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Abstract 
The thin layer approximation applied to the expansion of a supernova remnant 
assumes that all the swept mass resides in a thin shell. The law of motion in 
the thin layer approximation is therefore found using the conservation of mo-
mentum. Here we instead introduce the conservation of energy in the frame-
work of the thin layer approximation. The first case to be analysed is that of 
an interstellar medium with constant density and the second case is that of 7 
profiles of decreasing density with respect to the centre of the explosion. The 
analytical and numerical results are applied to 4 supernova remnants: Tycho, 
Cas A, Cygnus loop, and SN 1006. The back reaction due to the radiative losses 
for the law of motion is evaluated in the case of constant density of the inters-
tellar medium. 
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1. Introduction 

The thin layer approximation assumes that the mass ejected in the explosion of a 
supernova (SN) resides in a thin layer. This approximation is usually applied in 
the late stage of the explosion in order to explain the supernova remnant (SNR), 
see [1] [2] [3]. The physical quantity which is conserved in the previous approach-
es is the momentum, equal to the swept mass multiplied by the velocity at a giv-
en radius of expansion 0r  equated to these quantities at a radius r. Some natural 
questions therefore arise: 
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• Can we model the expansion of an SNR when the energy is conserved rather 
than the momentum? 

• Can we model the energy conservation when the density of the interstellar 
medium (ISM) decreases with the distance from the point of the explosion? 

In order to answer the above questions, Section 2 reviews the standard laws of 
conservation, Section 3 introduces the conservation of energy and Section 4 ap-
plies the derived equations of motion to 4 SNRs. 

2. Laws of Conservation 

We summarise four laws of conservation useful to model some astrophysical 
phenomena in which the temperature and the pressure are absent. The first law 
is the conservation of momentum in spherical coordinates in the framework of 
the thin layer approximation. The Newton’s second law for an expanding sphere 
in the framework of the thin shell approximation along a solid angle ∆Ω  is 

3 2d 1 ,
d 3

r v r P
t

ρ  = 
 

                       (1) 

where r is the advancing radius, ρ  is the density assumed to be constant, v the 
velocity and P the internal pressure, see formula (10.27) in [4]. Let us assume 

0P =  (cold model) and the above equation in two different points of expansion 
becomes 

( ) ( )0 0 0 ,M r v M r v=                       (2) 

where ( )0 0M r  and ( )M r  are the swept masses at 0r  and r, while 0v  and v 
are the velocities of the thin layer at 0r  and r. This first law has been widely 
used to model the SNRs, see [5]-[10]. This conservation law can be expressed as  

a differential equation of the first order by inserting d
d
rv
t

= : 

( ) ( )0 0 0
d .
d
rM r v M r
t

=                       (3) 

In the case where the ISM has constant density, the analytical solution for the 
trajectory is 

( ) ( )3 44
0 0 0 0 0 0 0; , , 4 ,r t t r v r v t t r= − +                  (4) 

and the velocity is 

( )
( )( )

3
0 0

0 0 0 3 43 4
0 0 0 0

; , , ,
4

r v
v t t r v

r v t t r
=

− +
               (5) 

where 0r  and 0v  are the position and the velocity when 0t t= . The second 
law is the conservation of energy which will be introduced in details in the next 
section. An example is given by the energy conserving phase in the interstellar 
bubbles, see [4]. The third law of conservation is given by the conservation of mo-
mentum flux which is the rate of transfer of momentum through a unit area 

( ) ( ) ( ) ( ) ( )22
0 0 0 ,x v A x x v x A xρ ρ=                 (6) 
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where ( )xρ  is the density at position x, ( )A x  is the area at position x and 
( )v x  is the velocity at position x, see Formula A27 in [11]. This law is useful to 

model the radiogalaxies where there is a continuous flow of matter from the 
central region to the periphery, see [12]. The fourth law of conservation is given 
by the conservation of energy flux which is the rate of transfer of energy through 
a unit area 

( ) ( ) ( ) ( ) ( )33
0 0 0

1 1
2 2

x v A x x v x A xρ ρ=                (7) 

where ( )xρ  is the density at position x, ( )A x  is the area at position x and 
( )v x  is the velocity at position x, see Formula A28 in [11]. This law is useful to 

model the astrophysical jets, see [13]. 

