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Abstract 
We try to bridge the gap between the theory of linear density-velocity-gravi- 
tational perturbations in the early universe, and the relaxed galaxies we ob-
serve today. We succeed quantitatively for dark matter if dark matter is 
warm. The density runs of baryons and of dark matter of relaxed galaxies are 
well described by hydro-static equations. The evolution from initial linear 
perturbations to final relaxed galaxies is well described by hydro-dynamical 
equations. These equations necessarily include dark matter velocity disper-
sion. If the initial perturbation is large enough, the halo becomes self-gravitating. 
The adiabatic compression of the dark matter core determines the final core 
density, and provides a negative stabilizing feedback. The relaxed galaxy halo 
may form adiabatically if dark matter is warm. The galaxy halo radius con-
tinues to increase indefinitely, so has an ill-defined mass.  
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1. Introduction and Overview 

How does a particular linear density perturbation in the early universe evolve to 
become a relaxed galaxy that we observe today? We approach this question in 
(arguably) reverse chronological order. We begin with a study of relaxed ellip-
tical galaxies with a cusp dominated by baryons. We find that the density runs 

( )h rρ  of the dark matter halo, and ( )b rρ  of baryons, are determined (in a 
limited range of the radial coordinate r) by the dispersion velocities 2

rhv′  of 
dark matter particles, and 2

rbv′  of baryons, and by the radius eqr  at which 

( ) ( )eq eqh br rρ ρ= . 
Next, we consider relaxed spiral galaxies with a core dominated by baryons. 
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The density runs ( )h rρ  and ( )b rρ  are obtained by numerical integration of 
four coupled equations: Newton’s equation, and the equation of conservation of 
momentum, of dark matter and of baryons. To start these numerical integra-
tions we need four boundary conditions. These parameters are 2

rhv′ , 2
rbv′ , 

and the densities ( )minh rρ  of dark matter, and ( )minb rρ  of baryons, at the first 
measured radius minr r= . These four parameters cannot be obtained from the 
equations: they are boundary conditions that need to be obtained from observa-
tions of galaxy rotation curves, or by carrying forward the evolution of primor-
dial density perturbations. 

The purpose of the present study is to find out how nature obtains these pa-
rameters starting from a particular linear density-velocity-gravitational pertur-
bation in the early universe. In order to simplify the problem at hand, we study 
spiral galaxies with a core dominated by dark matter. Then we can, to a first ap-
proximation, neglect baryons, and focus the study on the two parameters 

2
rhv′  and ( )minh rρ . 

Perturbations of dark matter in the early universe are described by three equa-
tions: Newton’s equation, the equation of continuity, and Euler’s equation. Ana-
lytic solutions in the linear approximation are well known [1]. These equations 
require initial conditions, i.e. the power spectrum of linear density perturbations 
( ) ( )2

fsP k k kτ . ( )P k  is the power spectrum corresponding to cold dark mat-
ter [1]. If dark matter is warm, there is a cut-off factor ( )2

fsk kτ  due to 
free-streaming, that is well approximated by  

( ) 2 2
fs2

fs e ,k kk kτ −=                        (1) 

(except for the case of boson dark matter with a chemical potential approaching 
0− , in which case ( )2

fsk kτ  develops a tail that may be searched for in future 
experiments) [2]. 

Starting with given initial perturbations, we integrate the equations numeri-
cally to study the formation of the dark matter halo of a relaxed galaxy. We can 
indeed obtain the parameter 2

rhv′  from these integrations. However, the eq-
uations discussed so far apparently do not fix ( )minh rρ . It is sometimes assumed 
that various relaxation processes virialize the particles fixing ( )minh rρ . Viria-
lized solutions exist for any ( )minh rρ , so ( )minh rρ  would have to be deter-
mined by the details of relaxation. So the origin of ( )minh rρ  is a mystery. In the 
course of these studies, we will indeed propose a solution to the mystery, which, 
if true, has far reaching consequences. 

We use the standard notation in cosmology as in [3]. 

2. The Stationary Galactic Halo 

We consider relaxed galaxies, i.e. galaxies with no sign of recent collisions or 
mergers, or other extraneous features. We model the galaxy as two self-gravitating, 
non-relativistic, non-degenerate, gases: dark matter and baryons. The hydro-static 
equations that describe the density runs ( )h rρ  of dark matter, and ( )b rρ  of 
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baryons, are Newton’s equations 

4 , 4 ,h h b bG Gρ ρ∇ ⋅ = − ∇ = −π π⋅g g                (2) 

and the equations of conservation of the r-component of momentum of particles 
with velocity 0rv >  (or, separately, 0rv < ), valid for collision-less gases, or for 
gases with elastic collisions [4]:  

( ) ( )
2 2

2 2ˆ ˆ, .rh h h h r rb b b b r
v vv v
r r

ρ ρ κ ρ ρ κ
   

∇ = + ∇ = +   
   

g e g e      (3) 

