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Abstract

The Freéchet distribution has aided the modelling of scientific data in many
contexts. We demonstrate how it can be adapted to model astrophysical data.
We analyze the truncated version of the Frechet distribution deriving the
probability density function (PDF), the distribution function, the average
value, the rth moment about the origin, the median, the random generation
of values and the maximum likelihood estimator, which allows us to derive
the two unknown parameters. This first PDF in the regular and truncated
version is then applied to model the mass of the stars. A canonical transfor-
mation from the mass to the luminosity allows us to derive a new PDF, which
is derived in its regular and truncated version. Finally, we apply this new PDF
model on the distribution in luminosity of NGC 2362.

Keywords

Stars: Normal, Stars: Luminosity Function, Mass Function Stars: Statistics

1. Introduction

The Freécet distribution, after [1], was first applied for the particle size distribu-
tion in powdered coal [2]. We report some efforts, among others, to derive the
parameters of the Frécet distribution: [3] analyzed a quick estimator that differs
from the matching moments method and the maximum likelihood estimator
(MLE); [4] analyzed the MLE and the probability weighted moment estimation;
and [5] explored the MLE, the method of matching moments, the percentile es-
timators, the L-moments, the ordinary and weighted least squares, the maxi-
mum product of spacing and the maximum goodness-of-fit estimators. The ap-

plications cover inter-facial damage in microelectronic packages and the materi-
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al properties of constituent particles in an aluminum alloy [6]; the series of an-
nual 1-day maximum rainfall [7]; and the total monthly rainfall [5]. The case of
the Frecet distribution truncated at the right was introduced by [8] and that of
the double truncation was carefully analyzed in [9].

The rest of this paper is structured as follows. It first reviews the two parame-
ters of the Frécet distribution in the interval [0,00] , see Section 2, and then ex-
plores the bi-truncated case in Section 3. Section 4 transforms the standard and
the truncated Frechet distribution in mass into distributions in luminosity ac-
cording to the well-known mass-luminosity relationship. Finally, the astrophys-

ical applications to mass and luminosity for stars are reported in Section 5.

2. Regular Case
Let X be a random variable defined in [O, OO]; the two parameter Frécet distri-
bution function (DF), F(x), is

F(xb,a)= e_(gj , (1)

where b and «, both positive, are the scale and the shape parameters, respec-
tively, see [1]. The probability density function (PDF), f(x), is

el
f(X;b,a):(bjL.

(2)
X
We now introduce
GAMMA, = r(“—‘rj (3)
a
where ris an integer and [(Z) is the gamma function, which is defined as
_ [*a-tyz-1
1“(2)—J'0 e 't* ldt. (4)
The average value or mean, u, is defined for a >1
u(b,a)=bry, (5)
the variance, o?, is defined for a > 2
o’ (b,a)=b’ (—1"12+1"2), (6)
the skewness is defined for « >3
28 -3r,I, +T
skewness(b, o) = ———2—=, (7)
(-7 +T,)?
the kurtosis is defined for a >4
. -3, + 60T, —4, [, +T
kurtosis(b,q) = —*—*+2 13 4 (8)
(T +T,)
and the sth moment about the origin, 4, is defined for a >r
yr’(b,a):brl"r. 9)
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The median, @,, is at
1

Ay, (b,a)=In(2) «b, (10)

and the mode is at

1 1
mode(b,a)=(1+a) « a“h. (11)

Random generation of the Frécet variate Xis given by

1

X :b,a~(-In(R)) «b, (12)

where Ris the unit rectangular variate.
The two parameters band « can be derived by the numerical solution of the

two following equations, which arise from the maximum likelihood estimator

0y

nln(b)+£+i((%Ja In(%)—ln(xi)Jzo, (13b)

[2 2=}

=0, (13a)

where X, are the elements of the experimental sample with 7 varying between 1

and n.

3. The Truncated Frecet Distribution

Let X be a random variable defined in [X,,Xu]; the truncated two-parameter
Frecet DF, K (X) , is

' _e—x’o’b”’ +e—x|""b”‘
F(xb,a,x,x,)= o g (14)
and the PDF, f; (x), is
(X = )
fr (xb,a,%,%, )= b (15)

We now present two different formulae for the 7th moment about the origin,

ol 6

7X|—abu

4, : the first is

, (16)

