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Abstract 

We derive the truncated version of the Weibull—Pareto distribution, deriving 
the probability density function, the distribution function, the average value, 
the rth moment about the origin, the media, the random generation of values 
and the maximum likelihood estimator which allows deriving the three pa-
rameters. The astrophysical applications of the Weibull—Pareto distribution 
are the initial mass function for stars, the luminosity function for the galaxies 
of the Sloan Digital Sky Survey, the luminosity function for QSO and the 
photometric maximum of galaxies of the 2 MASS Redshift Survey. 
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1. Introduction 

Regarding probability distributions, in recent years there have been many mod-
ifications of the standard distributions: here we analyze the case of the Weibull 
distribution. The Weibull distribution has two parameters, the scale and the 
shape, see [1] [2] [3]. The new Weibull-Pareto distribution (NWPD) has three 
parameters: the scale and two shapes, see [4] [5] [6], and allows modelling the 
flooding of the Wheaton river and bladder cancer [5], provides a way to design a 
multiple deferred state acceptance sampling plans for assuring the lifetime of 
products [7], the stress-strength model [8] and the breaking stress of carbon fi-
bers [9]. Some generalizations of the NWPD have been suggested [10] [11] [12]. 
One example of a probability distribution in astrophysics is the lognormal dis-
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tribution for the initial mass function (IMF), which allows modelling 8 young 
clusters [13]. Another example is the Schechter luminosity function (LF) for ga-
laxies [14], which is currently used to model the absolute magnitude in catalogs 
of galaxies such as the 2dF Galaxy Redshift Survey (2dFGRS) [15], the Sloan 
Digital Sky Survey (SDSS) [16] and the Millennium Galaxy Catalogue (MGC) 
[17]. The previous two arguments allow exploring old and new probability dis-
tributions in order to understand which produces the best fit. At the time of 
writing, the effect of a truncation on the NWPD has not yet been explored, and 
therefore, after a review in Section 2, its effect on the NWPD will be explored in 
Section 3. Section 4 is devoted to the derivation of the luminosity function for 
galaxies using both the regular and truncated versions, and then Section 5 is de-
voted to the astrophysical applications, such as the initial mass function for stars, 
the photometric maximum of the number of galaxies and the average absolute 
magnitude for galaxies. 

2. The Weibull—Pareto Distribution 

Let X be a random variable defined on [ ]0,∞ ; the two-parameter Weibull dis-
tribution function (DF), ( )wF x , is  

( ); , 1 e ,
cx

b
wF x b c

 − 
 = −                         (1) 

where b and c, both positive, are the scale and the shape parameters, see [18]. 
The NWPD is also defined on [ ]0,∞ :  

( ); , , 1 e ,
cxa

bF x a b c
 −  
 = −                        (2) 

where a is a new positive shape parameter and the PDF, f, is  

( )

1

e
; , , .

cxc a
bxa c

bf x a b c
b

 − −  
  

 
 =                     (3) 

Careful attention should be paid to the fact that the transformation  
1

,cb b a′=                             (4) 

in Equation (2) followed by b b′ =  transforms the NWPD DF into the Weibull 
DF. 

The statistical parameters can be parametrized by introducing the following 
function  

( )1 ,i i cΓ = Γ +                          (5) 

where  

( ) 1
0

e d ,t zz t t
∞ − −=Γ ∫                         (6) 

is the gamma function, see [19]. 

https://doi.org/10.4236/ijaa.2022.122011


L. Zaninetti 
 

 

DOI: 10.4236/ijaa.2022.122011 179 International Journal of Astronomy and Astrophysics 
 

The average value or mean, µ , is  

( ) 0
1, , ,
c

b
a b c

ca
µ

Γ
=                         (7) 

the variance, 2σ , is  

( )
( )

2
2 2 2

2 02
2, , ,

ca b c
a b c

c
σ

−
Γ −Γ

=                   (8) 

the skewness is  

( )
( )

3 2 3
3 2 0 0

3
2 2 2

2 0

3 2
skewness , , ,

c c
a b c

c

Γ − Γ Γ + Γ
=

Γ −Γ
              (9) 

and the kurtosis  

( )
( )