The gravitation field is 2 ˆb h rv r= + = −g g g e . The velocity of rotation of test 
particles in circular orbits ( ) ( )totv r v r≡  in the plane of the galaxy has contri-
butions from dark matter and baryons: ( ) ( ) ( )2 2

h bv r v r v r= + . Sub-indices h 
refer to the dark matter halo, while sub-indices b refer to baryons. The constant 
parameters hκ  and bκ  are included to account (approximately) for rotation 
of dark matter and baryons in the disk of spiral galaxies. For spiral galaxies we 
have estimated 0.15hκ ≈ , and 0.98bκ ≈  [4]. For elliptical galaxies we take 

0hκ ≈ , and 0bκ ≈ . The variables 2
rhv  and hκ , and also 2

rbv  and bκ , ap-
pear in the following combinations:  

2 2
2 2, .

1 1
rh rb

rh rb
h b

v v
v v

κ κ
′ ′≡ ≡

− −
                    (4) 

Good fits to observed rotation curves are generally obtained assuming 2
rhv′  

and 2
rbv′  are independent of the radial coordinate r (in some galaxies 2

rhv′   

decreases at large r, so the present analysis is valid up to that radius). We solve 
these equations in spherical coordinates, assuming spherical symmetry. These 
equations need four boundary conditions, e.g. 2

rhv′ , 2
rbv′ , ( )minh rρ  and 

( )minb rρ . We integrate the equations numerically from the first observed radius 

minr  to the last one maxr , in the disk of the galaxy, and vary the four boundary 
conditions to minimize a 2χ  between the calculated and observed rotation 
curves. Note that we do not use density templates. 

The observed independence of 2
rhv  on r in these relaxed galaxies implies 

that the particles of the gas have a 1D phase space density that follows the 
non-relativistic Boltzmann distribution, i.e. the number of dark matter particles 
in dr  and d rhv  is proportional to [6]  

( )( )2

2

1 1
2exp d d ,

h rh h h

rh

m v m r
r r v

kT

φ κ + − 
− 
 
 

             (5) 

where ( )
0

d
r

r g rφ = − ⋅∫  is the gravitational potential. Note that from (5), 
2
rh hv kT m= , independently of r. hT m  is the dark matter temperature-to-mass 

ratio. 

2.1. Elliptical Galaxies with a Cusp Dominated by Baryons 

Numerical integrations of (2) and (3) for the elliptical galaxies M87, NGC 5846, 
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and NGC 4807 are presented in Figures 1-3. The observed rotation curves are 
derived from measurements of the enclosed total mass ( )M r< . The enclosed 
total mass, and the dark matter and baryon contributions are obtained from 
light profiles, velocity dispersion of stars, planetary nebulae, and globular clus-
ters, X-ray properties from emitting hot gas, and weak and strong gravitational 
lensing. For large r, with ( )hM r<  dominating the enclosed mass, the asymp-
totic solutions of (2) and (3) are  

( ) ( )
2

2
2 , and ,

2
rh

h b

v
r r r

Gr
αρ ρ −

′
= ∝

π
                (6) 

 

 
Figure 1. Velocities of circular orbits of test particles (left), and densities (right), of dark matter (sub-index h) and baryons 
(sub-index b), as a function of the distance r from the center of the giant elliptical galaxy M87. Data is from [5]. The curves are 

calculated numerically, see text. The fits obtain 2 533 42 km srhv′ = ± , 2 331 6 km srbv′ = ± , ( ) 3
min 0.6 0.3 pch r Mρ = ±



, and 

( ) 3
min 25 3 pcb r Mρ = ±



 at min 0.39 kpcr = . The fitted mass-to-luminosity ratio is 1.0 0.1M Lϒ = ±
 

. 

 

 

Figure 2. Velocities of circular orbits of test particles (left) and densities (right), of dark matter (sub-index h) and baryons 
(sub-index b), as a function of the distance r from the center of the elliptical galaxy NGC 5846. Data is from [7]. The curves are 

calculated numerically, see text. The fits obtain 2 288 11 km srhv′ = ± , 2 218 4 km srbv′ = ± , ( ) 3
min 0.08 0.02 pch r Mρ = ±



, 

and ( ) 3
min 0.20 0.05 pcb r Mρ = ±



 at min 2.88 kpcr = . The fit obtains a mass-to-light ratio 0.96 0.23M Lϒ = ±
 

. 
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Figure 3. Velocities of circular orbits of test particles (left) and densities (right), of dark matter (sub-index h) and baryons 
(sub-index b), as a function of the distance r from the center of elliptical galaxy NGC 4807. Data is from [8]. The curves are calcu-

lated numerically, see text. The fits obtain 2 271 18 km srhv′ = ± , 2 197 5 km srbv′ = ± , ( ) 3
min 6 4 pch r Mρ = ±



, and  

( ) 3
min 135 18 pcb r Mρ = ±



 at min 0.08 kpcr = . The mass-to-light ratio is fixed at 1.0M Lϒ =
 

. 

 
where 2 2

rb rhv vα ′ ′≡ . For small r, with ( )bM r<  dominating the enclosed 
mass, the asymptotic solutions of (2) and (3) are  

( ) ( )
2

2
2 , and .

