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Abstract 
We model the conservation of energy in the framework of the thin layer ap-
proximation for two types of interstellar medium (ISM). In particular, we 
analyse an ISM in the presence of self-gravity and a Gaussian ISM which 
produces an asymmetry in the advancing shell. The astrophysical targets to be 
simulated are the Fermi bubbles, the local bubble, and the W4 super-bubble. 
The theory of images is applied to a piriform curve, which allows deriving 
some analytical formulae for the observed intensity in the case of an optically 
thin medium. 
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1. Introduction 

We now summarize the first uses of some words: “super-shell” can be found in 
[1], where eleven H I objects are examined, “super-bubble” can be found in [2], 
where an X-ray region with a diameter of 450 pc connected with Cyg X-6 and 
Cyg X-7 is observed and “worms”, meaning gas filaments crawling away from 
the galactic plane in the inner Galaxy, can be found in [3]. Super-bubbles or 
super-shells can be defined as cavities with diameters greater than 100 pc and 
density of matter lower than that of the surrounding interstellar medium 
(ISM) [4]. Bubbles have smaller diameters, between 10 pc and 100 pc [5]. Some 
models which explain super-shells as being due to the combined explosions of 
supernova in a cluster of massive stars will now be reviewed. In semi-analytical 
calculations, the thin-shell approximation can be the key to obtaining the expan-
sion of the super-bubble; for example, [5] [6] [7] [8] [9]. The Kompaneyets ap-
proximation, see [10] [11], has been used in order to model the super-bubble 
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W4 [9] and the Orion-Eridanus super-bubble [12] [13]. The hydro-dynamical 
approximation, with the inclusion of interstellar density gradients, can produce a 
blowout into the galactic halo, see [14] [15]. Recent Planck 353-GHz polarization 
observations allow mapping the magnetic field, see [16] for the Orion-Eridanus 
super-bubble, and we recall that the expansion of super-bubbles in the presence 
of magnetic fields has been implemented in various magneto-hydrodynamic 
codes, see [17] [18]. The present paper derives the equation of motion for two 
different ISMs in the framework of the energy conservation for the thin layer 
approximation, see Section 2; compares the observed and the theoretical sections 
for Fermi bubbles, the local bubble, and the W4 super-bubble, see Section 3; and 
derives a new analytical formula for the theoretical profile in intensity using the 
piriform curve, see Section 4. 

2. The Equations of Motion 

We start with the conservation of kinetic energy in spherical coordinates in the 
framework of the thin layer approximation 

( ) ( )2 2
0 0 0

1 1 ,
2 2

M r v M r v=                     (1) 

where ( )0 0M r  and ( )M r  are the swept masses at r0 and r, while v0 and v are 
the velocities of the thin layer at r0 and r. The above equation holds for the solid 
angle ∆Ω , which in the following is unity. We now present two asymmetric 
equations of motion for bubbles and super-bubbles. The above equation is a dif-
ferential equation of the first order: 

( ) ( )
2

2
0 0 0

1 1 d .
2 2 d

rM r v M r
t

 =  
 

                  (2) 

The asymmetry is due to a gradient of the number of particles with the dis-
tance or galactic height, z, which is parametrized as 

( ) 2 2 2 2
31 2

1 2 3e e e .z Hz H z Hn z n n n −− −= + +                (3) 

where n1 = 0.395 particles cm−3, H1 = 127 pc, n2 = 0.107 particles cm−3, H2 = 318 
pc, n3 = 0.064 particles cm−3, and H3 = 403 pc [19] [20] [21]. In the framework of 
Cartesian coordinates, ( ), ,x y z , when the explosion starts at ( )0,0,0  we have 
an up-down symmetry, ( ) ( ), , , ,r x y z r x y z− =  and a right-left symmetry 
( ) ( ), , , ,r x y z r x y z− = . Conversely, when the explosion starts at ( )OB0,0, z , 

where zOB represents the distance in pc from the position of the OB association 
which generate the phenomena, we have only a right-left symmetry  
( ) ( ), , , ,r x y z r x y z− = . 