4 3 2 2 4
4 0 3 0 2 0

22 2
2 0

4 6 3
kurtosis , , .

c c c
a b c

c

Γ − Γ Γ + Γ Γ − Γ
=

Γ −Γ
          (10) 

The rth moment about the origin for the NWPD, rµ′ , is  

( ), , ,

r

r r
c

rb r
ca b c

ca
µ

 Γ 
 ′ =                      (11) 

where r is an integer. The median is at  
( )( ) ( )ln ln 2 ln

e ,
a

c b
−

                         (12) 

and the mode is at  
1

1 .
cc b

ac
− 

 
 

                          (13) 

Random generation of the NWPD variate X is given by  

( )
1

ln 1
: , ,

cR
X a b c b

a
− 

≈ − 
 

                   (14) 

where R is the unit rectangular variate. One method to derive the three parame-
ters a, b and c is to numerically solve the three following equations which arise 
from the maximum likelihood estimator (MLE)  

1
0,

cn
i

i

xn
a b=

  − =     
∑                      (15a) 

1
0,

cn
i

i

xc a n
b

b
=

    −        =

∑
                   (15b) 

( ) ( )
1

ln ln ln 0,
cn

i i
i

i

x xnn b a x
c b b=

    − + + − + =         
∑          (15c) 
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where the ix  are the elements of the experimental sample with i varying be-
tween 1 and n. Another method to derive the parameters is to introduce the 
moments of the experimental sample  

1 .
n

r
r i

i
x x

n
= ∑                          (16) 

The three parameters can then be found by solving the following three non- 
linear equations (the method of moments)  

( )1 1 , , 0,x a b cµ′= =                      (17a) 

( )2 2 , , 0,x a b cµ′= =                      (17b) 

( )3 3 , , 0.x a b cµ′= =                      (17c) 

Figure 1 reports the influence of the second shape parameter, a, of the NWPD 
on the Weibull distribution. 

3. The Truncated Weibull—Pareto Distribution 

The right and left truncated NWPD, see Equation (3), is defined on [ ],l ux x  
and has PDF  

( )
1 e; , , , , ,

e e

c c

c c c c
u u

c c ax b

DT l u ax b ax b

ax b cf x a b c x x
−

− −

− − −

− −
=
− +

            (18) 

where a, b, c, lx  and ux  are positive parameters and DT means double trun-
cation. The DF is  

( ) e e; , , , , .
e e

c c c c
u

c c c c
u u

ax b ax b

DT l u ax b ax b
D x a b c x x

− −

− −

− −

− −

− +
=

−
            (19) 

The average is 
 

 

Figure 1. NWPD PDF with 1b = , 2c =  with 1 100a =  (red line), with 1a =  (green 
line) and with 100a =  (blue line). 
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( )

( )( )( )( )

( )

( )

22 1 1
2 2 2

2 1 3 1,
2 2

22 1 1
2 2 2

2 1 3 1,
2 2

1
2 2

; , , , ,
1

e e 1 2 1 3 1

14 e
2

14 e
2

1e 2
2

c c c c
u u

c c
u

c c
u

c c
u

DT l u

ax b ax b

ax bc cc c cc
u c c u

c c

ax bc c c c cc
u c c u

c c

ax b
c c

u

x a b c x x

c c c

a b c x M ax b

a x b c M ax b

x b c

µ

− −

−

−

−

− −

+
− − − −

+ +

+
− − − −

+ +

− −

=
− + + +

  × +   

 − + 
 

+ + ( )

( )

2 1 1
2 2

1 3 1,
2 2

2 1 11
2 22 2

1 3 1,
2 2

12 e ,
2

c c
u

c
c cc c

l c l
c c

a x bccc c c c c
c u u u

c c

a x a c M ax b

M ax b x b c a x a c c bc
−

+
− − −

+

+
− −− −−

+

    +      
   − + +          

 (20) 

where ( ),M zµ ν  is the Whittaker M function, see [19]. The variance exists but 
has a complicated expression. The rth moment about the origin for the trun-
cated NWPD is  

( )