2
rb

b h

v
r r r

Gr
αρ ρ −

′
= ∝

π
               (7) 

Examples of galaxies that obtain good fits, with the assumption that 2
rhv′  

is independent of r, are presented in Table 1. For galaxy Mrk1216, the assump-
tion that 2

rhv′  is independent of r obtains a good fit for 50 kpcr < , while 
2

rhv′  declines for larger r. 
If 2 3α < , the baryonic mass of the galaxy is finite:  

2

eq

2 2 2 .
2 3

rb
b

v
M r

G
α
α

′ −
≈

−
                    (8) 

Replacing bM  by Lϒ , i.e. by the mass-to-light ratio ϒ  times the absolute 
luminosity L, and taking the logarithm of (8), obtains the equation of a plane in 
the space ( )2

eqln , ln , lnrbL v r′ . This plane is known in the literature as the 
“fundamental plane” of elliptical galaxies. 

2.2. Spiral Galaxies with a Core Dominated by Baryons 

Figure 4 presents the rotation curves and density runs of the low surface bright-
ness spiral galaxy F571-8. At large r the asymptotes are as in (6). As 0r → , the 
densities ( )h rρ  and ( )b rρ  approach finite limits ( )0h rρ →  and  

( )0b rρ → , i.e. the galaxy has a core of dark matter, and a core of baryons. Ad-
ditional examples can be found in [2] and [13]. 

Let us understand the boundary conditions. The flat rotation velocity ( )flatv r  

at large r determines 2
flat 2rhv v′ = . The slope of the rotation velocity of test  
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Figure 4. Velocities of circular orbits (left) and densities (right), of dark matter (sub-index h) and baryons (sub-index b), as a 
function of the distance r from the center of the low surface brightness spiral galaxy F571-8. Data is from [12] and references 

therein. The curves are calculated numerically, see text. The fits obtain 2 99.5 2.7 km srhv′ = ± , 2 40.8 1.4 km srbv′ = ± ,  

( ) 3
min 0.044 0.004 pch r Mρ = ±



, and ( ) 3
min 0.13 0.03 pcb r Mρ = ±



 at min 0.22 kpcr = . The disk mass-to-light ratio  

0.20M Lϒ =
 

 is fixed. These measurements obtain the adiabatic invariant ( ) ( )( )rms 1 1 1.57 0.09 km sh hv statκ= − × ± , see 

Section 4 for the definition. 9
3.6 m 10.164 10L Lµ = ×



. 

 

Table 1. Parameters 2
rhv′  and 2

rbv′ , and their ratio α , for several elliptical ga-

laxies with a cusp dominated by baryons. Uncertainties are statistical from the fits de-
scribed in Section 2. Additional examples can be found in [9].  

Galaxy 
1 22

rhv′  

[km/s] 

1 22
rbv′  

[km/s] 
α  

Data 
source 

M87 533 ± 42 331 ± 6 0.62 [5] 

NGC 1407 291 ± 5 255 ± 6 0.88 [10] 

NGC 4374 289 ± 4 253 ± 8 0.88 [11] 

NGC 4807 271 ± 18 197 ± 5 0.73 [8] 

NGC 5846 288 ± 11 218 ± 4 0.76 [7] 

 
particles ( ) ( ) ( )2 2

h bv r v r v r= + , and its contribution from baryons ( )bv r , at 
small r, determine the dark matter density in the core of the galaxy:  

( ) ( ) ( ) ( )2 2 20 3 4c h br v r v r Grρ ρ  ≡ → = − π  . 

2.3. Spiral Galaxies with a Core Dominated by Dark Matter 

Figure 5 presents the rotation curves and density runs of the spiral galaxy NGC 
0024 with a core (arguably) dominated by dark matter. Additional examples can 
be found in [2] and [13]. First galaxies (arguably) have a core dominated by dark 
matter. For simplicity, in the following we will study the formation of galaxies 
dominated by dark matter, since then the density run ( )h rρ  of the relaxed ga-
laxy is described with just two parameters: the dark matter reduced velocity dis-
persion 2

rhv′ , and the dark matter core density ( ) ( )min0c h hr rρ ρ ρ≡ → ≈ . 
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Figure 5. Velocities of circular orbits (left) and densities (right), of dark matter (sub-index h) and baryons (sub-index b), as a 
function of the distance r from the center of the spiral galaxy NGC 0024. Data is from [12] and references therein. The 
mass-to-light ratio has been fixed at 0.26M Lϒ =

 

, but is uncertain in the approximate range 0.2 to 0.5 [12], i.e. the measure-

ment of bρ  is uncertain. The curves are calculated numerically, see text. The fits obtain 2 71.2 0.9 km srhv′ = ± ,  

2 66.4 2.4 km srbv′ = ± , ( ) 3
min 0.36 0.03 pch r Mρ = ±



, and ( ) 3
min 0.062 0.007 pcb r Mρ = ±



 at rms 0.21 kpcr = . These mea-

surements obtain ( ) ( )( )rms 1 1 0.56 0.03 km sh hv statκ= − × ± . 9
3.6 m 3.889 10L Lµ = ×



. 