’
bl L L =
/ur( %, X ) _e_xaaba ‘e

where

r(az)= J'Zwta’le’tdt, (17)
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is the upper incomplete gamma function, see formula (8) in [9] and the second

formula is
, 1
(b, %, x,)= e
(oz—r)(Zoc—r)(3oz—r)(e’Xu " e )
LU L
X| —a —b 2X|2 € 2 (—20.’+ r)z MZa—r 3a-r (X;aba)
2a ' 2a
Caal T WY
+b 2x2 e 2 (—20:+r)2 M,, . 3a_,(xu"’b“) (18)
20 ' 2a

X “b* r r ror
ERTR A AT R —apa
+ale X2 (“2a+r)b  2—ab?x? M, (XD

20" 2a

R L L S
2 oYl 2 2 2 2
+e M 3OH(XU b ) X2 (-2a+r)b  Z+x2ab ,

2a' 2a

where M, (z) is the Whittaker M function, see [10]. The variance can be

evaluated with the usual formula

o? (b, %%, ) = 4 (b %, %, ) = (4 (B, %, x,)) (19)
the median is at
1
—x “p* —xg “b% a
ql/Z(byalxllXu):b _In ¢ +e 2 ’ (20)

and the mode is at the same position as the regular case, see Equation (11). In
the truncated case the mean and the variance are defined for « >0, see Figure
1 and Figure 2.

The random generation of the truncated Frécet variate Xis given by

1
X :ba, %, X, ~ b(_ln(—Re'XFabu +Re et )) “. (21)

Truncated Frechet

2.14

2.0

1.9

mean

1.8

1.7

1.6

02 04 06 08 1.0 1.2 1.4 16 1.8 2.0
X

Figure 1. Mean of the truncated Fréchet distribution as function of « when b=1,
X =0.1 and x,=10.
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6l Truncated Frechet

variance

02 04 06 08 10 12 14 16 18 20

X

Figure 2. Variance of the truncated Freéchet distribution as function of « when b=1,
X =0.1 and x,=10.

The four parameters X,X,,0 and « can be obtained in the following way.
and let Xy 2 Xz) 22 X denote their
). The

Consider a sample X =X, X,, X

n

order statistics, so that Xy =maxX (X, X,, . X,) 5 Xy =Min (X, Xy, 0, %,
first two parameters X and X, are

X =Xy Xy = Xy (22)

The MLE allows us to derive the two remaining parameters b and « from

the experimental sample

() et (o) e OO

: b b
o PR -
+zl —(Ela -0,
o|(5)" .n(t;}em“ (5] .n(b.}(sl“ ) _ )
nln(b)+—+ -~ —
“ RONRG )
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4. The Mass-Luminosity Relationship

The mass-luminosity relationship for the stars is well established from both a
theoretical point of view, L o M or Lo M*, see [11], and from an observa-
tional point of view, L oc M** in the case of MAIN,V; see [12] for further de-
tails. We therefore introduce the following transformation for our PDFs

L=cM?, (24)

where L is the luminosity of a star, M is the mass of the star, and cand £

are two theoretical parameters. This transformation implies

M :[5)’] , (25a)
C
-5 1
s B
dM = d""ﬂ ¢ (25b)

4.1. Frechet M — L Distribution

To stress the astrophysical environment, we consider the change of variable
X = M, the mass, in Equation (2) for the Frechet PDF

M j RO

f(/\/l;b,a):(

b
26
v (26)
To obtain a PDF in luminosity, Z, we apply the transformation (24)
s e
B ~ABR L PcPb*
fu (Libac, p)= o Cae " 77 27)
B
where the suffix MZ means mass-luminosity relationship. The DF is
Fu (Lib,a,c,B)=e """, (28)
the average value is defined for o >
Lt (b,a,c,ﬂ):bﬂcl“(a_ﬂj, (29)
a
the variance is defined for a >2/4
2
ngL (b, a,c, ﬂ) = bzﬂczr(_zﬁij —p?e?r (ﬂj ' (30)
a a
the rth moment about the origin is defined for o >r g
- pBr
e (b,a,c,ﬂ,r):bﬂ’c’r(uj, (31)
a
the mode is at
s F
mode(b,a,c, 8),, =bc(a+p) «a, (32)
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the median is at
_B
qML (b'a’c’ﬁ)zbﬂCIn(Z) a (33)
and the random generation of the M —L Frecet variate Xis given by

B
a-

X :b,a,c, f~b’c(-In(R)) (34)

The astrophysical parameter f is constant and the three parameters b, «

and c can be derived by the numerical solution of the following equations which

arise from MLE
a[c ( x; Jb” - n]
- = -0, (35)

b

=R
=R

@Lbac?(—mn(b)ﬂn(xi)—m(c))xi;—In(xi )B“+“('n(b)aﬂ+a'n(°>+ﬁ>

=0, (35b)