2.1. Numerical Methods 

In the absence of an analytical solution for the trajectory, we outline four ways 
which allow obtaining a numerical solution. 

1) Evaluation of the numerical solution with the the Runge-Kutta method. 
2) A non-linear method which obtains the trajectory by the following non-linear 
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equation 

0
0

1 d .
d
d

r

r
r t t

r
t

= −∫                         (4) 

3) The Euler method, which solves the following recursive equations 

1n n nr r v t+ = + ∆                         (5a) 

( )
( )1 1

1

1

2

,n n
n n

n n

M r
v v

M r+
+ +

 
=   

 
                   (5b) 

where nr , nv , and nM  are the temporary radius, velocity, and total mass, re-
spectively, t∆  is the time step, and n is the index. 

4) A power series solution of the form 

( )
( ) ( ) ( )2 3

0 1 0 2 0 3 0 ,

r t

a a t t a t t a t t= + − + − + − +
            (6) 

see [22] [23]. 
The case of an expansion that starts from a given galactic height z, denoted by 

zOB, which represents the OB associations, is also analysed. The advancing ex-
pansion is computed in a 3D Cartesian coordinate system ( ), ,x y z  with the 
centre of the explosion at ( )0,0,0 . The explosion is better visualized in a 3D 
Cartesian coordinate system ( ), ,X Y Z  in which the galactic plane is given by 

0Z = . The following translation, TOB, relates the two Cartesian coordinate sys-
tems 

OB

OB

 
X x

T Y y
Z z z

=
 =
 = +

                        (7) 

where zOB is the distance in pc of the OB associations from the galactic plane. In 
the case of OB 0z ≠ , the two masses which appear in Equation (5b) should be 
carefully evaluated. 

2.2. Medium in the Presence of Self-Gravity 

We assume that the number density distribution scales as 

( ) 2
0sech ,

2
zn z n
h

 =  
 

                      (8) 

where 0n  is the density at 0z = , h is a scaling parameter, and sech is the 
hyperbolic secant [24] [25] [26] [27]. In order to include the boundary 
conditions we assume that the density of the medium around the OB associa-
tions scales with the self-gravity piece-wise dependence 

( )
0

0 2
0

if
;

sech if
2

c

c

r r
r r z r r

h

ρ
ρ

ρ

≤
=   > 

 

                (9) 
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where cρ  is the density at 0z = . In order to find an acceptable value of h, we 
make a comparison with Equation (3), after which we choose 90 pch = , see 
Figure 1. 

The mass M0 swept in the interval [ ]00, r  is 

( ) 3
0 0 0

4, .
3c cM r rρ ρ π=

 
The total mass ( )0; , ,cM r r hρ  swept in the interval [0, r] is 

( )

( )

( )

( ) ( )( )

( )

( )( )

( )

( )

( )

( ) ( )( )

( )

0

0

0

1cos cos3 2 2 2
0

2

1cos cos3 2
0

3

cos2 2
0 0

2

; , ,

4 1 e 4 8 ln 1 e
3 cos cos cos

8 2, e 4 1 e
coscos

4 8 ln 1 e
cos cos

c

r r
c c c ch h

r r
c ch h

r
c c h

M r r h

r r h r h h r

h r h
polylog

r h h r

θ θ

θ θ

θ

ρ

ρ ρ ρ ρ
θ θ θ

ρ ρ
θθ

ρ ρ
θ θ

−

−

   
= − + + − +      

   

   
− − + +      

   

 
− + +

  ( )( )

( )0 cos3

38 2, e
cos

r
c hh

polylog
θρ

θ

 
+ −    

 

(10) 

where θ  is the polar angle and the polylog operator is defined by 

( ) ( )
1

, Li
n

s s
n

zpolylog s z z
n

∞

=

= = ∑                  (11) 

where ( )Lis z  is the Dirichlet series. The positive solution of Equation (1) gives 
the velocity as a function of the radius: 