3. Formation of the Galactic Halo 

Let us consider a universe with zero spatial curvature, dominated by non-relativistic 
warm dark matter. The mean density of the early universe is  

crit
2 3

1 ,
6

c
h Gt a

ρ
ρ

Ω
=

π
=                       (9) 

where t is the age of the universe, and ( )a t  is the expansion parameter (nor-
malized to 1a =  today). The velocity of expansion is rv Hr= , with Hubble 
parameter ( )2 3H t= . If dark matter is warm, the root-mean-square of the 
r-component of the dark matter particles dispersion velocity (with respect to a 
comoving observer) is  

( ) ( )rms rms2 1
.

3 3
h h

rh

v a v
v

a
≡ =                    (10) 

This velocity dispersion scales as ( )1 a t∝ , so  

( )
( )

2
rms

1 3 1 3
crit

1

3

rh h

h c

v v
ρ ρ

≡
Ω

                     (11) 

is an adiabatic invariant. Note that the velocity v  of a free particle (with re-
spect to a comoving observer momentarily at the position of the particle) scales 
as 1a−∝v  due to the expansion of the universe. 

For simplicity, we consider only dark matter. The formation of the galactic 
halo can be illustrated by integrating numerically Newton’s equation  

4 ,hGρπ∇ ⋅ = −g                        (12) 
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the continuity equation  

( ) ,h
h ht

ρ
ρ

∂
= −∇ ⋅ = −∇ ⋅

∂
j v                     (13) 

and Euler’s equation  

( ) ( )2d 1 .
d

h h
h h rh h

h

v
t t

ρ
ρ

∂ ′= + ⋅∇ = − ∇
∂

v v
v v g              (14) 

Newton’s equation, and the last two terms in (14), obtain the steady state dark 
matter halo of Section 2. Again we take 2

rhv′  independent of r for this steady 
state solution. This approximation is valid out to a radius where the rotation ve-
locity ( )v r  remains flat, often beyond the range of observations, and the 
present analysis is limited to that radius. 

Linear perturbation theory is obtained for ( )1h h hρ ρ δ= +  with 1hδ  . 
Equations (12), (13), and (14), with 2 0rhv′ = , and in the linear approximation, 
admit the following solutions for the perturbations ( )h aδ r , ( )h aδ v r , and 
( )aφ r : two vector modes that decay as 1a−∝ , one scalar mode that decays as 

3 2a−∝ , and one scalar mode that grows as a∝  due to gravitational collapse, 
and will survive [1]. φ  is the gravitational potential. r  is the proper coordi-
nate, and ar  is the co-moving coordinate. We assume dark matter is colli-
sion-less. If 2 0rhv′ > , then modes with proper length 

( )2
J rh hv Gλ λ ρ′< π≡                     (15) 

are damped and collapse due to free streaming. (For collisional gases, 2
rhv′  is 

replaced by the sound speed sc , and Jλ  is the Jeans wavelength. For Jλ λ<  
the solutions are sound waves. If the mean free path of the particles is compara-
ble to λ , the sound wave is attenuated due to Silk damping [1]). 

Here, to understand the formation of the dark matter halo of a galaxy, we in-
tegrate Equations (12), (13), and (14) numerically, in proper (not co-moving) 
spherical coordinates, and only consider spherically symmetric solutions. For 
warm dark matter we supplement the preceding equations with the condition of 
adiabatic expansion (11) in the core of the galaxy:  

( ) ( ) 1 3
rms min2

crit

1 ,
.

3
h h

rh
c

v r t
v

ρ
ρ

 
=  

Ω 
                (16) 

This equation will be discussed in Section 4, and its importance, to fix and sta-
bilize the galaxy core density and radius, will be illustrated by the simulations. 

minr  is the smallest r in the numerical integration, and is chosen much smaller 
than the galaxy core radius cr . 

To understand the formation of the galactic halo we need to include velocity 
dispersion, i.e. the last term in (14), since it is needed to obtain agreement with 
the observed rotation curves of relaxed galaxies as shown in Section 2. Once we 
include velocity dispersion, Equations (12), (13) and (14) become incomplete 
since 2

rhv′  remains unspecified, and we can not, consistently, omit the adia-
batic invariant constraint (16). 
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The simple implementation (16) of adiabatic expansion is justified as follows. 
To integrate Equations (12), (13), and (14) we need to assign a value to 2

rhv′ , 
possibly r- and t-dependent. From numerical studies described below, we find 
that the solutions are insensitive to 2

rhv′  for t less than turn-around, or for 
large r (beyond the pivot point discussed below). Thus, for the problem at hand, 
it is sufficient to assign an r-independent value (16) to 2

rhv′ , derived from the 
dark matter core density ( ) ( )min ,c ht r tρ ρ≈ , at each time step in the numerical 
integration. 