=0. (35¢)

4.2. The Truncated Frechet M — L Distribution

The starting point is Equation (15) for the truncated Frechet PDF with the vari-
able x replaced by the mass. We apply the transformation (24) and the truncated
Fréchet M—L PDFis

B CEba e—L ﬂc
= , (36)

fur (Libianc AL L, ) = —=
ﬂ(e

where L,L; and L, are the luminosity, the lower luminosity and the upper

luminosity; the suffix MLT denotes mass-luminosity relationship. The DF is

a a

e—L BePp*
Fur (Lib,ac, L, L) =——— - (37)
e_LFCEba _e—H/fcﬁb”‘

The rth moment about the origin is

#; (ba,c B L, L)
b?rc’ [r(_ﬁ T L el ] - r(_ﬂ ;Jr 2L e e ]] (38)

(24
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the median is at

qm(b,a,c,ﬂ,L,,lm):bﬁc —In

the mode is at

and the random generation of the variate is given by

B
o o ||
- ) 39
> > (39)
s L
mode(b,a,¢c, B,L,,L,)=b" (a+B) « a“c, (40)
L
aa . ) -% a . a
Bl el c’b (41)

X :b,a,c,p,L,L, ~b’c| -In| -R| —e™="°

The parameter [ is fixed by the astrophysics and the three parameters

b,a,c are obtained by solving the following equations that arise from MLE

a a a a a a ¢ a
Felprge W | BePprge e | o <z
c’b“ae L”c’b%ae _LBcPpe L Bl
nL” s eL“”’—eL'Cb
b b
Na
b aa aa \?
N o B (22
_e b gl (42a)
e @
n BrPRha
X, "c’ba
+Z 5 =0,
i=1
nin(c n
( )+nln(b)+—+C2
p a
a a aa (42b)
nloIn(x) x7In(x)c’b® x “cfIn(c)b® -2 =2
+y |- (')+ (%) - ) - 7c’b*In(b) | =0,
i B B B
a «a e a a «a _%%
3.3 _L,Achpe 3.5 - “ e a Za
0 L/c ab®e™ ™ L /¢l ab e 7 g W _ oy
pe pc
N
B’ :
C a a e a
N a s a
_ W g e (420)
e a
Ly X Pel ab® o
i-1 pc
where
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_ 1 %b“ In(b -jﬁ%b“ 7%
, = — ——xnc n(b)e L’ B
e—L;Ech“ _ —L;Ecﬁb“
o eV
~In(b)e™ " L/ B +In(c)e LS —In(c)e L7 (43)

5. Astrophysical Applications

This section reviews some formulae that are useful in the conversion from the
magnitude to the luminosity of a star, the adopted statistical tests, the applica-
tion of the obtained results to the IMF for stars and the reliability of M—L re-
lationship for NGC 2362.

5.1. Useful Formulae

The conversion from apparent magnitude, m, to absolute magnitude, A4, is given
by

5In(D)
In(10) '

M=m+5- (44)
where D is the distance in pc and In is the natural logarithm. The conversion
from absolute magnitude to luminosity L is

L

0.4M,—-0.4M
=10%Me

, (45)
©

where L, and M are the solar luminosity and absolute magnitude in the

considered astronomical band, see Appendix A.4 in [13].

5.2. Statistics

The merit function y* is computed according to the formula
2
MUY
2= Z¥l (46)
i=1 i

where nis the number of bins, T,

. is the theoretical value, and O, is the expe-

rimental value represented by the frequencies. The theoretical frequency distri-
bution is given by

T, = NAX p(x), (47)
where Nis the number of elements of the sample, AX, is the magnitude of the
size interval, and p(x) is the PDF under examination. A reduced merit func-
tion yZ, isgiven by

K = 2°INF, (48)
where NF =n-k is the number of degrees of freedom, n is the number of

bins, and 4 is the number of parameters. The goodness of the fit can be ex-
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pressed by the probability Q, see equation 15.2.12 in [14], which involves the
number of degrees of freedom and x°. According to [14] p. 658, the fit “may be
acceptable” if Q >0.001. The Akaike information criterion (AIC), see [15], is
defined by

AIC =2k -2In(L), (49)

where L is the likelihood function and & the number of free parameters in the

model. We assume a Gaussian distribution for the errors. The likelihood func-
2

tion can then be derived from the z? statistic Locexp[—%] where y?

has been computed by equation (46), see [16] [17]. Now the AIC becomes
AIC =2k + . (50)

The Kolmogorov-Smirnov test (K-S), see [18] [19] [20], does not require the
data to be binned. The K-S test, as implemented by the FORTRAN subroutine
KSONE in [14], finds the maximum distance, D, between the theoretical and the
astronomical DF, as well as the significance level Pyg see formulas 14.3.5 and
14.3.91in [14]. If P > 0.1, then the goodness of the fit is believable.