( )( )( )( )
( )

( )

2
22 2 2

31 ,
2 2 2

2
2 2 2 2

31 ,
2 2 2

2 2

, , , ,

1

2 3 e e

4 e
2

4 e
2

2
2

c cc c
u l

c c
l

c c
u

r l u DT

ax bax b

ax bBr rc c c cc
l r r l

c c

ax bB r rc c c cc
u r r u

c c

r rc c

l

a b c x x

c r c r c r

rx a b c M ax b

ra x b c M ax b

rx b c a

µ

−−

−

−

−−

−− − + −

+ +

− − − + −

+ +

− +

′

=
+ + + − +

    × − +    

 − + 
 

 + + 
 

( )

( )

2 22 2 2
3,

2 2 2

2 22 2 2 2 2
3,

2 2 2

e

e 2 .
2

c c
l

c c
u

ax bB rr r
c cc c

l r r l
c c

ax b B rr r r rc c c cc c
u u r r u

c c

b x a c M ax b

rx b c a b x a c M ax b c c

−

−

− − − −

+

− −− − + −

+

  +   
   − + +          

 (21) 

The median is at  

( ) ( ) ( )ln ln 2 ln e e ln ln

e ,

c c c cax b ax bl u a c b

c

− −− −  
 − + − +     

               (22) 

and the mode is at the same value of the NWPD, see Equation (13). The random 
generation of the truncated NWPD variate X is given by  

( )
1

ln e e e
: , , , , .

c c c cc c
l u l cax b ax ba x b

l u

R R
X a b c x x b

a

− −−− −− − + + 
≈ − 

 
 

     (23) 

The two parameters lx  and ux  are here assumed to be the minimum and the 
maximum of the experimental sample. The remaining three parameters, a, b and 
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c, can be determined by numerically solving the three following equations which 
arise from the MLE  

( )

1 1

1 e e
e e

e e e e 0

c c c c
l u

c cc c
u l

c c c cc c c c
l u l u

ax b ax bc c c c
l uax bax b

n n
ax b ax bax b ax bc c c c

i i
i i

b x an b x an
a

b x a b x a n n

− −

−−

− −− −

− −− −

−−

− −− −− −

= =


−

− +

   − + + − =   
    
∑ ∑

  (24) 

( )

1 1

1 e e
e e

e e e e 0

c c c c
l u

c cc c
u l

c c c cc c c c
l u l u

ax b ax bc c c c
l uax bax b

n n
ax b ax bax b ax bc c c c

i i
i i

b x an b x an
b

b x a b x a n n c

− −

−−

− −− −

− −− −

−−

− −− −− −

= =

 
− − 
− +

   − + + − =   
     
∑ ∑

 (25) 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )( ) ( )( )

( )

1

1 e ln e ln
e e

e ln e ln e ln

e ln ln ln ln e

ln ln

c c c c
l l

c cc c
u l

c cc c c c
u u l

c cc c
u l

ax b ax bc c c c
l l lax bax b

ax bax b ax bc c c c
u u u

n
ax bax b c c

i i i
i

c
i

b x b acn b x x acn
c

b x b acn b x x acn b cn

b cn c ax b x b x

c ax b x

− −

−−

−− −

−−

− −− −

−−

−− −− −

−− −

=


− +
− +

+ − −

 + + − + 
 

− −

∑

( )( ) ( )( )
1

ln e e e 0
c cc c c c

u l u
n

ax bax b ax bc
i i

i
b x n n

−− −−− −−

=

 + + − = 
  
∑

 (26) 

where the ix  are the elements of the experimental sample with i varying be-
tween 1 and n. 

4. Luminosity Function for Galaxies 

In this section we derive the luminosity function for galaxies (LF) using both the 
regular and truncated DFs. 