( )0 0; , , ,ANv r r v h
AD

=                      (12) 

where 
 

 
Figure 1. Profiles of density versus scale height z: the disk in presence of self-gravity as 
given by Equation (8) when 90 pch =  (dashed blue line) and the three-component ex-
ponential distribution as given by Equation (3) (red full line). 
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( )
( )( ) ( ) ( ) ( )( )

( ) ( ) ( )

( )( ) ( ) ( ) ( )

( )

0 00

0 0

0 0

cos coscos cos
3

0

cos cos cos

cos cos cos cos
3

2
0

24cos e e e 1 e

e e 1 2, e

e e e 1 2, e

cos l

r r r rr r
h h h h

r r r
h h h

r r r r r
h h h h

AN r h

polylog

h polylog

h r

θ θθ θ

θ θ θ

θ θ θ θ

θ

θ

+ +

+

   
 = − −  + + +  − 

      

  
+ + + −    

  

   
+  + + +  −   

  

+ −
( ) ( )

( ) ( )( )
( )( )

0

0

cos cos
2

cos
3 2 2

0 0

n 1 e ln 1 e

cos 11 12 cos e2

r r
h h

r r
h

h r

r hr hr

θ θ

θ

θ θ
+

    
 + + +          


− + −



 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )( )
( )

( )( )
( )

( ) ( )

0 0

0

0

cos cos cos
2

0

cos cos cos
2

cos
3 2

0 0

cos
3 2 3

0

1

0 0 0

2

e e 1 ln 1 e

e e 1 ln 1 e

cos 1 12 cos e

1 12 cos e 1

1

12

2

cos cos

r r r
h h h

r r r
h h h

r
h

r
h

h r

h r

r hr

r hr r v r

θ θ θ

θ θ θ

θ

θ

θ θ

θ θ θ

   
− + + +      

   

   
+ + + +      

   


− −




+ + +  

  (13) 

and 
( )( )

( )( )
( )( ) ( )

( )

( )( ) ( )

( )
( )( )

( )( )

( )( )

( )( )
( )

( )( )
( )

( )( )
( )( )

0 0

0 00

0 0

0

cos cos cos
33 2

0

cos coscos
22 2

0

cos cos cos
2 3 32 3 3

0 0 0

cos
3

e cos 24 e ln 1 e cos

24 e ln 1 e cos 12 e cos

12 e cos e cos e cos

24 e

r r r r r
h h h

r r r rr
h h h

r r r r
h h h

r r
h

AD r h r

h r hr

hr r r

h polylog

θ θ θ

θ θθ

θ θ θ

θ

θ θ

θ θ

θ θ θ

+ +

+ +

+

+

 
= − + +  

 
 

− + −  
 

+ − −

+
( ) ( )( ) ( )0 0coscos cos

32, e 24 e 2, e
r rr r

h h hh polylog
θθ θ+   

− − −      
     

( ) ( )

( )
( ) ( )

( )

( ) ( )

( )
( ) ( )

( )

( )

( )( )
( )

( )( ) ( )( )

0

0 0 0

0

cos cos cos cos
2 2

cos cos cos cos
2 2

0 0

cos cos
2 2 32 2 3

0 0

24 e ln 1 e cos 24 e ln 1 e cos

24 e ln 1 e cos 24 e ln 1 e cos

12 e cos 12 e cos cos

24

r r r r
h h h h

r r r r
h h h h

r r
h h

h r h r

h r h r

hr hr r

θ θ θ θ

θ θ θ θ

θ θ

θ θ

θ θ

θ θ θ

   
+ + + +      

   
   

− + − +      
   

− + −

+
( ) ( ) ( ) ( ) 0cos cos cos cos

3 3e 2, e 24 e 2, e
r r r r

h h h hh polylog h polylog
θ θ θ θ   

− − −      
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( ) ( ) ( ) ( )

( )

( )
( )

( )

( ) ( )