5.3. The IMF for Stars

The first test is performed on NGC 2362 where the 271 stars have a range
147TM 2>M 20.11IM, see [21] and CDS catalog J/MNRAS/384/675/tablel.
According to [22], the distance of NGC 2362 is 1480 pc.

The second test is performed on the low-mass IMF in the young cluster NGC
6611, see [23] and CDS catalog J/MNRAS/392/1034. This massive cluster has an
age of 2 - 3 Myr and contains masses from 1.5M >M >0.02M . Therefore, the
brown dwarfs (BD) region, ~0.2M_ is covered. The third test is performed on
the y Velorum cluster where the 237 stars have a range 1.31M_ >M >0.15M,
see [24] and CDS catalog J/A + A/589/A70/table5. The fourth test is performed
on the young cluster Berkeley 59 where the 420 stars have a range
2.24M_ >M >0.15M , see [25] and CDS catalog J/AJ/155/44/table3. The re-
sults are presented in Table 1 for the Fréchet distribution with two parameters
and in Table 2 for the truncated Fréchet distribution with four parameters,

where the last column reports whether the results of the K-S test are better when

Table 1. Numerical values of ;(fed , AIC, probability Q, D, the maximum distance between theoretical and observed DF, and Py,

significance level, in the K-S test of the Frechet distribution with two parameters for different astrophysical environments. The last

column (F) indicates a Py higher (Y) or lower (N) than that for the lognormal distribution. The number of linear bins, 1, is 10.

Cluster parameters AIC 72 Q D Py F
NGC 2362 b=0.44, a=1.825 81.58 9.69 1.49 x 107" 0.125 3.13x10™* N
NGC 6611 b=10.165, a=0.912 83.57 9.94 5.95x 107 0.15 1.43 x 107* N
y Velorum b=0.267, a=2.572 23.7 2.46 0.015 0.046 0.68 Y
Berkeley 59 b=0.319, a=2.68 37.63 4.2 4.72 x 107° 5.1x1072 0.209 Y

DOI: 10.4236/ijaa.2022.124020

356 International Journal of Astronomy and Astrophysics


https://doi.org/10.4236/ijaa.2022.124020

L. Zaninetti

Table 2. Numerical values of ;(fed , AIC, probability Q, D, the maximum distance between theoretical and observed DF, and Py,
significance level, in the K-S test of the truncated Fréchet distribution with four parameters for different astrophysical environ-
ments. The last column (F) indicates a Py higher (Y) or lower (N) than that for the lognormal distribution. The number of linear

bins, n, is 10.

Cluster parameters AIC 72, Q D Py F
NGC 2362 b=0.604, a=1.24, x,=0.2, x,= 1.47 37.294 4.88 5.34x107° 0.077 0.07 N
NGC 6611 b=0.66, a=0.44, x,= 0.0189, x, = 1.46 25.7 2.95 7 %107 0.075 0.17 Y
y Velorum b=02,a=1.5,x=0.15x,=1.31 14.85 1.14 0.33 0.06 0.33 Y
Berkeley 59 b=0.32, a=2.58, x,=0.16, x, = 2.24 35.13 4.52 1.36 x 10™* 5.28 x 107> 0.185 Y

-+
(]
<
O
Lap / ]
L
L /
o /
or -
02 o4 o8 o8 1 2

X

Figure 3. Empirical DF of the mass distribution for y Velorum (bleu histogram) with a super-
position of the Fréchet DF (red dashed line). Theoretical parameters as in Table 1.

-
(0]
-
(6]
(0]
hl
L
o
Oul 4
+ ©
O
g
S /
-
-
L
(m]
oFr -
L] 0.2 0.4 0.6 0.8 1 1.2 14

X

Figure 4. Empirical DF of the mass distribution for NGC 6611 (bleu histogram) with a super-
position of the truncated Fréchet DF (red-dashed line). Theoretical parameters as in Table 2.

compared to the Weibull distribution (Y) or worse (N).

As an example, the empirical DF visualized through histograms and the theo-
retical Fréchet DF for y Velorum are reported in Figure 3.

