
Intelligent Information Management, 2024, 16, 21-34 
https://www.scirp.org/journal/iim 

ISSN Online: 2160-5920 
ISSN Print: 2160-5912 

 

DOI: 10.4236/iim.2024.161003  Jan. 15, 2024 21 Intelligent Information Management 
 

 
 
 

Discrete Choice Analysis of Temporal Factors 
on Social Network Growth 

Kwok-Wai Cheung, Yuk Tai Siu 

School of Communication, The Hang Seng University of Hong Kong, Hong Kong, China 

 
 
 

Abstract 
Social networks like Facebook, X (Twitter), and LinkedIn provide an interac-
tion and communication environment for users to generate and share con-
tent, allowing for the observation of social behaviours in the digital world. 
These networks can be viewed as a collection of nodes and edges, where users 
and their interactions are represented as nodes and the connections between 
them as edges. Understanding the factors that contribute to the formation of 
these edges is important for studying network structure and processes. This 
knowledge can be applied to various areas such as identifying communities, 
recommending friends, and targeting online advertisements. Several factors, 
including node popularity and friends-of-friends relationships, influence edge 
formation and network growth. This research focuses on the temporal activi-
ty of nodes and its impact on edge formation. Specifically, the study examines 
how the minimum age of friends-of-friends edges and the average age of all 
edges connected to potential target nodes influence the formation of network 
edges. Discrete choice analysis is used to analyse the combined effect of these 
temporal factors and other well-known attributes like node degree (i.e., the 
number of connections a node has) and network distance between nodes. The 
findings reveal that temporal properties have a similar impact as network 
proximity in predicting the creation of links. By incorporating temporal fea-
tures into the models, the accuracy of link prediction can be further im-
proved. 
 

Keywords 
Discrete Choice Models, Temporal Factors, Social Network, Link Prediction, 
Network Growth 

 

1. Introduction 

Nowadays, there is a wealth of user-generated content that can be easily shared 
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and spread via social networks like Facebook, X (Twitter), and LinkedIn. These 
platforms continuously create digital traces of social behaviours, providing re-
searchers in social science and communication science with rich data for analy-
sis. By employing computational methods [1], researchers can effectively study 
social networks to extract valuable information, including user interests, opi-
nions, interactions, and online events. 

The analysis of social network data has various practical applications. For in-
stance, it can be used for node classification involving the assignment of labels or 
categories to nodes of a graph structure representing a social network [2]; for 
community detection that helps identify groups of nodes [3]; and for link pre-
diction that anticipates the likelihood or presence of connections between nodes 
[4]. Recommendation systems also utilise social network data to suggest items or 
content to users based on their preferences, interests, or past behaviours [5], and 
online advertising systems leverage the data to effectively promote products, ser-
vices, or brands across diverse online platforms [6]. In social healthcare analysis, 
the focus is on capturing the interaction between users within healthcare com-
munities [7], whereas social influence analysis aims to understand how individ-
uals or groups affect the thoughts, opinions, behaviours, or actions of others 
within a social network [8]. Furthermore, academic network analysis looks into 
the relationships, collaborations, and interactions within the academic and scien-
tific community [9]. 

The aim of our study is to examine the impact of temporal factors on the 
growth of social networks using discrete choice analysis [10]. Network growth is 
a dynamic process that changes over time, and discrete choice framework enables 
us to analyse this process by viewing the formation of edges as nodes’ decisions 
to connect with other nodes. Through considering temporal factors alongside 
other common variables, such as node degree and network proximity between 
nodes, we can gain a comprehensive understanding of how networks form and 
the underlying processes involved. Investigating the relevant factors contributing 
to edge formation in networks is, therefore, of great theoretical and practical 
importance that helps us understand the formation and structure of networks, as 
well as the processes that occur within them. This knowledge is valuable for iden-
tifying network hubs, such as opinion leaders, and for simulating and evaluating 
systems of different sizes.  