0 0 0

0

0

cos cos cos cos
3 3

cos cos
2 2

0

cos cos
3 3

24 e 2, e 24 e 2, e

24 ln 1 e cos 24 ln 1 e cos

24 2, e 24 2, e

r r r r
h h h h

r r
h h

r r
h h

h polylog h polylog

h r h r

h polylog h polylog

θ θ θ θ

θ θ

θ θ

θ θ

   
+ − − −      

   
   

+ + − +      
   

   
+ − − −      

   

  (14) 

The differential equation which governs the motion for the medium in the 
presence of self-gravity is 

( )( )
( )

( ) ( ) ( )( )
( )

( )
( )( )

( ) ( )

( )( )

( ) ( )

( )

( )

( ) ( )( )

( )0 0

12 2cos3
0

cos cos2 3

2 3

1cos cos2 2 2
0 0 0

2

4 1 e 4
3 cos cos

8 ln 1 e 8 2, e
cos cos

4 1 e 4 8 ln 1 e
cos cos cos

r t
c cc h

r t r t
c ch h

r r
c c ch h

r t h r t hr

h r t h
polylog

r h r h h r

θ

θ θ

θ θ

ρ ρρ
θ θ

ρ ρ

θ θ

ρ ρ ρ
θ θ θ

−

−

   − + +    
   

− + − −      
   

   
+ + − + +     

   

( )( )

( )

( )
0 2cos3 3 2

0 0
3

d8 2, e 0,
d 3cos

r
c chh r v

polylog r t
t

θρ ρ

θ



   + − − =      

   (15) 

and does not have an analytical solution. Figure 2 shows the numerical solution 
obtained with the Runge-Kutta method. 

A Taylor expansion of order 3 of Equation (15) gives 

( )

( ) ( ) ( ) ( ) ( )0 0 0

0 0 0

122 cos cos cos2
0 0

0 0 0
0

; , , ,

3 e e 2e 1 ,
r r r

h h h

r t t v r h

v t t
r v t t

r

θ θ θ
−

  −  = + − − + +     

   (16) 

 

 
Figure 2. Phase plane portrait and numerical solution (full yellow line) for a medium in 
the presence of self-gravity as given by Equation (8) when 0 250 pcr = , 90 pch = , 

64 10 yrt = × , 4
0 4 10 yrt = ×  and 1

0 2000 km sv −= ⋅ . 
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and Figure 3 shows the numerical solution obtained by the Runge-Kutta me-
thod and the series solution up to a time for which the percentage error is less 
than 10%. 

2.3. Gaussian Medium 

We assume that the number density distribution scales as 

( )
2

2
0

0e ,
z
zn z n

−

=                         (17) 

where 0n  is the density at 0z =  and 0z  is a scaling parameter. We now give 
the adopted piece-wise dependence for the Gaussian medium 

( ) ( )( )22

2
0

0

cos0 0

0

if
; ,

e if

c

r

z
c

r r
r r z

r r
θ

ρ
ρ

ρ
−

≤
= 
 >

              (18) 

where cρ  is the density at 0z = . A comparison with Equation (3) gives 

0 200 pcz = , see Figure 4. The total mass ( )0 0; , ,cM r r zρ  swept in the interval 
[0, r] is 

( )
( )( )0 0 3; , , ,

12 cos
c

BNM r r zρ
θ

=                  (19) 

where 

( )( ) ( ) ( )

( )( )

( )
( )( )

( )
2 22 2

0
2 2
0 0

3 03 3 3
0 0 0

0 0

cos cos

2 2
0 0 0

cos cos
4 cos 3erf 3erf

6e cos 6e cos ,
r r

z z
c

r r
BN r z z

z z

rz r z
θ θ

θ θ
θ

θ θ ρ
− −


   = − − + −   
   



+ − 


π π



  (20) 

and erf(x) [28] is the error function defined by 
 

 
Figure 3. Numerical solution (red full line) and Taylor expansion of the solution (dashed 
blue line), parameters as in Figure 2 but 52.8 10 yrt = × . 
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Figure 4. Profiles of density versus scale height z: the medium is that in the presence of a 
Gaussian medium as given by Equation (29) when 90 pch =  (dashed blue line) and the 
three-component exponential distribution as given by Equation (3) (red full line). 