Equations (12), (13), (14), and (16) are approximate: they are hydro-dynamical 
equations that treat dark matter as a continuous medium, not as a superposition 
of particle orbits, and do not include relaxation mechanisms to damp oscilla-
tions to attain a relaxed final state. Relaxation is beyond the scope of the present 
study. For a review of cosmological simulations of galaxy formation see [14]. 

As an example we consider a galaxy with stellar mass 9.5
* 10M M=



, ob-
served at a redshift 8z = , see Figure 4 of [15], or Figure 10 of [2]. At 8z = , the 
mean density of the homogeneous universe is 5 32 10 pci Mρ − −= ×



. We esti-
mate the halo dark matter mass to be 1110hM M≈



 [2] [15]. We interpret this 
mass hM  as the mass of the initial linear density perturbation since it is well 
defined: the dimensions of this perturbation scale as the expansion parameter a , 
while its density scales as 3a−  (for 1hδ  ), so hM  of linear perturbations is 
independent of time. (As we shall see later, the mass of the relaxed halo is ill de-
fined). We will start the simulation at 30.03 pci Mρ −=



, corresponding to 
1 97a = . The radius of the initial linear perturbation is then of order 9 kpc. 

Figure 6 and Figure 7 illustrate the formation of the halo of this galaxy. In 
this example, the initial linear density perturbation is Gaussian,  

( )2 21 expi i ir rρ ρ δ = + −  , with 30.03 pci Mρ −=


, 4.9 kpcir = , and 0.3δ = . 
The initial dark matter velocity is the Hubble flow, and the dark matter adiabatic 
invariant, in this simulation, is ( )rms 1 0.67 km shv =  [13]. We note, in Figure 6, 
that the central density decreases with time, turns around, increases, and ap-
proaches the final steady-state galaxy halo with asymptotes marked with lines C 
D E. The increase of the core density is due to negative dark matter velocity rhv  
after turn-around shown in Figure 7. This dark matter is falling back to the core. 

Let us recall that the final steady-state galaxy halo is determined by (12), (13), 
and (14) with 0t∂ ∂ →  and 0rhv = , i.e. by Newton’s Equation (12), and the 
momentum conservation equation  

( )21 .rh h
h

v ρ
ρ

′= ∇g                       (17) 

These static equations require two boundary conditions, namely the dark matter 
reduced velocity dispersion 2

rhv′  (taken to be independent of r), and the core 
density ( ) ( )min0c h hr r rρ ρ ρ≡ → ≈ = . Let us also recall that these two parame-
ters where obtained, in Section 2, by comparing the observed and calculated ga-
laxy rotation curves. 
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Figure 6. The dark matter density run ( )h rρ  of a galaxy with stellar mass 9.5
* 10M M=



 

observed at redshift 8z = , is presented at times 1 2 3 2t aρ−∝ ∝  that increase by factors 

1.4086 (or 1.4086  for the dot-dashed lines). A line from A to B encloses a dark matter 
mass 1110hM M≈



. Asymptotes of the final dark matter halo ( )h rρ  are indicated by 

lines C D E. The core density C is 30.0126 pcc Mρ =


. The asymptote D E is  

( )2 22h rhv Grρ ′= π  with 2 28 km srhv′ = , as determined by the pivot point P. The 

dark matter velocity dispersion 2
rhv  in the core of the galaxy is calculated, at each 

time step, with (16) with rms 0.67 km shv = . We take 0hκ = . The last line is invalid: it is 
included to illustrate numerical integration breakdown, see Figure 7. 
 

 

Figure 7. Shown is the radial velocity ( )rhv r  of dark matter as a function of radius r at 

several times for the galaxy of Figure 6. Note that adiabatic compression feedback sets 
0 km srhv =  out to a radius r that increases with time t, up to the pivot point where the 

numerical integration algorithm breaks down. We expect rhv  to reach zero out to a ra-

dius that increases past P at a velocity 23 rhv′ , thus attaining the relaxed configuration 

of Section 2 out to increasing radii. This adiabatic compression feedback is negative, i.e. it 
tends to stabilize the core density. 
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The main purpose of the present study is to determine how these two para-
meters, 2

rhv′  and cρ , are obtained from the linear density-velocity-gravitational 
perturbations of the early universe. It turns out that the pivot point P in Figure 6 
fixes the final halo asymptote D E. We find that the asymptote D E depends on 
the initial linear density perturbation, see Figure 8, but not on the adiabatic in-
variant ( )rms 1hv , see Figure 9. The pivot point P is determined by numerical in-
tegration, starting with the initial linear perturbation, as shown in Figure 8. The 
asymptote D E, for cr r , is  