Our study focuses on two main aspects as follows: 1) identifying temporal ac-
tivities that influence the formation of network edges, and 2) comparing the ef-
fects of temporal activities with well-known factors that contribute to network 
growth.  
● To investigate the first aspect, we analyze a publicly available network da-

taset that includes timestamps. Specifically, we examine the minimum age of 
friends-of-friends edges and the average age of all edges of potential target 
nodes. These measures provide insights into the recency of activity associated 
with the potential target node. We use conditional logit models to estimate 
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the probability of edge formation. 
● To delve into the second aspect, which relates to the complex process of net-

work growth influenced by mechanisms like preferential attachment and tri-
adic closure, we employ mixed logit models that enable us to study and com-
pare the effects and contributions of temporal factors with other factors. By 
doing so, we can gain a better understanding of how temporal factors con-
tribute to the edge formation process driving the growth of online social 
networks. 

2. Background 

Online social networks are complex networks (networks of complex topology), 
consisting of vertices representing the users of the system and edges depicting 
the social interaction between them. With the availability of topological data on 
large online networks due to the computerization of data acquisition, the study 
of the dynamic and topology of these networks become possible. Different 
growth mechanisms are observed in online social networks. Some common ones 
are: 

Preferential Attachment: New links are attached preferentially to the users 
with high connectivity or degree. There is a positive correlation between the 
number of links users have and the probability of having new links attached to 
them [11] [12] [13] [14] [15]. Such a correlation is found responsible for the 
scale-free power-law distribution (scale invariant distribution) of many large net-
works in nature with their degree distribution following a power law, ( ) ~P k k γ− , 
where k is the degree of a vertex [11]. Networks will continuously grow by add-
ing new vertices attached preferentially to vertices with higher connectivity. Ex-
amples following the power law degree distribution include collaboration graph 
of movie actors (actor collaboration graph), the Web, Power grid, and citation 
network. 

Reciprocation: Online social networks are usually directed networks in which 
users choose to follow other users. The creation of a link between two users will 
very probably invoke the establishment of a reverse or reciprocal link within a 
short time [16]. 

Network Proximity: Users are more likely to link to the nearby users. The 
distance between users is measured with shortest path hop distance. This is a lo-
cal mechanism of preferential attachment. New links are more likely created 
between users with friend-of-friend relationship, i.e. with two hops distance be-
fore new link is created [16]. 

These growth mechanisms are independently applied in the study of social 
networks. The growth of social network involves the formation of new nodes 
and edges. To study edge formation, assume a social network as a time-evolving 
simple directed graphs ( ),t t tG V E= , t∈ , with time-dependent feature vector 

jx  for node tj V∈ , and an edge ( ), ti j E∈  is formed by connecting node i to 
node j. The key question is to find out the probability of node i connecting to 
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node j. 
For preferential attachment [11], the probability of a new node connecting to 

tV  distinct existing nodes j is proportional to the power of the nodes’ degree, 
which can be expressed as 

( ),
t

j
t

nn V

d
P j V

d

α

α
∈

=
∑

                           (1) 

where jd  is the degree of nodes j. 
For uniform attachment [17], an edge is formed by randomly sampling a 

neighbour node from all nodes. The probability is simplified to:  

( ) 1, t
t

P j V
V

=                              (2) 

For triadic closure [18], a variant of uniform attachment, an edge is formed by 
randomly sampling a neighbour node from the set of their friends-of-fiends, 

( ), tFoF i j , instead of all nodes. The probability becomes:  

( )
( )
1,

,t

t

P j V
FoF i j

=                          (3) 

However, all these mechanisms alone are not able to satisfactorily explain the 
edge formation and network growth as the process is influenced by multiple 
mechanisms and a number of node attributes including: 1) nodes’ degree, 2) re-
ciprocity, 3) friends-of-friends, and 4) network proximity. 