 

( )
( )2

0
exp d

erf 2 .
x

t t
x

−
=

π
∫                    (21) 

The velocity as a function of the radius is 

( )0 0 0; , , ,CNv r r z v
CD

=                      (22) 

where 

( ) ( )( )
( )( )

( )

( )( )

( ) ( )

( ) ( )

22

2
0

22
0

2
0

cos
33 2

0 0

cos

2 3
0 0 0

0

0 3

0

1 2

0 0 0 0

2 6cos 2 3 cos e cos

cos
e cos erf

cos
erf co

1 2

,1 s2

r

z

r

z

CN r rz

r
r z z

z

r
z r v r

z

θ

θ

θ θ θ

θ
θ

θ
θ

−

−

 
 = − − + 

 

 
− −  

 


  +   
   

π



π      (23) 

and 

( )( )
( )( )

( )
( )( )

( )
( ) ( )

2 22 2
0

2 2
0 0

cos cos
33 2 2

0 0 0 0

0 3 3
0 0

0 0

4 cos 6e cos 6e cos

cos cos
3erf 3erf .

r r

z zCD r rz r z

r r
z z

z z

θ θ

θ θ θ

θ θ

− −

= − +

   
− +   

  
π π



   (24) 

The differential equation which governs the motion for the Gaussian medium is 

( )( ) ( ) ( )( )

( ) ( )
( )( ) ( )( )

( )
2 2

2
0

2
3 33 3 2

0 0 0

cos 2
2
0

d4 cos 4 cos
d

d6 cos e
d

r t

z

r t r r v
t

r t r t z
t

θ

θ θ

θ
−

  − 
 

 −  
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( )
( )( )

( )

( ) ( )

( ) ( ) ( )

22
0

2
0

cos 2
2

0 0

2
0 3

0
0

2
3
0

0

d6cos e
d

cos d3 erf
d

cos d3 erf 0.
d

r

z r t r z
t

r
r t z

z t

r t
r t z

z t

θ

θ

θ

θ

−  +  
 

  −   
  

  + =  


π


π              (25) 

Figure 5 shows the numerical solution obtained with the Runge-Kutta me-
thod. 

A Taylor expansion of order 3 of Equation (25) gives 

( ) ( ) ( )
( )( )22

0
2
0

cos22
0 0

0 0 0 0 0 0 0
0

3
; , , , e ,

4

r

zv t t
r t t r v z r v t t

r

θ
−−

= + − −        (26) 

and Figure 6 gives the numerical solution obtained by the Runge-Kutta method  
 

 
Figure 5. Phase plane portrait and numerical solution (full yellow line) in the Gaussian 
case when 0 250 pcr = , 0 90 pcz = , 57.1 10 yrt = × , 3

0 7.1 10 yrt = ×  and  
1

0 10000 km sv −= ⋅ . 
 

 
Figure 6. Numerical solution (red full line) and Taylor expansion of the solution (dashed 
blue line), parameters as in Figure 5 but 44.26 10 yrt = × . 
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and the series solution up to a time for which the percentage error is less than 
9%. 

3. Astrophysical Applications 

In the following we will analyse the local bubble, the Fermi bubble and the super 
bubble W4. An observational percentage reliability, obsε , is introduced over the 
whole range of the polar angle θ , 

obs num
obs

obs,

100 1 ,j j

jj

r r

r
ε

 −
 = −
 
 

∑
∑

                 (27) 

where numr  is the theoretical radius of the considered bubble, obsr  is the ob-
served radius of the considered bubble, and the index j varies from 1 to the 
number of available observations. The observational percentage of reliability al-
lows us to fix the theoretical parameters. 

3.1. The Local Bubble 

The local bubble (LB) has already been simulated in the framework of the con-
servation of momentum [29]; here we adopt the framework of the conservation 
of energy. The numerical solution is shown as a cut in the x-z plane: see Figure 7 
for a medium in the presence of self-gravity as given by Equation (9) and Figure 
8 for a Gaussian density profile as given by Equation (18). 