Figure 4 displays the theoretical truncated Fréchet DF and the empirical DF
for NGC 6611.
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5.4. M - L Relationship

We start with the sample in apparent magnitude for NGC 2362, see Figure 5. To
have a sample in luminosity for NGC 2362, we convert the apparent magnitude
in luminosity via formula (45); see Figure 6.

The data of Figure 6 are now processed to obtain the parameters of the

T T T T T T T T T T T T T T T

22

20
T

18
T
I

16
T
I

| s 1 L | " 1 s |
0.6 0.8 1

Mass/MO®O
Figure 5. Apparent magnitude, V, versus mass for NGC 2362; data available from the Strasbourg
Astronomical Data Centre (CDS), which are in the table with name J/MNRAS/384/675/table.

@
=}

0.4

Luminosity —Vband
0.2

et
ORI RRA TR LU

1 " 1 L 1 L 1 ' 1 " 1 " 1 L 1

0 0.2 0.4 0.6 0.8 1
Mass/M®

Figure 6. Luminosity, Z, versus mass for NGC 2362 when D =1480pc and M o= 4.8.
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M—L Frécet distribution, see Table 3, and of the truncated M —L Frécet
distribution, see Table 4.

Figure 7 displays the theoretical luminosity M —L Frechet DF and the em-
pirical DF, and Figure 8 displays the truncated M—-L Frechet DF.

Table 3. Numerical values of yZ,, AIC, probability Q, D, the maximum distance between theoretical and observed DF, and Py,
significance level, in the K-S test of the M —L Frecet distribution in luminosity with four parameters. The number of linear

bins, n, is 20.

Cluster Parameters AIC 22 Q D Py

NGC 2362 b=0.092,a=2.48,c=11.47, f=2.45 23.17 0.948 0.511 0.154 3.93x107°

Table 4. Numerical values of 2, , AIC, probability, @, D, the maximum distance between theoretical and observed DF, and Py,
significance level, in the K-S test of the truncated M —L Frécet distribution in luminosity with six parameters. The number of

linear bins, n, is 20.

Cluster Parameters AIC 72, Q D Py

b=0.097,a=1.47, c=7.56, f=2.45 25.24 0.946 0.507 0.0341 0.903

NGC 2362 L, =115x10°L, L, =0.55L,

DF Frechet M—L
05

0.2 0.3 0.4
L/LO

Figure 7. Empirical DF of the luminosity distribution for NGC 2362 (bleu histogram) with a superposi-
tion of the M —L Fréchet DF (red-dashed line). The theoretical parameters are as in Table 3.

1

0.5
T

0
T

DF Frechet M—L truncation

0:2 0:3 0:4
L/LO®
Figure 8. Empirical DF of the luminosity distribution for NGC 2362 (bleu histogram) with a superposi-
tion of the truncated M —L Freéchet DF (red-dashed line). The theoretical parameters are as in Table 4.
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6. Conclusions

The truncated distributions

We derived the PDF, the DF, the average value, the rth moment, the median,
the expression to generate the random variate and the MLE for the truncated
Frecet distribution.

Astrophysical Applications

The application of this distribution to the IMF for stars gives better results
than the lognormal distribution for two out of four samples, see Table 1. The
truncated Freécet distribution gives better results than the Frecet distribution for
two out of four samples, see Table 1 and Table 2.

The results for the mass distribution of y Velorum cluster compared with
other distributions are reported in Table 5, in which the Frécet distribution sur-

prisingly produces the best results.

Table 5. Numerical values of D, the maximum distance between theoretical and observed
DF, and P, significance level, in the K-S test for different distributions in the case of y
Velorum cluster.

Distribution Reference D Py
Frecet here 0.046 0.68
Weibull [26] 0.14 6.6 x 10
Truncated Weibull [26] 0.063 0.29
Truncated Sujatha [27] 0.0614 0.322
Truncated Lindley [28] 0.064 0.269
Generalized gamma [29] 0.11 5.7 %107
Truncated generalized gamma [29] 0.105 9.38 x 107
Lognormal [30] 0.091 0.034
Truncated lognormal [30] 0.0529 0.509
Gamma [31] 0.145 7.6x107°
Truncated gamma [31] 0.0812 0.0828
Beta [32] 0.1 0.015

The mass-luminosity relationship

We made a transformation that connects a pdf in mass into a pdf in luminosity,
see Equation (24). The resulting distribution in luminosity has been applied to
NGC 2362, see Table 4. Figure 7 and Figure 8 display the DF for the M—L
Frechet DF and the truncated M —L Fréchet DF. These results are compatible

with L oc M?**, which can be another way to confirm the M —L relationship.
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