Different models or frameworks such as discrete choice analysis framework 
[10] [19] and generalized triadic closure [20] were proposed to study network 
properties with power law degree distribution, community clustering, proximity, 
etc. In [20], a generalized configuration model with random triadic closure 
(GCTC) is presented. The model has five fundamental properties: large cluster-
ing coefficient, power law degree distribution, short path length, non-zero Pear-
son degree correlation, and existence of community structures. As the social 
links are not all equal, [21] estimates the different importance of social relation-
ships to enhance feature-extraction link prediction algorithms. Most machine 
learning approaches only support static graphs, which train on snapshots of the 
system at a specific time [22] [23] [24]. By extracting a local subgraph around 
each target link, Zhang & Chen [25] [26] introduced a graph neural network 
(GNN) that extracts a local subgraph around each target link. This GNN can 
learn a function that maps subgraph patterns to link existence, effectively learn-
ing a “heuristic” suitable for the network. Furthermore, there is a growing inter-
est in considering the temporal dynamics of networks [27]. To handle conti-
nuous time-dynamics graphs, Temporal Graph Attention (TGA) [28] [29] is 
employed. 

Understanding the formation of network edges is an essential component in 
comprehending how networks organise themselves and the processes that take 
place within them. Given the prominence of online social network, it is useful to 
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gain the understanding of both their global and local characteristics, and to con-
struct structural and growth models for network analysis. Applications of such 
understanding include searching for network hubs to identify opinion leaders as 
well as simulating and evaluating system of various sizes. 

In this paper, the effect of temporal activity on network edge formation is in-
vestigated. In addition to the global and local mechanisms such as the well-known 
preferential attachment and triadic closure, temporal proximity is also consi-
dered as being a significant factor in link formation process. The temporal as-
pects driving the growth of online social network are further studied using dis-
crete choice analysis to examine their effect and contribution in the process of 
edge formation. 

3. Discrete Choice Analysis 

Using discrete choice analysis, various network edge formation mechanisms can 
be investigated in a unified manner [19]. In discrete choice framework,  

( ){ }, | 1, ,k kj C k N= =   denotes a dataset of N different choices. Each choice 
( ),j C  consists of a set of mutually exclusive alternatives, called the choice set C, 
and a chosen alternative j C∈ . Each alternative j is associated with a feature 
vector jx  representing its attributes. 

In random utility-based discrete choice models [10], the decision maker i ob-
tains utility ijU  from choosing alternative j. Under the assumption of utili-
ty-maximizing behaviour of utility theory, the decision maker will choose the al-
ternative that gives the highest utility. With conditional logit, the utility obtained 
by decision maker i for alternative j depends on the attributes of the alternative, 
and is given by 

T
ij j ijU xθ ε= +                            (4) 

where θ  is a fixed parameter vector for decision maker and ijε  is iid (inde-
pendent and identically distributed) extreme value. The probability of individual 
i choosing alternative j is given as: 

( )
( )

( )
T

T

exp
,

exp
j

i
nn C

x
P j C

x

θ

θ
∈

=
∑

                     (5) 

Under discrete choice framework, the choice dataset   of a growing net-
work tG  consists of a chosen node tj , a node set tC , and a degree set  

{ }, |j t td j C∈  at each time-step t. By defining feature vector as logj jx d= , the 
edge formation probability can be expressed as 

 ( )
( )

( )
exp log

,
exp log

t

j
t

nn V

d
P j C

d

α

α
∈

=
∑

                  (6) 

which is equivalent to that of preferential attachment. The power of degree at the 
time of the choice becomes the only choice model parameter θ α= . The log- 
likelihood for the parameter α for the choice dataset   is 
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For uniform attachment, an edge is formed by randomly sampling a neigh-
bour node from all nodes, the likelihood is simplified to  

( ) ( )
( )( ) ( ), ,

exp 1
log log .

exp 1j C j C
n C

l C
∈ ∈

∈

= = −∑ ∑∑ 
            (8) 

For triadic closure, the neighbour node j is sampled uniformly at random 
from friends-of-friends of the chooser node i. Similar to uniform attachment 
except that the choice set is restricted, the likelihood is 

( ) ( ), log
ij ijj Cl C
∈

= −∑ 
                       (9) 

where ijC  is the friends-of-friends of i and j. 
One advantage of using discrete choice analysis is that different mechanisms 

can be easily unified using mixed logit in handling choosers with different pre-
ferences. For discrete mixtures of logits, the edge formation probability is 

( )
( )

( )
T

1 T

exp
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exp
m j

i mm
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P j C

x
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π
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=
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∑                (10) 

where 1, , mπ π  are class probabilities (weights of different modes) and  

1 1mm
M π
=

=∑ . Expectation maximization (EM) is used to optimize the likelihood 
of mixed models to estimate the parameters mθ  and class probabilities mπ . 