 

 
Figure 7. Geometrical section of the LB in the x-z plane with a profile in the presence of 
self-gravity as given by Equation (8) (green points) and observed profile (red stars). The pa-
rameters are 1

0 3700 km sv −= ⋅ , 0 7 pcr = , 3.5 pch = , 48.5 10 yrt = × , 2
0 8.5 10 yrt = ×  

and OB 0z = . The observational percentage reliability is obs 82.42%ε = . 
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The 3D advancing surface of the local bubble for the case of self-gravity is 
shown in Figure 9. 

3.2. The Fermi Bubble 

Fermi bubbles have already been simulated in the framework of the conservation 
of momentum [30]; here we apply the conservation of energy. We now test our 
models on the image of the Fermi bubbles available at  

 

 

Figure 8. Geometrical section of the LB in the x-z plane with a Gaussian profile (green 
points) and observed profile (red stars). The parameters are 1

0 4000 km sv −= ⋅ ,  

0 7 pcr = , 0 9.1 pcz = , 48.5 10 yrt = × , 2
0 8.5 10 yrt = ×  and OB 0z = . The observational 

percentage reliability is obs 82.58%ε = . 
 

 
Figure 9. 3D surface of the LB with parameters as in Figure 7, with a profile in presence 
of self-gravity as given by Equation (8). The three Euler angles are 90Θ =  , 0Φ =   and 

90Ψ =  . 
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https://www.nasa.gov/mission_pages/GLAST/news/new-structure.html. The 
numerical solution is shown as a cut in the x-z plane: see Figure 10 for a density 
profile in the presence of self-gravity as given by Equation (9) and Figure 11 for  

 

 
Figure 10. Geometrical section of the Fermi bubbles in the x-z plane with a profile in the 
presence of self-gravity as given by Equation (8) (green points) and observed profile (red 
stars). The parameters are 1

0 2000 km sv −= ⋅ , 0 250 pcr = , 0 12 pcz = , 64 10 yrt = × , 
4

0 4 10 yrt = ×  and OB 0z = . The observational percentage reliability is obs 93%ε = . 
 

 
Figure 11. Geometrical section of the Fermi bubbles in the x-z plane with a Gaussian 
profile (green points) and observed profile (red stars). The parameters are  

1
0 1000 km sv −= ⋅ , 0 250 pcr = , 0 200 pcz = , 57.1 10 yrt = × , 3

0 7.1 10 yrt = ×  and 

OB 0z = . The observational percentage reliability is obs 92.12%ε = . 
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a Gaussian density profile as given by Equation (18). 
The 3D advancing surface of the local bubble for the Gaussian case is shown 

in Figure 12. 

3.3. The W4 Super-Bubble 

The W4 super-bubble has been analysed from the point of view of the astro-
nomical observations [31] [32] [33], in connection with the evolution of the 
magnetic field [34] and from a theoretical point of view [9] [35]. The upper part 
of Figure 3 in [36], which combines [SII], Hα  and [OIII] images has been di-
gitized and will be the section of reference for W4, see Figure 13. 

We now simulate the egg-shape of W4 when OB 0z ≠ . The numerical solution,  
 

 
Figure 12. 3D surface of the Fermi bubbles with parameters as in Figure 11, Gaussian 
profile. The three Euler angles are 90Θ =  , 0Φ =   and 90Ψ =  . 

 

 
Figure 13. Section of the W4 + IC 1805 complex. 
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which is evaluated with the Euler method, is shown as a cut in the x-z plane: see 
Figure 14 for a density profile in the presence of self-gravity and Figure 15 for a 
Gaussian profile. The two adopted profiles in density are symmetric with respect  

 

 
Figure 14. Geometrical section of the W4 super-bubble in the X-Z plane with a profile in 
the presence of self-gravity as given by Equation (9) (green points) and observed profile (red 
stars). The parameters are 1

0 20000 km sv −⋅= , 0 1 pcr = , 17 pch = , 51.3 10 yrt = × , 

0 10 yrt =  and OB 100z = . 
 