3. Energy Conservation 

The conservation of kinetic energy in spherical coordinates within the frame-
work of the thin layer approximation when the thermal effects are negligible is 

( ) ( )2 2
0 0 0

1 1 ,
2 2

M r v M r v=                     (8) 

where ( )0 0M r  and ( )M r  are the swept masses at 0r  and r, while 0v  and v 
are the velocities of the thin layer at 0r  and r. The above conservation law, 
when written as a differential equation, is 

( ) ( )
2

2
0 0

1 d 1 0.
2 d 2

M r r t M v
t

  − = 
 

                 (9) 

The velocity as a function of the momentary radius is 

( )
3 2

0 0
0 0 3 2; , .

r v
v r r v

r
=                       (10) 

In the following, the case of constant density as well as 7 profiles of decreasing 
density will be considered. 

3.1. Medium with Constant Density 

When the ISM is considered to have constant density, the analytical solution for 
the trajectory when the energy is conserved is 

( ) ( )( )2 53 5 3 5
0 0 0 0 0 0 0

1; , , 2 5 5 2 ,
2

r t t r v r t t v r= − +            (11) 

which has the asymptotic behaviour ( )0 0 0; , ,ar t t r v , 

( )
( )

( )( )3 53 5 3 5 2 5 13 5 3 5 2 5 2 5
0 0 0 00 0

0 0 0 2 5 3 51
0

2 5 5 22 51 1; , , ~ .
2 25a

r t v r tr v
r t t r v

vt

−

−

− +
+   (12) 

The velocity as function of the radius is 

( )
3 2

0 0
0 0 3 2; , ,

r v
v r r v

r
=                      (13) 

and the velocity as a function of time is 
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( )
( )( )

3 5 3 5
0 0

0 0 0 3 5
0 0 0

2
; , , ,

5 5 2

r v
v t t r v

t t v r
=

− +
              (14) 

where 0r  and 0v  are the position and the velocity when 0t t= . 

3.2. Constant Density and Back Reaction 

The radiative losses per unit length are assumed to be proportional to the flux of 
momentum 

2 24 ,sv rρ− π                         (15) 

where   is a constant and srho  is density in the thin advancing layer which is 
4ρ . Inserting in the above equation the velocity to first order as given by Equa-
tion (13) the radiative losses, 0 0( ; , , )Q r r v ε , are 

( )
3 2

0 0
0 0; , , 16 .

r v
Q r r v

r
ρ π

= −


                   (16) 

The sum of the radiative losses between 0r  and r is given by the following 
integral, L, 

( ) ( )

( ) ( )
0

0 0 0 0

3 2 3 2
0 0 0 0 0

; , , ; , , d

16 ln 16 ln .

r

r
L r r v Q r r v r

r v r r v rρ ρ

=

= − π + π

∫ 

 
         (17) 

The conservation of energy in presence of the back reaction due to the radia-
tive losses is 

( ) ( )3 2 3 2 3 2 3 2
0 0 0 0 0 0 02 3 16 ln 16 ln 2 3 .r v r v r r v r r vρ ρ ρ ρπ + π − π = π       (18) 

The analytical solution for the velocity to second order, ( )0 0; , ,cv r r c  , is 

( )
( ) ( )3 2

0 0 0
0 0 3 2

24 ln 24ln 1
; , , .c

r r r v
v r r v

r
− + +

=
 

          (19) 

The inclusion of back reaction allows the evaluation of the SRS’s maximum 
length ( )0 ,backr r  , which can be derived imposing to zero the above velocity. 