The effect of temporal activities of target nodes on edge formation can be in-
vestigated together with other factors under this discrete choice framework. The 
temporal activities include the minimum age of the friends-of-friends edges of 
the potential target node, and the mean of the ages of all edges of potential target 
node. These measures indicate how recent the activity the potential target node 
is. Thus, the node attributes to be studied include nodes’ degree, reciprocity, 
friends-of-friends, network proximity, and temporal activities of nodes. 

4. Experimental Results and Findings  

Our study utilized a dataset from the Flickr social network, spanning from No-
vember 2006 to May 2007 [16] [30]. This dataset consists of 3.2 million nodes 
and 33.1 million edges, providing valuable insights into real-world network for-
mation. In Flickr, users have the option to follow other users, with these “fol-
lowing” connections being publicly visible, while “followed by” connections are 
not. The data was collected using a breadth-first search crawl, focusing on the 
connected components reachable from the initial seed. Since a full crawl was 
conducted daily, the data enables the identification of the timing of new connec-
tions on a daily basis. 

The analysis of the dataset reveals several common growth mechanisms in 
network formation. Reciprocation is observed, indicating that when two users 
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establish an initial link, there is a high likelihood of quickly establishing a reci-
procal link. Preferential attachment is identified as a global mechanism, where 
users with a higher number of existing links have a greater probability of receiv-
ing new links. Proximity, on the other hand, is a local mechanism, where the 
shortest-path hop distance between two users significantly influences the like-
lihood of a link being created between them. Notably, it is observed that a ma-
jority of new links are formed between users who are two hops away from each 
other, indicating a friend-of-friend relationship. 

To study the process of network formation, a set of conditional logit models 
was employed using a sample of 22,000 edge formation events that occurred 
around the same date. Out of these 22,000 events, 20,000 were used to fit the 
model, while the remaining 2000 were reserved for testing the model’s perfor-
mance. For link prediction study, a number of non-chosen/negative target nodes 
are sampled from network growth dataset due to the computational challenges 
associated with calculating the gradients of log-likelihood for choice sets with a 
large number of nodes. Negative sampling technique was applied to expedite the 
computation process. For each edge formation event, 24 non-chosen alternatives 
were negatively sampled, resulting in a smaller choice set for each choice analysis. 

Four experiments were conducted using the Flickr dataset, and the results are 
as presented in Tables 1-4. It is important to note that since the data samples are  
 

Table 1. Comparison of temporal proximity of FoF target with other common features. Conditional logit model fits for Flickr 
data. Standard errors of the estimates are given in parentheses. (Note: *p < 0.01, **p < 0.05) 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Log in-degree 1.113* (0.006) 1.132* (0.007)  0.696* (0.009) 0.522* (0.009) 0.674* (0.009) 

Has degree −1.111* (0.133) −0.645* (0.187)  −0.687* (0.181) −1.687* (0.229) −0.673* (0.180) 

Reciprocal  8.614* (0.244) 8.488* (0.241) 8.489* (0.266) 8.485* (0.281) 8.438* (0.293) 

FoF   6.089* (0.044) 3.959** (0.049)   

2 hops     6.240* (0.184)  

3 hops     2.811* (0.180)  

4 hops     0.527* (0.184)  

5 hops     −0.458* (0.209)  

≥6 hops     −1.280* (0.275)  

Same day      6.772* (0.117) 

1 day      6.259* (0.139) 

2 days      5.742* (0.156) 

3 days      5.041* (0.146) 

4 days      4.614* (0.159) 

5 days      4.359* (0.153) 

≥6 days      3.279* (0.053) 

Log-likelihood −21,661 −16,770 −14,767 −10,940 −9999 −9734 

Test accuracy 0.683 0.7486 0.754 0.8485 0.851 0.8735 
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Table 2. Comparison of temporal proximity with connected target feature with other 
common features. Conditional logit model fits for Flickr data. Standard errors of the es-
timates are given in parentheses. (Note: *p < 0.01, **p < 0.05). 