 
Figure 15. Geometrical section of the W4 super-bubble in the X-Z plane with a Gaussian pro-
file (green points) and observed profile (red stars). The parameters are 1

0 4700 km sv −⋅= , 

0 1 pcr = , 0 55 pcz = , 52.25 10 yrt = × , 0 10 yrt =  and OB 100z = . 
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to the galactic plane, 0Z = , but the simulated theoretical sections do not have 
an up-down symmetry, due to the fact that the expansion starts at 0z z= . Nev-
ertheless, we still have a right-left symmetry. 

The egg shape of the W4 super-bubble is shown in Figure 16. 
The curious bump visible in the upper left part of Figure 13 could be an as-

tronomical superposition of the image of IC 1805 on W4 or an intrinsic feature 
in the expansion of W4. In order to reproduce this feature, we assume that the 
scaling factor 0,z θ  in the interval inf supθ θ θ< <  varies with the following em-
pirical law 

( )0, 0 0 0.0006 ; ,z z z Nθ θ θ σ= +                  (28) 

where 

( )
( )

( )
1 22

2
1; , exp ,

22

x
N

θ
θ σ µ

σσ

 − = −
 
 π

             (29) 

is the Gaussian distribution, and 
2

inf supθ θ
θ

+
=  and 9σ θ= . 

Figure 17 shows an “ad hoc” simulation of the bump of W4. 

4. The Theory of the Image 

In the framework of an optically thin medium, we outline a new analytical mod-
el which reproduces a theoretical vertical cut in the intensity of radiation and an 
old numerical model which simulates the intensity of radiation as a function of 
the point of view of the observer. 

4.1. The Piriform Model 

The piriform curve, or pear-shaped quartic, in 3D Cartesian coordinates ( ), ,x y z  
has the equation 

( ) ( )4 2 2 2 3 2 0,a x y b z a z+ − − =                  (30) 

where a and b are both positive [37], see Figure 18 where the parameters a and b  
 

 
Figure 16. 3D surface of the W4 super-bubble with parameters as in Figure 15, Gaussian 
profile. The three Euler angles are 90Θ =  , 0Φ =   and 90Ψ =  . 
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Figure 17. Geometrical section of the W4 super-bubble in the X-Z plane with a Gaussian 
profile (green points) and observed profile (red stars). The parameters are the same as for 
Figure 15. 

 

 
Figure 18. 3D display of the piriform curve when 3 kpca =  and 3 2 kpcb = . 

 
match the Fermi bubbles. 

We are interested in a section of the above curve in the x-z plane which is ob-
tained by inserting 0y =  

( )4 2 2 3 2 .a x b z a z= −                      (31) 
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The parametric form of the piriform curve is 

( ) ( )( ); , 1 sinx a b aθ θ= +                   (32a) 

( ) ( ) ( )( ); , cos 1 sin ,z a b bθ θ θ= +                (32b) 

where 3
2 2

θ− ≤ ≤
π π  and the maximum value reached along the z axis is 

2 .maxz a=                          (33) 

We assume that the emission takes place in a thin layer comprised between an 
internal piriform which in polar coordinates has radius 

4 2 2 2
2 2 ,int

zr a ab z b z
a

= + −                   (34) 

and an external piriform which has radius 

,ext intr r c= +                         (35) 

where c is a positive parameter, see Figure 19. We therefore assume that the 
number density mC  is constant between the two piriforms; as an example, 
along the z axis the number density increases from 0 at ( )0, maxz  to a maximum 
value mC , remains constant up to ( )0, maxz c+ , and then falls again to 0. The 
length of sight which produces the image in the first quadrant, when the observ-
er is situated at the infinity of the x-axis, is the locus parallel to the x-axis which 
crosses the position z in the Cartesian x-z plane and terminates at the external 
piriform. In the case of an optically thin medium, the line of sight is split into 
two cases 