( ) ( )
2 2

2

2
, ,

2
rh rh

h h

v v
r M r r

GGr
ρ

′ ′
= < =

π
              (18) 

as in (6). Therefore the pivot point P determines the final reduced velocity dis-
persion 2

rhv′ . The galaxy core radius is defined by 
12 2

.
2

rh
c

c

v
r

Gρ

 ′
 ≡
 π

                      (19) 

 

 

Figure 8. Same as Figure 6, except that the radius of the Gaussian perturbation is set at 2.0,3.5,6.0ir =  or 12.0 kpc. Note that the 

initial perturbation determines 2
rhv′ . 
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Figure 9. Same as Figure 6, except that the dark matter adiabatic invariant is set to ( )rms 1 0.0,0.3,0.5hv = , or 1.0 km/s. Note that 

2
rhv′  of the asymptote is independent of ( )rms 1hv . 

 
The condition to obtain a self-gravitating core is that the core radius at 
turn-around be less than the would be pivot point radius, so that a pivot point 
can form. Passing this bottle-neck, the core collapses, see Figure 6 and Figure 8. 

What phenomena determines the second parameter cρ ? In the cold ΛCDM 
scenario, the central density increases to infinity, i.e. the dark matter particles 
fall to 0r ≈ , overshoot, splash-back, overshoot again, etc., and various relaxa-
tion mechanisms, and the virial theorem (assuming a well-defined halo mass 

hM ), are invoked to finally attain a relaxed galaxy halo [16]. These phenomena 
are not captured by Equations (12), (13), and (14), and the numerical integration 
breaks down at core collapse, see the first panel of Figure 8. 

In the case of warm dark matter we complement Equations (12), (13), and (14) 
with the equation of adiabatic expansion (16). Note, in Figure 10, that the value 
of 2

rhv′  does not change the pivot point P, and affects (does not affect) the 
halo formation for r less than (greater than) r of the pivot point. For this reason  
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Figure 10. Same as Figure 6, except that the dark matter reduced velocity dispersion 2
rhv′  is held fixed at 4, 8, 12, or 28 km/s. 

To keep the core 2
rhv′  independent of time is un-natural, but helps understand galaxy halo formation. Note that the value of 

2
rhv′  does not change the pivot point P, and affects (does not affect) the halo formation for r less than (greater than) r of the 

pivot point. 
 
we use the core density ( )min ,r tρ  to update 2

rhv′  at each time step using 
(16). After core turn-around, the core density cρ  increases, and hence 2

rhv′  
increases. This is a negative feedback on the further growth of cρ , see Figure 
10. In summary, (16) not only determines the steady-state core density (once the 
pivot point P, and the final 2

rhv′  are determined), but also provides a nega-
tive feedback that tends to stabilize the core density. With fixed 2

rhv′  the col-
lapse is run-away. 

Note in Figure 6 and Figure 7 that dark matter keeps falling onto the steady 
state galaxy halo, so the radius of this halo continues to grow. Equating the halo 
density (18) with the density (9) of the homogeneous universe, we obtain the 
constant velocity with which the halo grows: 23 rhr t v′= . Note that the aver-
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age velocity of a dark matter particle in the halo times the age of the universe t, is 
of the order of the radius of the halo at time t. Note also that the halo mass keeps 
growing so is an ill defined concept. Let us mention that dark matter particles 
with orbits well within the boundary of the halo at time t have completed many 
orbits in time t. So 2

rhv′  in the core and in the inner asymptotic region are 
connected, and attain thermal equilibrium. Finally, let us mention that, as the 
galaxy halo radius grows, new dark matter particles acquire orbits bound to the 
galaxy, populating the tail of the non-relativistic Boltzmann distribution. 

As the central density cρ  in Figure 6 increases, so does the core temperature 
due to adiabatic compression. This compression brings rhv  to its equilibrium 
value 0rhv =  out to a radius r that increases with time, see Figure 7. Numerical 
integration breakdown occurs when 0rhv =  approaches the pivot point P. The 
negative rhv  beyond P indicates that the dark matter halo radius keeps growing. 
If we artificially “jump” the pivot point P, i.e. we stop the numerical integration 
before 0rhv ≈  reaches P, and resume the integration after passing P, we obtain 
the result shown in Figure 11 (left panel). In nature we do not see any signifi-
cant extraordinary phenomena at P, see, for example, the figures in Section 2. 
Neither do we see any instability in the integration of the static equations, see 
Figure 11 (right panel). 

Figure 12 shows the formation of the halo of a galaxy starting from a density 
perturbation that has both positive and negative fluctuations. Note how the halo 
keeps growing past the pivot point P. 