4.1. Using the Regular DF 

In order to derive the NWPD LF, we start from the PDF as given by Equation 
(3),  

( )* * *
e

; , , , d d ,

c

*
Lc a
L

*
La c
LL a c L L L

L

 
−  

  
 
 Ψ Ψ = Ψ            (27) 

where L is the luminosity defined for [ ]0,∞ , *L  is the characteristic luminosity 
and *Ψ  is a normalization, i.e. the number of galaxies in a cubic Mpc. We now 
introduce the following useful formulae relating the absolute magnitude and lu-
minosity  

( ) ( )** 0.40.410 , 10
M MM ML L

L L
−−= = 



 

                 (28) 

where L


 and M


 are the luminosity and absolute magnitude of the sun in 
the considered band. The LF in absolute magnitude is therefore  
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( ) ( ) ( )
( )

0.4 0.40.4 0.4* * * 10; , , , d 0.4 10 e ln 10 d .
*M M c*M M c aM a c M M a c M

− +− + −Ψ Ψ = Ψ  (29) 

4.2. Using the Truncated DF 

The truncated NWPD LF for galaxies according to Equation (18) is  

( )* * *
e

; , , , , , d d ,

e e

c

*

c c
u l
* *

Lc a
L

*

l u
L L

a a
L L

La c
LL a c L L L L L

L

 
−  

 

   
− −   

   

 −  
 Ψ Ψ = Ψ

 
 −
  
 

       (30) 

where the random variable L is defined for [ ],l uL L , lL  is the lower boundary 
in luminosity, uL  is the upper boundary in luminosity, *L  is the characteristic 
luminosity and *Ψ  is the normalization. The magnitude version is  

( )

( ) ( ) ( )( )
0.4 0.4

0.4 0.4 0.4 0.4

* *

10
0.4 0.4

*

10 10

; , , , , , d

0.4 10 e ln 2 ln 5
d ,

e e

c*M M
*

c c* *M M M Ml u

l u

c a
M M

a a

M a c M M M M

a c
M

−

− + − +

 
−  −  

   
− −   

   

Ψ Ψ

− +
= Ψ

−

    (31) 

where M is the absolute magnitude, *M  is the characteristic magnitude, lM  
is the lower boundary of the magnitudes and uM  is the upper boundary of the 
magnitudes. The two luminosities lL  and uL  are connected with the absolute 
magnitudes lM  and uM  through the following relation:  

( ) ( )0.4 0.410 , 10u lM M M Ml uL L
L L

− −= = 

 

                (32) 

where the indices u and l are inverted in the transformation from luminosity to 
absolute magnitude. The mean theoretical absolute magnitude, M , can be 
evaluated as  

( )
( )

* *

* *

; , , , , , d
.

, ; , , , , d

u

l

u

l

M
l uM

M
l uM

M M a c M M M M
M

a M c M M M M

×Ψ Ψ
=

Ψ Ψ

∫
∫

          (33) 

5. Astrophysical Applications 

In this section, we review the adopted statistics and we apply the truncated 
NWPD to: the initial mass function for stars (IMF), which is often modeled by 
the lognormal distribution [20]; the LF for galaxies, which is usually modeled by 
the Schechter LF [14]; the photometric maximum for galaxies, which is modeled 
by the Schechter LF and the generalized gamma LF [21]; and the mean absolute 
magnitude for galaxies, which at the moment of writing has not yet been mod-
elled by a probability distribution.  

5.1. Statistics 

The merit function 2χ  is computed according to the formula  
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( )2
2

1
,

n
i i

i i

T O
T

χ
=

−
= ∑                       (34) 

where n is the number of bins, iT  is the theoretical value, and iO  is the expe-
rimental value represented by the frequencies. The theoretical frequency distri-
bution is given by  

( ) ,i iT N x p x= ∆                        (35) 

where N is the number of elements of the sample, ix∆  is the magnitude of the 
size interval, and ( )p x  is the PDF under examination. A reduced merit func-
tion 2

redχ  is given by  
2 2 ,red NFχ χ=                        (36) 

where NF n k= −  is the number of degrees of freedom, n is the number of bins, 
and k is the number of parameters. The goodness of the fit can be expressed by 
the probability Q, see equation 15.2.12 in [22], which involves the number of de-
grees of freedom and 2χ . According to [22] p. 658, the fit “may be acceptable” 
if 0.001Q > . The Akaike information criterion (AIC), see [23], is defined by  