( )
( )024ln 1

1 24

0 , e .
r

backr r
+

=


                    (20) 

3.3. Medium with an Hyperbolic Profile of Density 

We assume that the medium around the SN scales with the piecewise depen-
dence 

( )
0

0 0
0

if
;

if

c

c

r r
r r r

r r
r

ρ
ρ

ρ

≤
=   >   

                  (21) 

where cρ  is the density at 0r =  and 0r  is the radius after which the density 
starts to decrease. The mass swept, 0M , in the interval [ ]00, r  is 

( ) 3
0 0 0

4, .
3c cM r rρ ρ= π
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The total mass swept, ( )0; , cM r r ρ , in the interval [ ]0, r  is 

( ) 3 2
0 0 0

2; , 2 .
3c c cM r r r r rρ ρ ρ= − π + π

 
The application of energy conservation gives the velocity as a function of the 

radius: 

( ) 0 0
0 0 2 2

0

; , 2 .
6 2

v r
v r r v

r r
=

−
                   (22) 

Separation of variables followed by integration gives 

( ) ( )

( ) ( )

2 2
0 00

0 0

2 2
0 0 00 0

0
0 0 0 0 0

6 ln 2 3 6 26 ln 2 31 1
12 12

6 ln 6 26 ln 21 1 1 1 .
24 12 4 2

r r r rr

v v

r r r r rr r
t t

v v v r v

+ −+
−

−
+ + + − = −

    (23) 

In this equation it is not possible to extract the radius as a function of time, 
and therefore a numerical procedure is adopted in order to derive the trajectory. 

3.4. Medium with an Inverse Square Profile for the Density 

We now assume that the medium around the SN scales with the piecewise de-
pendence (which avoids a pole at 0r = ) 

( )
0

2
0 0

0

if
;

if

c

c

r r
r r r

r r
r

ρ
ρ

ρ

≤
=    >  

 

                 (24) 

where cρ  is the density at 0r =  and 0r  is the radius after which the density 
starts to decrease. 

The total mass swept, ( )0; , cM r r ρ , in the interval [ ]0, r  is 

( ) 3 2 3
0 0 0 0

8 4; , 4 .
3 3c c c cM r r r r r rρ ρ ρ ρ= − π + π + π

 
Applying the conservation of energy, the velocity as a function of the radius is 

( )
( )0 0 0

0 0
0

2 3
; , .

2 3
r r r v

v r r v
r r

− −
= −

−
                (25) 

The trajectory, i.e. the radius as a function of time, is 

( ) ( )( )2 33 3
0 0 0 0 0 0 0 0

1 2; , , 2 9 9 2 ,
6 3

r t t r v r t t v r r= − + +          (26) 

which has the asymptotic behavior, ( )0 0 0; , ,ar t t r v , 

( )
( )

( ) 32 3 12 3 2 3 33 33
0 0 0 00 0

0 0 0 02 3 31
0

2 9 9 22 91 2; , , ~ .
6 3 81a

r t v r tr v
r t t r v r

vt

−

−

− +
+ +   (27) 

The velocity as a function of time is 

( )
( )

3 3
0 0

0 0 0
3

0 0 0

2
; , , .

9 9 2

r v
v t t r v

t t v r
=

− +
               (28) 
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3.5. Medium with a Power Law Profile for the Density 

We now assume that the medium around the SN scales as 

( )
0

0 0
0

if
;

if

c

c

r r
r r r

r r
r

α

ρ
ρ

ρ

≤
=    >  

 

                 (29) 

where cρ  is the density at 0r = , 0r  is the radius after which the density 
starts to decrease and 0α > . 

The total mass swept, ( )0; , ,cM r r ρ α , in the interval [ ]0, r  is 

( )
3 3

3 0 0
0 0

4; , , 4 4 .
3 3 3

c c
c c

r r rM r r r
r

αρ ρ
ρ α ρ

α α
π π = π − + − −   

The application of energy conservation gives the differential equation 

( )
2

3 3 3 20
0 0 0

1 d 22 3 .
3 9 d 3c c

r
r r r t r v

r t

α

ρ α ρ
α

      − π − = π     −     
      (30) 

The velocity as a function of the radius is 

( )
( ) ( )3 3

0 0 0 0 0
0 0 3 3

0 0

3 3
; , , .