Figure 13 shows the formation of the galactic halo starting from a top-hat 
density perturbation. It is interesting to note that even in this extreme case the 
galaxy halo forms adiabatically. Note how the transition region from high-to-low 
density widens. The analytic solutions inside and outside of the transition  
 

 

Figure 11. Left: Extended numerical integration of Figure 6 skipping over the pivot point P. Right: Integration of the static equa-
tions of Section 2, for comparison with asymptotes C D E. Note that the density run ( )h rρ  is determined by the two boundary 

conditions 2 28 km srhv′ = , and 30.0126 pcc Mρ −=


. 
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Figure 12. Formation of the dark matter halo of a galaxy with initial density perturbation 

( ) ( )1 0.3 sinh i i ir r r rρ ρ=  + ⋅    with 30.03 pci Mρ −=


, and 2 kpcir = . The asymp-

totes of the final dark matter halo ( )h rρ , indicated by lines C D E, have 2 28 km srhv′ = , 

and 30.0126 pcc Mρ =


. 

 

 

Figure 13. Formation of the dark matter halo of a galaxy with a top-hat initial density 
perturbation with 30.03 pci Mρ −=



, 0.3iδ = , and 3.5 kpcir = . The edges of the 
step-function have been rounded to allow numerical integration. The asymptotes of the 

final dark matter halo ( )h rρ , indicated by lines C D E, have 2 24 km srhv′ = , and 
30.008 pcc Mρ =



. This figure illustrates that even a top-hat initial perturbation can 
form a stationary halo adiabatically, due to the feedback of the warm dark matter adia-
batic invariant ( )rms 1 0.67 km shv = . 
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region, corresponding to homogeneous universes, are well known. The adiabatic 
invariant ( )rms 1hv  has the same constant value inside and outside of the transi-
tion region, and has a cosmological origin in the early universe when perturba-
tions were linear. Note how the core density ( ) ( )min ,c ct r tρ ρ≈  decreases, turns 
around, and increases (as in an overdense homogeneous universe) until the 
transition region reaches the core halting further increase of ( )c tρ . This figure 
illustrates why we calculate 2

rhv  independent of r using ( )min ,c r tρ , see (16). 
Figure 14 illustrates the hierarchical formation of galaxies. Reversing the sign of 

the perturbation of Figure 12 we can study the expansion of voids, see Figure 15.  
To the preceeding examples we may add a velocity perturbation, e.g.  

( )1 3rh hv Hr δ= −  for a growing initial mode. 
 

 

Figure 14. Illustration of the hierarchical formation of galaxies (with two pivot points). 
The initial density perturbation is a double top-hat. 
 

 

Figure 15. Same as Figure 12, except that the sign of the perturbation has been reversed 
in order to study the expansion of voids. 
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4. The Adiabatic Invariant ( )hv rms 1  

Consider a box of volume 3V L=  with non-relativistic dark matter, and apply 
periodic boundary conditions: 2x xp k n L= = π  , with 0, 1, 2,n = ± ±  , and 
similarly for yp  and zp . Let ( )nmln p  be the number of dark matter particles 
in orbital nml . Then the density, and mean of the velocity squared, are  

( ) ( )
( )

2
1 2 2 3

2, ,nml nmlh nml
h nml h

nml h nmlnml

nm
n V v V

V m n
ρ − −= ∝ = ∝∑∑ ∑

p p
p

p
     (20) 

where hm  is the dark matter particle mass. We note that 
3 22

h hvρ  does not 
depend on V, i.e. it is an adiabatic invariant, so long as the number of dark mat-
ter particles per orbital ( )nmln p  remains constant, as expected for non-interacting 
particles, or even, on average, for particles with elastic interactions in a relaxed 
configuration. We will assume that dark matter particles are non-interacting, 
except for gravity. 

Now assume that the box is free-falling, so V varies, and the gas expands or 
contracts adiabatically conserving 

3 22
h hvρ . A free-falling observer in a den-

sity peak in the early universe sees the dark matter gas expand adiabatically, 
reach maximum expansion, turn around, and contract adiabatically into the core 
of a galaxy. See, for example, Figure 6. Due to the hierarchical formation of ga-
laxies, galaxies merge and our observer continues seeing adiabatic contractions. 
See, for example, Figure 14. The end result is that 

3 22
h hvρ  remains constant, 

as in the early universe, i.e. 3 22
h hvρ  is of cosmological origin, and we expect 

3 22
h hvρ  to be the same for all free-falling observers at rest with respect to the 

dark matter, i.e. observers in the cores of relaxed galaxies. And this is indeed 
what is observed (within statistical and systematic uncertainties), see Figure 16, 
with far-reaching consequences [2] [4] [13] [17] [18]! It has been argued that the 
adiabatic invariant might become diluted by “phase space mixing”. However, the 
observations in Figure 16 seem to indicate that, if phase space becomes diluted, 
then it later becomes un-diluted as the galaxy halo relaxes. 