( )AIC 2 2ln ,k L= −                      (37) 

where L is the likelihood function and k the number of free parameters in the 
model. We assume a Gaussian distribution for the errors. Then the likelihood  

function can be derived from the 2χ  statistic 
2

exp
2

L χ 
∝ − 

 
 where 2χ  has 

been computed by Equation (34)), see [24] [25]. Now the AIC becomes  
2AIC 2 .k χ= +                        (38) 

The Kolmogorov-Smirnov test (K-S), see [26] [27] [28], does not require bin-
ning the data. The K-S test, as implemented by the FORTRAN subroutine KSONE 
in [22], finds the maximum distance, D, between the theoretical and the astro-
nomical CDFs as well as the significance level KSP , see Formulas (14.3.5) and 
(14.3.9) in [22]; if 0.1KSP ≥ , the goodness of the fit is believable.  

5.2. The IMF for Stars 

The first test is performed on NGC 2362 where the 271 stars have a range 
1.47   0.11M M M≥ ≥

 

, see [29] and CDS catalog J/MNRAS/384/675/table 1. 
The second test is performed on the low-mass IMF in the young cluster NGC 
6611, see [30] and CDS catalog J/MNRAS/392/1034. This massive cluster has an 
age of 2 - 3 Myr and contains masses from 1.5   0.02M M M≥ ≥

 

. Therefore the 
brown dwarfs (BD) region, 0.2≈ 



 is covered. The third test is performed on 
the γ  Velorum cluster where the 237 stars have a range 1.31   0.15M M M≥ ≥

 

, 
see [31] and CDS catalog J/A + A/589/A70/table 5. The fourth test is performed 
on the young cluster Berkeley 59 where the 420 stars have a range  
2.24   0.15M M M≥ ≥

 

, see [32] and CDS catalog J/AJ/155/44/table 3. The re-
sults are presented in Table 1 for the truncated NWPD with three parameters, 
where the last column reports whether the results are better compared to the 
Weibull distribution (Y) or worse (N). 
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As an example, the empirical PDF visualized through histograms as well as the 
theoretical PDF for NGC 2362 and NGC 6611 are reported in Figure 2 and in 
Figure 3 respectively. 
 

 

Figure 2. Empirical PDF of the mass distribution for NGC 2362 (271 stars) (red histo-
gram) with a superposition of the truncated NWPD (green dotted line). Theoretical pa-
rameters as in Table 1. 
 
Table 1. Numerical values of 2

redχ , AIC, probability Q, D, the maximum distance between 
theoretical and observed DF, and KSP , significance level, in the K-S test of the truncated 
NWPD with three parameters for different mass distributions. The last column (W) in-
dicates an AIC lower (Y) or higher (N) than that for the Weibull distribution with two 
parameters. The number of linear bins, n, is 20.  

Cluster parameters AIC 2
redχ  Q D KSP  W 

NGC 2362 

0.553a = , 
0.555b = , 
2.202c = , 
0.12lx = , 
1.47ux =  

41.5 2.1 0.007 0.046 0.576 N 

NGC 6611 

5.414a = , 
2.569b = , 
1.011c = , 
0.019lx = , 
1.46ux =  

49.77 2.651 4.9 × 10−4 0.059 0.45 N 

γ  Velorum 

3.626a = , 
0.863b = , 
0.745c = , 
0.158lx = ,
1.317ux =  

33.248 1.549 0.079 0.063 0.292 N 

Berkeley 59 

1.234a = , 
0.417b = , 
1.143c = , 
0.16lx = ,
2.24ux =  

85.71 5.047 4.198 × 10−10 0.122 6.35 × 10−6 N 
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Figure 3. Empirical PDF of the mass distribution for young cluster NGC 6611 (207 stars) 
(red histogram) with a superposition of the truncated NWPD (green dotted line). Theo-
retical parameters as in Table 1. 

5.3. The LF for Galaxies 

We now perform the same test as in Section 5.3 in [33]. The Schechter function, 
the NWPD LF represented by Formula (29) and the data are reported in Figure 
4, parameters as in Table 2.  

