the goodness of the fit is believable. 

4.2. Lognormal Distribution 

Let X be a random variable defined in [ ]0,∞ ; the lognormal PDF, following [18] 
or formula (14.2) in [19], is  

 ( )

2

2
1 ln

2ePDF ; , ,
2

x
m

x m
x

σ

σ
σ

  −   
  

π
=                     (31) 

where m is the median and σ  the shape parameter. Its CDF is  

 ( )
( ) ( )( )2 ln ln1 1 1CDF ; , erf ,

2 2 2
m x

x m σ
σ

 − +
 = +
 
 

          (32) 

where erf(x) is the error function, defined as  

 ( ) 2

0

2erf e d ,
x tx t−

π
= ∫                       (33) 
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see [10]. Its average value or mean, ( )E X , is  

 ( )
21

2; , e ,E X m m
σ

σ =                       (34) 

its variance, ( )Var X , is  

 ( )2 2 2e e 1 ,Var mσ σ= −                      (35) 

and its second moment about the origin, ( )2E X , is  

 ( ) 22 2 2; , e .E X m m σσ =                      (36) 

4.3. The IMF for Stars 

The first test is performed on NGC 2362, where the 271 stars have a range of 
1.47   0.11M M M≥ ≥

 

, see [20] and CDS catalog J/MNRAS/384/675/table1. Ac-
cording to [21], the distance of NGC 2362 is 1480 pc. 

The second test is performed on the low-mass IMF in the young cluster NGC 
6611, see [22] and CDS catalog J/MNRAS/392/1034. This massive cluster has an 
age of 2 - 3 Myr and contains masses from 1.5   0.02M M M≥ ≥

 

. Therefore, the 
brown dwarfs (BD) region, 0.2≈



 , is covered. The third test is performed on 
the γ  Velorum cluster where the 237 stars have a range of  
1.31   0.15M M M≥ ≥

 

, see [23] and CDS catalog J/A+A/589/A70/table5. The 
fourth test is performed on the young cluster Berkeley 59, where the 420 stars have 
a range of 2.24   0.15M M M≥ ≥

 

, see [24] and CDS catalog J/AJ/155/44/table3. 
The results are presented in Table 1 for the lognormal distribution, in Table 2  
 
Table 1. Numerical values of 2

redχ , AIC, probability Q, D, the maximum distance be-
tween theoretical and observed CDF, and PKS, the significance level, in the K-S test of the 
lognormal distribution, see Equation (34), for different mass distributions. The number 
of linear bins, n, is 10.  

Cluster parameters AIC 2
redχ  Q D PKS 

NGC 2362 0.5σ = , 0.55LNµ = −  27.77 2.97 2.5 × 10−3 0.073 0.105 

NGC 6611 1.03σ = , 1.26LNµ = −  23.66 2.45 1.16 × 10−2 0.093 0.049 

γ Velorum 0.5σ = , 1.08LNµ = −  31.73 3.46 5.27 × 10−4 0.092 0.034 

Berkeley 59 0.49σ = , 0.92LNµ = −  33.16 3.64 2.96 × 10−4 0.11 6.46 × 10−5 

 
Table 2. Numerical values of 2

redχ , AIC, probability Q, D, the maximum distance between theoretical and observed DF, and PKS, 
the significance level, in the K-S test of the T-L distribution with scale, see Equation (2), for different astrophysical environments. 
The last column (F) indicates a PKS higher (Y) or lower (N) than that for the lognormal distribution. The number of linear bins, n, 
is 10.  

Cluster parameters AIC 2
redχ  Q D PKS F 

NGC 2362 b = 1.47, β = 1.73 19.61 1.95 4.83 × 10−2 7.35 × 10−2 0.1 N 

NGC 6611 b = 1.46, β = 0.796 9.71 0.713 0.679 0.0627 0.377 Y 

γ Velorum b = 1.317, β = 0.812 167 20.3 3.5 × 10−31 0.297 5.2 × 10−19 N 

Berkeley 59 b = 2.24, β = 0.467 418 51.82 0 0.42 0 N 
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Table 3. Numerical values of 2
redχ , AIC, probability Q, D, the maximum distance between theoretical and observed DF, and PKS, 

the significance level, in the K-S test of the truncated T-L distribution with scale, see Equation (18), for different astrophysical 
environments. The last column (F) indicates a PKS higher (Y) or lower (N) than that for the lognormal distribution. The number of 
linear bins, n, is 10.  

Cluster parameters AIC 2
redχ  Q D PKS F 

NGC 2362 b = 1.47, β = 1.73 20.61 2.08 4.12 × 10−2 6.09 × 10−2 0.25 Y 

NGC 6611 b = 1.46, β = 0.796 10.55 0.65 0.714 0.0627 0.377 Y 

γ Velorum b = 1.317, β = 0.812 99 13.33 2.58 × 10−17 0.291 5.56 × 10−18 N 

Berkeley 59 b = 2.24, β = 0.467 188 26.01 7.11 × 10−36 0.32 0 N 

 
Table 4. Numerical values of D, the maximum distance between theoretical and observed 
DF, and PKS, the significance level, in the K-S test for different distributions in the case of 
γ Velorum cluster. 

Distribution Reference D PKS 

truncated Topp-Leone here 6.09 × 10−2 0.25 

Frècet [25] 0.125 3.13 × 10−4 

truncated Frècet [25] 0.077 0.07 

truncated Weibull [26] 0.046 0.576 

truncated Sujatha [27] 0.0485 0.534 

truncated Lindley [28] 0.11 0.48 

generalized gamma [29] 0.11 1.24 × 10−3 

truncated generalized gamma [29] 0.062 0.24 

lognormal [30] 0.0729 0.11 

truncated lognormal [30] 0.047 0.55 

gamma [31] 0.059 0.28 

truncated gamma [31] 0.0754 0.08 

beta [32] 0.059 0.28 

 

 
Figure 3. Empirical DF of the mass distribution for NGC 6611 (blue histogram) with a 
superposition of the T-L DF (red dashed line). Theoretical parameters as in Table 2.  
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for the T-L distribution with scale, and in Table 3 for the truncated T-L distri-
bution with scale. In Table 2 and Table 3 the last column shows whether the 
results of the K-S test are better when compared to the Weibull distribution (Y) 
or worse (N). As an example, the empirical DF visualized through histograms 
and the theoretical T-L DF for NGC 6611 is presented in Figure 3.  

5. Conclusions 

The Truncated Distribution 
We derived the PDF, the DF, the average value, the rth moment, and the MLE 

for the left truncated T-L distribution with scale. 
Astrophysical Applications  
The application of the T-L distribution to the IMF for stars gives better results 

than the lognormal distribution for one out of four samples, see Table 2. The 
truncated T-L distribution gives better results than the T-L distribution for two 
out of four samples, see Table 2 and Table 3. 

The results for the mass distribution of γ Velorum cluster compared with 
other distributions are shown in Table 4, in which the truncated T-L distribu-
tion occupies the 7th position. 
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