 Model 4 Model 5 Model 7 Model 8 

Log in-degree 0.694* (0.009) 0.511* (0.009) 0.577* (0.009) 0.295* (0.011) 

Has degree −0.847* (0.173) −2.000* (0.225) 0.447** (0.178) −1.866* (0.220) 

Reciprocal 8.725* (0.285) 8.467* (0.292) 8.405* (0.287) 8.418* (0.327) 

FoF 4.107* (0.051)  4.082* (0.054)  

2 hops  6.556* (0.195)  9.424* (0.240) 

3 hops  2.979* (0.191)  5.984* (0.237) 

4 hops  0.869* (0.194)  3.882* (0.240) 

5 hops  −0.172 (0.216)  2.800* (0.261) 

≥6 hops  −1.123* (0.279)  1.783* (0.321) 

Last hop time diff   −0.076* (0.002) −0.116* (0.003) 

Log-likelihood −10,802 −9886 −10,078 −8867 

Test accuracy 0.8475 0.851 0.865 0.8735 

 
Table 3. Comparison of temporal activities level of target feature with other common 
features. Conditional logit model fits for Flickr data. Standard errors of the estimates are 
given in parentheses. (Note: *p < 0.01) 

 Model 4 Model 5 Model 9 Model 10 

Log in-degree 0.686* (0.009) 0.510* (0.009) 0.724* (0.009) 0.550* (0.010) 

Has degree −0.561* (0.193) −1.650* (0.238) 9.612* (0.367) 7.766* (0.460) 

Reciprocal 8.789* (0.301) 8.588* (0.311) 12.250* (0.555) 12.106* (0.579) 

FoF 3.973* (0.049)  3.794* (0.052)  

2 hops  6.420* (0.196)  6.550* (0.257) 

3 hops  2.966* (0.192)  3.246* (0.253) 

4 hops  0.801* (0.195)  1.085* (0.255) 

5 hops  −0.295 (0.221)  −0.067 (0.276) 

≥6 hops  −1.030* (0.278)  −0.878* (0.328) 

Link recency   −0.171* (0.004) −0.173* (0.004) 

Log-likelihood −10,847 −9926 −9525 −8676 

Test accuracy 0.8405 0.843 0.867 0.8755 

 
Table 4. Temporal features. Conditional logit model fits for Flickr data. Standard errors of the estimates are given in parentheses. 
(Note: *p < 0.01, **p < 0.05) 

 Model 5 Model 7 Model 8 Model 9 Model 10 Model 11 

Log in-degree 0.541* (0.010) 0.712* (0.009) 0.509* (0.010) 0.771* (0.010) 0.590* (0.010) 0.555* (0.011) 

Has degree −1.367* (0.275) −0.146 (0.233) −1.346* (0.272) 7.694* (0.349) 5.754* (0.432) 5.662* (0.436) 

Reciprocal 7.831* (0.263) 8.074* (0.261) 7.783* (0.267) 9.329* (0.398) 8.918* (0.411) 9.059* (0.422) 
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Continued 

FoF  5.063* (0.066)  3.767* (0.053)   

2 hops 6.517* (0.214)  7.730* (0.218)  6.526* (0.259) 7.366* (0.262) 

3 hops 3.103* (0.210)  3.184* (0.209)  3.219* (0.255) 3.307* (0.255) 

4 hops 0.953* (0.213)  1.000* (0.212)  1.100* (0.257) 1.161* (0.257) 

5 hops −0.162 (0.235)  −0.147 (0.233)  −0.072 (0.277) −0.023 (0.276) 

≥6 hops −0.781* (0.276)  −0.794* (0.274)  −0.812** (0.320) −0.766** (0.318) 

Last hop time diff  −0.069* (0.002) −0.066* (0.002)   −0.046* (0.002) 

Link recency    −0.164* (0.003) −0.163* (0.003) −0.138* (0.004) 

Log-likelihood −9,886 −10,035 −9114 −9327 −8531 −8275 

Test accuracy 0.848 0.8635 0.868 0.869 0.8795 0.8845 

 
taken independently in each experiment, the estimated parameter values for the 
same model number would differ across these experiments. It also shows that 
negative sampling could provide a practical trade-off between computation load-
ing and estimation performance. 