3

r r r r v r
v r r v

r r r

α α

α α

α α
α

α

−

−

− − + −
=

− +
          (31) 

There is no analytical solution for the trajectory, and therefore we have im-
plemented a numerical procedure. The first approximation for the trajectory is 
obtained by a series solution of Equation (30) to fourth order, 

( ) ( ) ( ) ( )( )2 32 3
0 0 0 0

0 0 0 0 0 0 2
0 0

43 1; , , , .
4 4

v t t v t t
r t r v t r v t t

r r
α

α
− + −

≈ + − − +   (32) 

The second approximation for the trajectory is found by first deriving an asymp-
totic expansion of Equation (31), namely 

( )
( )

( )

1
0 0 0

0 0 31
0

3 31; , , ~ .
3

v r r
v r r v

r r

α

αα

α
α

+

−−

−
              (33) 

Then, the asymptotic approximate trajectory turns out to be 

( ) ( ) ( )( )(
( )( ) ( ) ) ( )

1

1

3
5 5

0 0 0 0 0 0 0

522 2 2
0 0 0

; , , , ~ 12 4 5 9 3

3 5 12 .

r t r v t r r v t t

t t v r

α
α α

α

α α α

α α

−

−

−
− −

− −

× − − − −

− − − − +

     (34) 

3.6. Medium with an Exponential Profile for the Density 

We assume that the medium around the SN scales with the piecewise dependence 

( )
0

0
0

if
;

exp if

c

c

r r
r r r r r

b

ρ
ρ

ρ

≤
=   − >   

                (35) 

where cρ  is the density at 0r =  and 0r  is the radius after which the density 
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starts to decrease. The total mass swept, ( )0; , cM r r ρ , in the interval [ ]0, r  is 

( ) ( )

( )
0

3 2 2
0 0

2 2
0 0

4; , , 4 2 2 e
3

4 2 2 e .

r
b

c c c

r
b

c

M r r b r b b br r

b b br r

ρ ρ ρ

ρ

−

−

= π − + + π

+ + + π
 

The application of energy conservation gives the differential equation 

( )
0

0 0

2
3 2 2 3

2 2 3 3 2
0 0 0 0 0

d2 6 e 6 e 3 e 6 e
d

26 e 3 e .
3

rr r r
b b b b

c

r r
b b

c

r t b b r br b
t

b r b r r r v

ρ

ρ

− − − −

− −

 − + + −    


− − − π = π


        (36) 

The velocity as a function of the radius is 

( )0 0; , , ,Nv r r v b
D

=                       (37) 

where 

0
3 2 2 2 2 3

0 0 0 0 0 0
1 16 e e 1 6 ,
2 2

r r
b bN r b b r br b b br r r v r

− −    = − − − − − + + + −         
  (38) 

and 

( ) ( )
0

3 2 2 3 2 2 3
0 0 06 6 3 e 6 6 3 e .

r r
b bD b b r br b b r br r

− −
= − − − + + + −       (39) 

There is no analytical solution for the trajectory, and therefore we present a 
series solution of Equation (36) to fourth order: 

( ) ( ) ( )

( )

0

0 0

22
0 0

0 0 0 0 0 0
0

33
0 0

02
0

3; , , , e
4

1 e 6 e 2 .
4

r
b

r r
b b

v t t
r t r v t b r t t v

r

v t t
b b r

br

−

− −

−
≈ + − −

 −
+ − +  

 

        (40) 