We find it convenient to define the adiabatic invariant in the core of a galaxy 
as  

( )
1 3

2 1 2 crit
rms 1 3 ,c

h rh
c

v v
ρ
ρ

 Ω
≡  

 
                (21) 

as in (11), where 2
rhv  and cρ  are obtained from observed galaxy rotation 

curves. The mean and standard deviation of 40 well measured galaxies, is  

( ) ( )rms 1 1 0.87 0.27 km s ,h hv κ= − × ±               (22) 

for non-degenerate dark matter, see Figure 4 of [13]. hκ  is a correction for 
dark matter halo rotation, estimated to be 0.35

0.150.15hκ
+
−=  for spiral galaxies [2] 

[4]. For the interesting cases of fermion or boson dark matter with zero chemical 
potential in the core of the galaxy, see reference [2]. 
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Figure 16. Forty six independent measurements of the expansion parameter  
( )NR rms 1h ha v c′ ≡  at which dark matter particles become non-relativistic (uncorrected for 

dark matter halo rotation). Each measurement was obtained by fitting the rotation curves 
of a spiral galaxy in the Spitzer Photometry and Accurate Rotation Curves (SPARC) sam-
ple [12] with the indicated total luminosity at 3.6 μm. Figure from [19]. References to the 
original rotation velocity measurements can be found in [12]. Two of these measurements 
were given in Figure 4 and Figure 5. Full details of each measurement are presented in 
[13]. 

5. Conclusions 
Let us consider a relaxed galaxy dominated by dark matter. The density run 

( )h rρ  is determined by just two parameters, i.e. the reduced velocity dispersion  
2

rhv′ , and the core density cρ . These parameters are obtained from observa-
tions of galaxy rotation curves, as explained in Section 2. Our objective, in the 
present study, is to understand how these two parameters are obtained from the 
linear density-velocity-gravitational perturbations in the early universe. The halo  
asymptote ( )2 22h rhv Grρ ′= π  is the solution of the isothermal sphere, its ra-

dius grows at a velocity 23 rhv′ , and determines the flat rotation velocity  
2

flat 2 rhv v′=  of test particles. The parameter 2
rhv′  is obtained by numeri-

cal integration, starting from the linear perturbation, see Section 3. This asymp-
totic halo is obtained adiabatically, beyond the pivot point P, even for the 
top-hat perturbation, see Figure 13. 

The second parameter, i.e. the core density cρ , is a mystery in the cold dark 
matter ΛCDM model. In that model, the core expands, reaches turn-around, 
collapses, overshoots, followed by splash-back, overshoots again, etc., and sever-
al relaxation processes are invoked to reach a virialized state. How can the ob-
servations in Figure 16 be explained in the cold ΛCDM scenario? 

On the other hand, we are able to obtain cρ  if dark matter is warm, for then 

https://doi.org/10.4236/ijaa.2021.114026


B. Hoeneisen 
 

 

DOI: 10.4236/ijaa.2021.114026 507 International Journal of Astronomy and Astrophysics 
 

Equations (12), (13), and (14) need to be supplemented by the equation of adia-
batic expansion (16) with ( )rms 1 0hv ≠ . In fact, the adiabatic invariant ( )rms 1hv  
not only fixes the central density cρ , but also stabilizes it. The dark matter at 

0r ≈  expands, reaches turn-around, and begins to collapse. As the core central 
density cρ  increases adiabatically, its temperature proportional to 2

rhv′  also 
increases, halting the expansion. This negative feedback can be understood by 
studying Figure 7 and Figure 9. Note that an adiabatic formation of the core is 
possible, even with no relaxation processes or baryons (at least for an initial li-
near perturbation sufficiently near Jeans instability, as expected for a power 
spectrum ( ) ( )2

fs
nP k k k kτ −∝ , for fsk k , with 3n ≤ ). rhv  approaches its 

equilibrium value 0rhv =  out to a radius that increases with time with constant 
velocity 23 rhv′ , populating the tail of the non-relativistic Boltzmann distribu-
tion. 

The velocity dispersion term in (14) is needed to understand the density run 
( )h rρ  of relaxed galaxies, see Section 2. Once this velocity dispersion term is 

included, Equations (12), (13), and (14) become incomplete since it is then ne-
cessary to specify 2

rhv , i.e. we need to add the equation of adiabatic expansion 
(16) for both theoretical and experimental reasons, see Section 4, and Figure 16. 
The observed dark matter core is evidence that dark matter is warm, see (19). 

To understand the baryon density run ( )b rρ  we do need to include relaxa-
tion processes in the formation, collision, and merger of galaxies, in star forma-
tion, in the formation of binaries and black holes, and in radiation of photons 
and neutrinos. Relaxation allows baryons to settle to the bottom of the dark 
matter gravitational potential well, and even dominate the central density and 
gravitational potential with a core, or a cusp of baryons. 

If indeed the galaxy central density of dark matter cρ  is determined by the 
adiabatic invariant ( )rms 1hv , as supported by the theory described in Section 4, 
and by the data presented in Figure 16, then ( )rms 1hv  is of cosmological origin, 
and provides a detailed, precise, and redundant determination of dark matter 
properties, see [2] and references therein. 
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