( ) ( )4 2 2 3 2 4 2 2 4 2
2

1; , , , 2 2 2I m ml z a b c C C a c b z a b z az z b a a cz
a

 = + − + − + 
 

(36) 

 

 
Figure 19. Internal and external piriforms in the first quadrant when 3 kpca = , 

3 2 kpcb =  and 3 20c = . The dotted lines represent two different lengths of sight. 
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when max maxz z z c≤ < +  

( )

( ) ( )4 2 2 3 2 4 2 2 4 2
2

; , , ,

1 2 2 2 2

II m

m

l z a b c C

C z a z zb a c b z a b z az z b a a cz
a

  = − − − + − + − +  
  

(37) 

when 0 maxz z≤ < . 
A comparison between observed and theoretical intensity can be made by re-

placing in the above result mC  with mI  and doubling the length of sight due 
to the contribution of the second quadrant 

( )

( )4 2 2 3 2 4 2 2 4 2
2

; , , ,

12 2 2 2

I m

m

I z a b c I

I a c b z a b z az z b a a cz
a

 = × + − + − + 
 

    (38) 

when max maxz z z c≤ < +  

( )

( ) ( )4 2 2 3 2 4 2 2 4 2
2

; , , ,

12 2 2 2 2

II m

m

I z a b c I

I z a z zb a c b z a b z az z b a a cz
a

  = × − − − + − + − +  
  

 

(39) 

when 0 maxz z≤ < . 
The resulting intensity is 2mI c  at 0z =  and increases to 2 4mI c a c+  

at maxz z= , see Figure 20 for a typical profile in intensity along the z-axis. 

4.2. The Numerical Model 

The source of the luminosity is assumed here to be the flux of kinetic energy, 

mL . The observed luminosity along a given direction can be expressed as 
 

 
Figure 20. The intensity profile for the piriform model along the z-axis when when 

3 kpca = , 3 2 kpcb = , 3 20c =  and 1mC = . 
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,mL Lε=                           (40) 

where ε  is a constant of conversion from the mechanical luminosity to the ob-
served luminosity, for more details see [30]. The image of the Fermi bubbles is 
shown in Figure 21 and Figure 22 shows a cut of the intensity along the z-axis. 

 

 
Figure 21. Map of the theoretical intensity of the Fermi bubbles for the model in the 
presence of self-gravity as given by Equation (9) with parameters as in Figure 10. The 
three Euler angles characterizing the orientation are 0Φ = , 90Θ =  and 90Ψ = . 

 

 
Figure 22. The intensity profile for the Fermi bubbles evolving in a model in the presence 
of self-gravity as given by Equation (9) along the z-axis, parameters as in Figure 21 
(green empty stars) and the intensity profile for the piriform model along the z-axis when 
when 3.3 kpca = , 1.65 kpcb = , 0.825c =  and 1mC =  (red full line). 
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Figure 22 also shows the cut of the piriform model in order to evaluate the 
goodness of the analytical model for complex sections. 

5. Conclusions 

Equations of motion We derived two equations of motion coupling the thin 
layer approximation with the conservation of energy. The first model imple-
ments a profile in the presence of self-gravity of density and the second a Gaus-
sian profile of density. In the absence of analytical results for the trajectory, with 
the exception of a Taylor expansion, we provided a numerical solution. 

Comparison with other approaches 
As an example, Figure 3 in [13] models the Eridanus-Orion structure with an 

ellipsoid, here we introduce the mushroom shape, see Figure 10 relative to the 
Fermi bubble and the egg shape, see Figure 16 relative to W4. We also suggested 
a first model for shapes apparently impossible to be simulated, see Figure 17 for 
the bump of W4. 

Theory of the image The introduction of the piriform curve as a model for 
the section of the super-bubble confirms the existence of a characteristic “U” 
shape which has a maximum in the internal piriform at 2z a=  and a mini-
mum at the centre, 0z = , see Equation (20). The superposition of a numerical 
cut with the piriform’s cut, (see Figure 22), shows us that the use of the piriform 
curve as a model is acceptable. 
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