A careful examination of Table 2 reveals that the NWPD LF has a lower 2
redχ  

than for the Schechter LF. Figure 5 reports the LF for QSO in the case  
0.3 0.5z< < , see [34], with parameters as reported in Table 3. 

5.4. The Photometric Maximum 

In the pseudo-Euclidean universe, we introduce  
2 *

2 0
2 ,

4crit
l

H L
z

fcπ
=                          (39) 

which allows defining the joint distribution in z (redshift) and f (flux) for 
NPWD LF as  

2

22
2 5 * 2

2

5
0

4 e
d ,

d d d

c

crit

zc a
z

l crit
crit

*

zz c a c z
zN

z f H L

 
 −
 
 

 
Ψ 

 =

π

Ω
            (40) 

where dΩ , dz  and df  represent the differentials of the solid angle, the red-
shift, and the flux, respectively, *L  is the characteristic luminosity, lc  is the 
speed of light, and 0H  is the Hubble constant; see [33] for more details. The 
solution of the following non-linear equation determines a maximum at maxz z=  

2

22 2
5 * 2

2 28 e 1 0.

c

crit

zc ca
z

l crit
crit crit

z zzc a c z ac c
z z

 
 −
 
 

     − Ψ − − =        
π        (41) 

An analytical result can be obtained by computing a truncated multivariate  
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Figure 4. The LF data of SDSS ( *u ) are represented with error bars. The continuous line 
fit represents the NWPD LF (29) and the dotted line represents the Schechter function. 
 

 

Figure 5. The observed LF for QSOs, empty stars with error bar, and the fit by the NWPD 
LF for z in [ ]0.3,0.5  and M in [ ]24.93, 22− − . Parameters as in Table 3. 

 
Table 2. Numerical values and 2

redχ  of the LFs applied to SDSS Galaxies in the *u  
band. 

LF parameters 2
redχ  

Schechter * 17.92M = − , 0.9α = − , * 30.03 MpcΦ =  0.689 

NWPD * 17.86M = − , 2.18a = , 0.728c = , * 30.0718 MpcΨ =  0.651 

 
Table 3. Parameters of the NWPD LF for QSOs in the range of redshift [ ]0.3,0.5  when 

4k =  and 10n = . 

*M  *Ψ  a c 2χ  2
redχ  Q AIC 

−23.46 9.26 × 10−6 3.52 0.471 10.08 1.68 0.121 18.08 
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Taylor series expansion of Equation (41), with respect to the variables z and a, to 
order n. As an example, when 3 critz z= ∗ , 1a =  and 2n = , we have the fol-
lowing approximate equation which defines the photometric maximum as a 
function of a and b  

( ) ( ) (
( ) ( ) ( ) ( )

( ) ( ) ( )

2 ln 32 ln 3 e 5 2 2 2
5
0

2 ln 3 2 ln 3 2 ln 3 2 ln 32 2

2 ln 3 2 ln 3 2 ln 32 2

1 8 e 381 281 681

9e 6e 18e 381 3 e

3e 15e 3 2 6 3e
3

cc* c c c
l crit crit crit*

c c c cc
crit crit crit crit

c c c
crit crit crit crit

crit

Y c cz acz c z c z
H L

acz c z c z cz a z

cz cz acz c z c z z
az

− + −

− − + − −

− + +

+

π

+ − +

)3 9 3 0.crit critcz cz z z+ − + − =

 (42) 

Figure 6 reports the approximate solution to the third order ( 3 critz z= ∗ , 
1a = , 2n = ) of the photometric maximum which can be found selecting the 

positive solution of an algebraic equation of second degree.  
Figure 7 reports a comparison of the truncated multivariate Taylor series and 

the numerical solution. 
A numerical result is reported in Figure 8 where we display the number of 

observed galaxies for the 2 MASS Redshift Survey (2 MRS) catalog at a given 
apparent magnitude and both the Schechter and the NWPD models for the 
number of galaxies as functions of the redshift. The theoretical parameters of the 
two curves in the above figure are chosen so as to minimize 2χ . One distribu-
tion (the full line) gives a better fit to the data at lower redshift than the other 
(the dashed line), while for the higher redshift, the opposite is true.  
 

