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Abstract 
The deduction of a relativistic and mildly relativistic equation of motion in 
the presence of a drag force proportional to the velocity is presented. The ob-
tained results are used to model the trajectory of the supernova SN1993J and 
the light curves of gamma-ray bursts. 
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1. Introduction 

A relativistic treatment of the equation of motion in the presence of a resistive 
force proportional to the velocity has been investigated in the following models: 
a model for the Newtonian scattering of photons [1], a motion through a uni-
form adiabatic medium on the steady-state accretion of matter onto a Schwarz-
schild black hole [2], an extreme mass-ratio inspirals around strongly accreting 
supermassive black holes [3], and ultra-relativistic detonations in the framework 
of the cosmological first-order phase transitions [4]. In Section 2, this paper ex-
plores the relativistic law of motion in the presence of viscosity proportional to 
the velocity. Section 3 is devoted to the astrophysical applications. 

2. The Equation of Motion 
2.1. The Classic Case 

We assume a one-dimensional motion with a resistive force of Stokes type [5], 
( )resF Amv t= − , where A is a constant, m is the considered mass and ( )v t  is 

the velocity. The differential equation which governs the motion is 
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which has an analytical solution in an explicit form  
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where 0v  is the velocity at 0t t= . The equation of motion in the explicit form 
is  
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where 0r  is the distance at 0t t= . The numerical value of the constant A is  
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where 1v  is the velocity at 1t t= . 

2.2. The Relativistic Case 

We assume a one-dimensional motion with a resistive force of Stokes type, 
( )0resF Am v t= − , where A is a constant, 0m  is the considered rest mass and 

( )v t  is the velocity. Newton’s second law in special relativity is:  
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where F is the force, 0m  is the rest mass, c is the velocity of light and ( )v t  is 
the velocity; see Equation (7.16) in [6]. The first order differential equation in 
the velocity which governs the relativistic motion is  
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An analytical solution to the above first order differential does not exist; how-
ever, a solution exists for ( )v t  in an implicit form for the time  
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and 

( )( )2 2 2 2
02 ,D A c v c v= − −                      (9) 

where 0v  is the velocity at 0t t= . The constant A can be derived from the fol-
lowing formula  
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and 

( )( )( )2 2 2 2
0 1 1 02 ,DD t t c v c v= − − −                  (12) 

where 1v  is the velocity at 1t t= . 

2.3. The Mildly-Relativistic Case 

The first order differential equation for the mildly-relativistic motion is 
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which has solution 
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where W is the Lambert W function [7] and 
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with 0v  being the velocity at 0t t= . The trajectory in the mildly relativistic 
case is  
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where 
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with 0r  being r at 0t t= . The constant A can be derived in the mildly relativis-
tic case by the following formula  
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where 1v  is the velocity at 1t t= . 

2.4. Astrophysical Luminosity 

The mechanical relativistic luminosity is  
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where ( )r t  is the temporary radius of the expansion, 0r  is the radius at 

0t t= , 0ρ  is the density at 0t t= , d is a shape parameter and ( ) ( )v t
t

c
β = . 

The observed luminosity, obsL , is assumed to scale as  

( ), 1 e ,obs obs m rL C L ντ−= −                     (20) 

where obsC  is a constant that allows the match between theory and observa-
tions, and ντ−  is the optical thickness. 

3. Astrophysical Applications 

The astrophysical units are chosen to be pc for the length and years for the time: 
the constant A is therefore expressed in 1

yr
. A test for the quality of the fits is 

represented by the merit function 2χ   
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where thr , obsr  and obsσ  are the theoretical radius, the observed radius and 
the observed uncertainty, respectively. 

3.1. Application to SN 1993J 

Figure 1 reports the numerical trajectory, of SN 1993J for which observational 
parameters are available [8] [9] with data as in Table 1. 

3.2. Application to GRBs 

A first example is applied to the light curve (LC) of GRB 130427A , which was 
the most luminous gamma-ray burst in the last 30 years; see Figure 1 in [10]. 
Figure 2 reports the X-flux as a function of the time and the relative theoretical 
data, with data as in Table 2. 
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Figure 1. Numerical radius (full line) and astronomical data of SN 1993J with vertical er-
ror bars. 
 

 

Figure 2. Flux in the X-ray as a function of time in seconds for GRB 130427A (empty 
stars) and theoretical curve as given by Equation (20) (full line) when ντ = ∞  with data 
are as in Table 2. 
 
Table 1. Numerical values for the parameters of Stokes’s theoretical model applied to SN 
1993J. 

model values 2χ  

Stokes’s 3
0 3.0 10 pcr −= × ; 0 13800 km sv = ; 10.07

years
A =  85.7 

 
A second example is applied to the LC in X-ray of GRB 120521C 2, see Figure 

2 in [11], which is reported in Figure 3, with temporal behavior of the optical 
depth as in Figure 4. 

A third example is given by the LC in X-ray of GRB 130606A, see Figure 2 in 
[11], which is reported in Figure 5, with the temporal behavior of the optical 
depth as in Figure 6. 
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Figure 3. Flux in the X-ray as function of time in seconds for GRB 120521C (empty stars) 
and theoretical curve as given by Equation (20) (full line), with ντ  as in Figure 4 and 
with data as in Table 2.  
 

 

Figure 4. The time dependence of ντ  (empty stars) for GRB 120521C and a logarithmic 
polynomial approximation of degree 5 (full line). Parameters as in Table 2. 
 
Table 2. Numerical values of the parameters for the theoretical model. 

GRB name theoretical parameters 

GRB 
130427A 

5
0 9.9 10 pcr −= × ; 3

0 1.0 10 yeart −= × ; 0 0.9β = ; 11
pc

A = ; 3.1d =  

GRB 
120521C 

4
0 1.0 10 pcr −= × ; 6

0 1.0 10 yeart −= × ; 0 0.9β = ; 110000
pc

A = ; 3d =  

GRB 
130606A 

4
0 1.0 10 pcr −= × ; 6

0 1.0 10 yeart −= × ; 0 0.9β = ; 11000
pc

A = ; 2d =  
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Figure 5. Flux in the X-ray as a function of time in seconds for GRB 130606A (empty 
stars) and theoretical curve as given by Equation (20) (full line), with ντ  as in Figure 6 
and with data as in Table 2. 
 

 

Figure 6. The time dependence of ντ  (empty stars) for GRB 130606A and a logarithmic 
polynomial approximation of degree 5 (full line). Parameters as in Table 2. 

4. Conclusions 

We analyzed the one-dimensional relativistic motion in the presence of a resis-
tive force proportional to the velocity. An analytical solution for the velocity was 
derived in an implicit form, see Equation (7). In the mildly relativistic case, we 
derived an analytical solution for both the velocity, see Equation (14), and the 
distance, see Equation (16), in terms of the Lambert W function. 

A first test to evaluate the constant A in an astrophysical environment is on 
SN 1993J. A full relativistic treatment of the LC for GRBs was done for GRB 
130427A, GRB 120521C and GRB 130606A in the framework of the optical 
thickness with a time dependence. 
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