4.1. Experiment 1—Temporal Proximity of FoF’s Connection to  
Target 

The edge formation process is modelled as a node’s decision to connect to a tar-
get node among a set of alternatives. Several conditional logit models with dif-
ferent parameters are estimated using the mlogit package [31]. Table 1 presents 
the estimates of these conditional logit models for the Flickr data. Models 1 to 5 
incorporate well-known mechanisms such as preferential attachment, reciproci-
ty, and network proximity, as described in [19]. Model 6, on the other hand, 
considers the temporal proximity of a friend-of-friend’s (FoF) connection to the 
target node instead of network proximity. 

The “Log in-degree” feature represents the number of followers and incorpo-
rates the preferential attachment mechanism for nodes with a non-zero in-degree. 
The “Has degree” feature is used to distinguish nodes with positive and zero de-
grees. The “Reciprocal” feature indicates if there is already a link from the target 
node to the choosing node. This feature consistently shows a significant contri-
bution to link creation, possibly due to the notification system of Flickr that en-
courages reciprocal links [16]. The “FoF” feature captures the effect of the target 
node being a friend-of-friend of the choosing node. A friend-of-friend is a user 
followed by another user who is already followed by the choosing user. There is 
a strong correlation indicating that the choosing user is likely to follow that 
friend-of-friend user. Including both the “Log in-degree” and “FoF” features in 
Model 4 leads to a significant decrease in their parameter estimates compared to 
Model 2 and Model 3, suggesting that these global and local features are not in-
dependent and highly correlated. Model 5 measures network proximity by count-
ing the number of hops between the choosing user node and the target node. 
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Table 1 demonstrates that the “FoF” feature has a notable impact on the 
choice of link creation. In Model 6, instead of network proximity, the temporal 
proximity of the FoF’s links to the target node is examined. The time difference 
between the creation of the link from the FoF node to the target node and the 
current time is included as a feature in the model. For a FoF target node, where 
the shortest path length between the choosing node and the target node is 2 
hops, temporal proximity is defined as the minimum difference (in terms of the 
number of days) between the current date and the creation date of the FoF edge. 
Larger estimated values for closer temporal proximity imply that a choosing user 
is more likely to follow another user who has recently been followed by their 
friend. This temporal factor has a similar impact to network proximity. Model 5 
and Model 6 perform the best, yielding comparable likelihood and test accuracy 
values. Model 6 demonstrates an improved prediction accuracy of 2.25% with 
the inclusion of this temporal factor compared to Model 5. Similar results are 
also observed for edge formation data on another day, indicating that temporal 
proximity is an important factor in link formation, comparable to or even better 
than network proximity. 

4.2. Experiment 2—Temporal Proximity with Target that Already  
Has Connection Paths 

In Model 6 of Table 1, only the temporal proximity of friend-of-friend (FoF) 
links is considered. The FoF set can be seen as a small local group or community 
where there is strong mutual influence and a higher likelihood of link creation 
among its users. In this experiment, the community can be extended to include 
users who are already connected to the choosing user when estimating the proba-
bility of link creation with a target node. The temporal information of the paths 
is taken into account. 

In addition to the FoF target, the temporal factor for target nodes that have at 
least one path (not just a 2-hops path) from the choosing node is also investi-
gated. For each of these target nodes, the creation times of the last hops in the 
paths from the choosing node to the target node are identified. The temporal ac-
tivities factor, referred to as “Last hop time diff,” measures the time difference 
between the creation time of the most recently created last hop to the target and 
the current time of choice. This factor indicates how recent there have been ac-
tivities with the target node within this group. A smaller value implies that the 
target node has had activities more recently, making it more likely for the 
choosing node to connect to it. 

The effect of including the “Last hop time diff” feature is shown in Table 2. 
Model 8 demonstrates an improved prediction accuracy of 2.25% with the inclu-
sion of this temporal factor compared to Model 5. 