3.7. Medium with a Gaussian Profile for the Density 

We assume that the medium around the SN scales with the piecewise dependence 

( )
0

2
0

0

if

; ,
exp if

c

c

r r

r r b r r r
b

ρ

ρ
ρ

≤


 =   − >      

             (41) 

where cρ  is the density at 0r =  and 0r  is the radius after which the density 
starts to decrease. The total mass swept, ( )0; , cM r r ρ , in the interval [ ]0, r  is 

( )
2

2

2
0
2

3 2 3
0 0

2 3 0
0

4 1 1; , , 4 e erf
3 2 4

1 14 e erf ,
2 4

r
b

c c c

r

b
c

rM r r b r rb b
b

r
r b b

b

ρ ρ ρ

ρ

−

−

   = π + π − + π     
   − π − + π     

    (42) 
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where ( )erf x  is the error function, defined by 

( ) 2

0

2erf e d ,
x tx t−=

π ∫
                     (43) 

See [14]. 
The differential equation when the energy is conserved is 

( ) ( )

( )( )

( )
2 2

0
2 2

2
3 3 0

2 2 3 3 2
0 0 0 0

1 d 3 erf 3 erf
6 d

26e 6e 4 = .
3

c

r t r

b b
c

r t r
r t b b

t b b

r t b r b r r v

ρ

ρ
− −


     − π − π + π        



+ − − π


       (44) 

In the absence of an analytical solution for this differential equation, we present 
an approximation using the fourth order Taylor series: 

( ) ( ) ( )

( )

2
0
2

2 2
0 0
2 2

22
0 0

0 0 0 0 0 0
0

33
0 0 2 2 2

02 2
0

3; , , , e
4

1 e 3 e .
2

r

b

r r

b b

v t t
r t r v t b r v t t

r

v t t
b b r

r b

−

− −

−
≈ + − −

 −  + − +
 
 

       (45) 

3.8. Autogravitating Medium 

We assume that the medium around the SN scales with the piecewise dependence 

( )
0

0 2
0

if
; ,

sech if
2

c

c

r r
r r b r r r

b

ρ
ρ

ρ

≤
=     >     

             (46) 

where cρ  is the density at 0r = , 0r  is the radius after which the density starts 
to decrease and sech is the hyperbolic secant ([15] [16] [17] [18]). 

The total mass swept, ( )0; , , cM r r b ρ , in the interval [ ]0, r  is 

( )

0

0 0

0

1

3 2 2
0

1

3 2 2
0

2 3 2
0 0

; , ,

4 16 1 e 32 ln 1 e
3

32 2, e 16 16 1 e

32 ln 1 e 32 2, e 16 ,

c

r r
b b

c c c

rr
b b

c c c

r r
b b

c c c

M r r b

r r b b r

b polylog r b r b

b r b polylog r b

ρ

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

−

−

   
= π − π + − π +      

   

  
− π − + π + π +        

   
+ π + + π − − π      

   

    (47) 

where the polylog operator is defined by 

( ) ( )
1

, Li
n

s s
n

zpolylog s z z
n

∞

=

= = ∑                  (48) 

and ( )Lis z  is a Dirichlet series. The differential equation when the energy is 
conserved is 
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( ) 0

3 2
0 0

2
3

3 1 e 1 e
cr t r

b b

ODEN r vρ= π
  
+ +      

                 (49) 

where 

( )
( ) ( ) ( )

( )
( )

( )( )
( )

( )
( )

0 0

0 0

0 0

2
3

2 3 2
0

2 2 2
0 0

d48 e e e 1 2, e
d

ln 1 e 2, e ln 1 e
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The velocity as a function of the radius is 
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  (52) 

In the absence of an analytical solution for this differential equation, we present 
the approximation arising from the fourth order Taylor series: 
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3.9. Medium with an NFW Profile 