 

Figure 6. Approximate positive solution of the photometric maximum in units of critz  
when 3 critz z= ∗ , 1a =  and 3n =  as a function of the parameters a and b. 
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Figure 7. Approximate positive solution of the photometric maximum in units of critz  
( 3 critz z= ∗ , 1a = , 3n = ) as a function of the parameters a (blue dotted line) and nu-
merical solution (red full line). 
 

 

Figure 8. The galaxies of the 2 MRS with 10.31 10.47m≤ ≤  or  

2 21164793 1346734
Mpc Mpc

L L
f≤ ≤   are organized in frequencies versus heliocentric red-

shift, (empty circles); the error bar is given by the square root of the frequency. The 
maximum frequency of observed galaxies is at 0.017z = . The full line is the theoretical 

curve generated by ( )d
d d d

N z
z fΩ

 as given by the application of the Schechter LF which is 

Equation (43) in [35] and the dashed line represents the NWPD LF which is Equation 
(40). The NWPD LF parameters are 1.05a = , 1 2c = , * 20.65M = − , 2 198χ =  for 
the Schechter LF and 2 420χ =  for the NWPD LF. 
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5.5. Mean Absolute Magnitude 

We review the most important equations that allow modelling the mean absolute 
magnitude as a function of the redshift. The absolute magnitude is  

10
0

5log 25,L L
czM m
H

 
= − − 

 
                 (43) 

where 11.75Lm =  for the 2 MRS catalog. 
The theoretical average absolute magnitude of the truncated NWPD LF, see 

Equation (33), can be compared with the observed average absolute magnitude 
of the 2 MRS as a function of the redshift. To fit the data, we assumed the fol-
lowing empirical dependence on the redshift for the characteristic magnitude of 
the truncated NWPD LF  

0.7
* min

max min

25.14 4 1 ,
z zM

z z

  − = − + −   −  
             (44) 

where minz  and maxz  are the minimum and the maximum value of the redshift 
in the considered catalog, in the case of the 2 MRS catalog 4

min 1.03 10z −= ×  and 
2

max 4.49 10z −= × . The lower bound in absolute magnitude is given by the min-
imum magnitude of the selected bin, the upper bound is given by Equation (43), 
the characteristic magnitude varies according to Equation (44) and Figure 9 
shows a comparison between the theoretical and the observed absolute magni-
tude for the 2 MRS catalog. 
 

 

Figure 9. Average absolute magnitude of the galaxies belonging to the 2 MRS (green-dashed 
line), theoretical average absolute magnitude for the truncated NWPD LF (blue dash- 
dot-dash-dot line) as given by Equation (33) with 1.1a =  and 1 2c = , lower theoretical 
curve as represented by Equation (43) (red line) and minimum absolute magnitude ob-
served (cyan dotted line). 
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6. Conclusions 

The truncated Weibull-Pareto distribution. We derived the PDF, the DF, the 
average value, the rth moment, the median and an expression to generate ran-
dom variates. The three parameters, a, b and c are derived by the MLE or by the 
method of moments for the truncated Weibull-Pareto distribution. 

Quality of fits 
The third parameter a of the NWPD adds flexibility to the usual Weibull dis-

tribution and as an example, Table 1 reports the parameters for four samples of 
stars, but due to Formula (4) the reduced 2χ  is not lower than those for the 
Weibull distribution. 

Weibull—Pareto luminosity function 
The NWPD LF in the absolute magnitude version is derived using the stan-

dard and the truncated DFs, see Formulas (29) and (31). The application to both 
the SDSS Galaxies and to the QSOs in the range of redshift [ ]0.3,0.5  yields a 
lower reduced merit function than that from using the Schechter LF, see Table 2 
and Figure 5. 

Cosmological applications 
The maximum in the number of galaxies for a given solid angle as a function 

of the redshift which is visible in the catalog of galaxies can be modeled with the 
NWPD LF, see Figure 8. The average absolute magnitude of the 2 MRS galaxies 
as a function of the redshift, can be theoretically modeled with the truncated 
NWPD LF, see Figure 9. 
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