We assume that the medium around the SN scales with the Navarro-Frenk-White 
(NFW) distribution as follows: 
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where cρ  is the density at 0r = , and 0r  is the radius after which the density 
starts to decrease, see [19]. The total mass swept, ( )0; , , cM r r b ρ , in the interval 
[0, r] is 
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The differential equation when the energy is conserved for an NFW profile is 
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The velocity as a function of the radius is 
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This differential equation does not have an analytical solution, so we present 
the approximation arising from the fourth order Taylor series: 
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4. Astrophysical Applications 

We now test the reliability of the numerical and approximate solutions on four 
SNRs: Tycho, see [20], Cas A, see [21], Cygnus loop, see [22], and SN 1006, see [23]. 
The three astronomically measurable parameters are the time since the explosion in 
years, t, the actual observed radius in pc, r, and the present velocity of expansion in 
km∙s−1, see Table 1. The astrophysical units are pc for length and yr for time. With 
these units, the initial velocity is ( ) ( )1 5 1

0 0km s 9.7968 10 pc yrv v− −⋅ = × ⋅ . In all the 
models here considered, the initial velocity, 0v , is constant in the time interval 
[ ]00, t . 

The goodness of the model is evaluated through the percentage error rδ  of 
the radius, which is 

100,theo obs
r

obs

r r
r

δ
−

= ×                      (61) 

where obsr  is the radius of the SNR as given by the astronomical observations 
and theor  is the radius suggested by the model. In an analogous way, we can de-
fine the percentage error of the velocity. Another useful astrophysical variable is 
the predicted decrease in the theoretical velocity in 10 years, ( )1

10 km sv −∆ ⋅ . 

4.1. Constant Density 

The numerical results for the medium with constant density are presented in 
Table 2. 

4.2. Power Law Densities 

The results for a medium with an hyperbolic density are presented in Table 3, 
those for the medium with an inverse square profile of density are presented in 
Table 4, and those for the medium with an inverse power law profile of density 
are presented in Table 5. 
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Table 1. Observed astronomical parameters of the SNRs. 

Name Age (yr) Radius (pc) Velocity (km∙s−1) References 

Tycho 442 3.7 5300 Williams et al. (2016) 

Cas A 328 2.5 4700 Patnaude and Fesen (2009) 

Cygnus loop 17,000 24.25 250 Chiad et al. (2015) 

SN 1006 1000 10.19 3100 Uchida et al. (2013) 

 
Table 2. Theoretical parameters of the SNRs for the equation of motion in the case of 
conservation of energy with constant density, see Section 3.1. 

Name ( )0 yrt  ( )0 pcr  ( )1
0 km sv −⋅

 ( )%rδ  ( )%vδ  ( )1
10 km sv −∆ ⋅

 

Tycho 28.41 0.87 30,000 0.1 35.55 −47.33 

Cas A 17.96 0.55 30,000 0.095 34.22 −57.03 

Cygnus loop 55.51 1.7 30,000 0.23 123.5 −0.197 

SN 1006 91.43 2.79 30,000 0.8 37.52 −26.83 

 
Table 3. Theoretical parameters of the SNRs for the equation of motion in the case of 
conservation of energy with an hyperbolic profile of density, see Section 3.3. 

Name ( )0 yrt  ( )0 pcr  ( )1
0 km sv −⋅

 ( )%rδ  ( )%vδ  ( )1
10 km sv −∆ ⋅

 

Tycho 20.24 0.62 30,000 0.017 22.2 −46.53 

Cas A 12.40 0.38 30,000 0.127 20.37 −56.4 

Cygnus loop 22.85 0.7 30,000 0.61 181 −0.2 

SN 1006 68.57 2.09 30,000 0.27 63.38 −25.76 

 
Table 4. Theoretical parameters of the SNRs for the equation of motion in the case of 
conservation of energy with an inverse square profile of density, see Section 3.4. 

Name ( )0 yrt  ( )0 pcr  ( )1
0 km sv −⋅

 ( )%rδ  ( )%vδ  ( )1
10 km sv −∆ ⋅

 

Tycho 10.44 0.32 30,000 0.016 0.98 −39.7 

Cas A 6 0.184 30,000 0.216 2.40 −48.62 

Cygnus loop 2.28 0.07 30,000 0.1 272 −0.18 

SN 1006 40.82 1.25 30,000 0.089 104 −21.6 

 
Table 5. Theoretical parameters of the SNRs for the equation of motion in the case of 
conservation of energy with a power law profile of density when 1.5α = , see Section 3.5. 

Name ( )0 yrt  ( )0 pcr  ( )1
0 km sv −⋅

 ( )%rδ  ( )%vδ  ( )1
10 km sv −∆ ⋅

 

Tycho 15.6 0.47 30,000 0.152 12.83 −44.41 

Cas A 9.3 0.285 30,000 0.0383 40.43 −47.15 

Cygnus loop 9.96 0.3 30,000 0.0443 23.29 −0.1 

SN 1006 55.15 1.689 30,000 0.07 31.53 −22.91 
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In the case of a density which decreases with a power law profile we have al-
ready pointed out the absence of an analytical solution. As a consequence, Fig-
ure 1 presents the asymptotic approximate trajectory as given by (34) for Tycho 
in the full range of time [ ]15.6 yr - 442 yr . Figure 2 presents the Taylor ap-
proximation of the trajectory as given by (32) in the restricted range of time 
[ ]15.6 yr - 24 yr . 

 

 
Figure 1. Numerical solution (full red line) and asymptotic approximate solution (blue 
dashed line) for the inverse power law with 1.5α =  Parameters as in Table 5 for Tycho. 

 

 
Figure 2. Numerical solution (full red line) and Taylor approximation (blue dashed line) 
for the inverse power law with 1.5α = . Parameters as in Table 5 for Tycho. 
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4.3. Presence of an Exponential 

The astrophysical parameters for an exponential profile of density are presented 
in Table 6 and the fit of the trajectory with a Taylor expansion, see Equation (40), 
is presented in Figure 3. 

The astrophysical parameters for a Gaussian profile of density are presented 
in Table 7 and the fit of the trajectory with a Taylor expansion, see Equation 
(45), is presented in Figure 4. 

4.4. Autogravitating Medium 

The astrophysical parameters for an autogravitating medium are presented in Ta-
ble 8 and the fit of the trajectory with a Taylor expansion, see Equation (53), is 
presented in Figure 5. 

4.5. NFW Profile 

The astrophysical parameters for an NFW profile of density are presented in 
Table 9 and the fit of the trajectory with a Taylor expansion, see Equation (60), 
is presented in Figure 6. 

 

Table 6. Theoretical parameters of the SNRs for the equation of motion in the case of 
conservation of energy with an exponential profile of density, see Section 3.6. 

Name ( )0 yrt  ( )0 pcr  b ( )1
0 km sv −⋅

 ( )%rδ  ( )%vδ  ( )1
10 km sv −∆ ⋅

 

Tycho 15.83 0.48 1 30,000 0.22 8.12 −27.62 

Cas A 11.91 0.365 1 30,000 0.29 15.27 −43.88 

Cygnus loop 5.15 0.15 0.7 30,000 0.085 425 0 

SN 1006 18.35 0.56 0.7 30,000 0.46 178 −0.02 

 
Table 7. Theoretical parameters of the SNRs for the equation of motion in the case of 
conservation of energy with a Gaussian profile of density, see Section 3.7. 

Name ( )0 yrt  ( )0 pcr  b ( )1
0 km sv −⋅

 ( )%rδ  ( )%vδ  ( )1
10 km sv −∆ ⋅

 

Tycho 12.89 0.395 1 30,000 0.013 21.62 −0.005 

Cas A 10.95 0.335 1 30,000 0.034 7.79 −3.2 

Cygnus loop 3.2 0.0979 0.7 30,000 0.0385 445 0 

SN 1006 11.73 0.359 0.7 30,000 0.087 206.2 0 

 
Table 8. Theoretical parameters of the SNRs for the equation of motion in the case of 
conservation of energy with an autogravitating profile of density, see Section 3.8. 

Name ( )0 yrt  ( )0 pcr  b ( )1
0 km sv −⋅

 ( )%rδ  ( )%vδ  ( )1
10 km sv −∆ ⋅

 

Tycho 24.57 0.752 1.5 30,000 0.019 25.1 −38.3 

Cas A 15.4 0.474 1 30,000 0.03 23.3 −45.9 

Cygnus loop 10.6 0.326 1 30,000 0.046 403 −0.03 

SN 1006 26.8 0.82 0.7 30,000 0.002 174 −0.149 
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Table 9. Theoretical parameters of the SNRs for the equation of motion in the case of 
conservation of energy with an NFW profile of density, see Section 3.9. 

Name ( )0 yrt  ( )0 pcr  b ( )1
0 km sv −⋅

 ( )%rδ  ( )%vδ  ( )1
10 km sv −∆ ⋅

 

Tycho 13.3 0.408 1.5 30,000 0.07 3 −34.8 

Cas A 8 0.245 1 30,000 0.073 0.26 −42.3 

Cygnus loop 3.43 0.1052 1 30,000 0.09 338 −0.1 

SN 1006 27.5 0.845 0.7 30,000 0.074 136 −14.1 

 

 
Figure 3. Numerical solution (full red line) and Taylor approximation (blue dashed line) 
for the exponential profile. Parameters as in Table 6 for Tycho. 

 

 
Figure 4. Numerical solution (full red line) and Taylor approximation (blue dashed line) 
for the Gaussian profile. Parameters as in Table 7 for Tycho. 
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Figure 5. Numerical solution (full red line) and Taylor approximation (blue dashed line) 
for the autogravitating profile. Parameters as in Table 8 for Tycho. 

 

 
Figure 6. Numerical solution (full red line) and Taylor approximation (blue dashed line) 
for an NFW profile. Parameters as in Table 9 for Tycho. 

5. Conclusion 

The thin layer approximation in the framework of the conservation of energy is 
an alternative to the use of the conservation of momentum in order to find the 
equation of motion for a supernova remnant (SNR). In the case where the inters-
tellar medium (ISM) has a constant density, it is possible to find the trajectory in 
an analytical form, see Equation (11). The case of energy conservation in a medium 
with variable density was also explored but an analytical trajectory was found only 
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Table 10. Synoptical parameters of the best model for SNRs with different density profiles. 

Name model ( )0 yrt  ( )0 pcr  ( )1
0 km sv −⋅

 ( )%rδ  ( )%vδ  

Tycho inverse square 10.44 0.32 30,000 0.016 0.98 

Cas A NFW, b = 1 pc 8 0.245 30,000 0.073 0.26 

Cygnus loop power law 9.96 0.3 30,000 0.0443 23.29 

SN 1006 power law 55.15 1.689 30,000 0.07 31.53 
 

in the case of a medium characterized by an inverse square decrease of density, 
see Equation (26). The other profiles of density require a numerical integration in 
order to find the trajectory. A Taylor series can provide the trajectory for a short 
interval of time: see Figure 2 for a power law, Figure 3 for an exponential law, 
Figure 4 for a Gaussian law, Figure 5 for an autogravitating medium and Figure 6 
for a Navarro-Frenk-White (NFW) density profile. As an astrophysical target we 
have chosen to reproduce 4 standard SNRs. The match between the observed and 
simulated radius as well as that between the observed velocity and the simulated 
velocity has been analysed in terms of the percentage error, see Tables 2-9. Table 
10 presents in column 2 the best model for the SNRs here analysed. The solution 
for the velocity to first order allows the insertion of the back reaction, i.e. the ra-
diative losses, in the equation for the energy conservation, see Equation (18), and 
as a consequence the velocity corrected to second order, see Equation (19). The 
radiative losses allow evaluating the length at which the advancing velocity of the 
SNR is zero. 
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