4.3. Experiment 3—Temporal Activities Level of the Target Node 

The “Log in-degree” parameter, which represents preferential attachment, is a 
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global mechanism for measuring the activity level and popularity of a node. It is 
a cumulative measure that takes into account the node’s past activity up to the 
present time. However, in online social networks, the popularity of a node in the 
past does not necessarily imply the same popularity at the current time. Instead, 
there is a higher tendency for a user to follow a target node with more recent 
incoming links, such as a current opinion leader. 

In this experiment, to measure the overall temporal activity level of a target 
node, all of its incoming connections are considered, rather than just the paths 
from the choosing node. The target node’s “link recency” is calculated as the av-
erage of the time differences between the current time and the creation time of 
all its incoming connections. This metric captures the overall temporal activity 
level of the target node. 

The effect of including the “link recency” feature is shown in Table 3. When 
comparing Model 5 and Model 9, it is evident that the temporal factor can pro-
vide prediction performance comparable to the network proximity factor. Fur-
thermore, combining the temporal and network proximity factors can further 
enhance the prediction accuracy. Model 10 demonstrates an improved predic-
tion accuracy of 3.25% with the inclusion of this temporal factor compared to 
Model 5. This target node feature serves as a valuable complement to the num-
ber of incoming links feature in link prediction. 

4.4. Experiment 4—Combining the Effects of Temporal Proximity  
with and Temporal Activities Level of the Target Node 

Table 4 presents the results of combining the temporal proximity factor from 
experiment 2 and the temporal activities level of the target node from experi-
ment 3. The inclusion of the temporal activities level of target node (Models 9 
and 10) improves the prediction ability more significantly compared to the 
temporal proximity factor (Models 7 and 8). When compared to Model 5, there 
is an improvement of 3.15% and 2.1%, respectively. This suggests that the recent 
activities level is a more crucial factor in influencing the creation of links to the 
target node. However, when both temporal factors are used together in Model 
11, the prediction improvement is only slightly further raised to 3.65%. This is 
understandable as these two features are related to the incoming links of target 
nodes and are somewhat correlated. Hence, the improvement is not additive. 

5. Discussion and Conclusions  

The study of network structures has both theoretical and practical importance. 
In the past, various mechanisms such as preferential attachment and triadic clo-
sure have been proposed and studied separately, as they have a significant im-
pact on the growth of social networks. However, it is valuable to examine these 
mechanisms in a unified manner, as they may be interrelated. 

By employing a discrete choice framework, this study aims to analyse the 
growth of social networks and unify different network growth mechanisms. In 
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addition to well-known mechanisms like reciprocation, preferential attachment, 
and proximity, the study also investigates the influence of temporal factors on 
network growth. To conduct these experiments, a public Flickr dataset is used to 
analyse the prediction of network growth using temporal information. 

In experiment 1, the study found that considering the recency of a friend’s 
link to the FoF target in triadic closure is compatible with network proximity in 
predicting network growth. This suggests that temporal information, specifically 
the temporal proximity factor, is an important factor in understanding network 
growth. 

In experiment 2, a more general setting is investigated where the choosing us-
er already has path(s) to the target node. This temporal feature is not limited to 
FoF links but can be applied to other scenarios as well. The results show that 
considering the recency of the path(s) estimated by the last hop creation time 
can provide a similar improvement compared to considering the recency of the 
friend’s link to the FoF target. This finding is consistent with the expectation 
that FoF or triadic closure is a more important local mechanism in link creation, 
as the target nodes that already have connection paths are a superset of FoF 
nodes. 

The inclusion of temporal features provides a different perspective on net-
work growth. It is natural to expect that the shortest path network distance be-
tween a choosing user and nodes that already have connection paths will shorten 
over time as the number of links increases within a local group or community.  

In addition to the in-degree measure, the average recency of a node’s incom-
ing connections serves as an indicator of a target’s temporal activity level. Expe-
riment 3 demonstrates that incorporating this link recency factor can enhance 
the predictive performance of a model using preferential attachment. Further-
more, experiment 4 shows that combining both the temporal proximity between 
nodes and the temporal activity level of the target can further improve the mod-
el’s performance. 

Since networks are composed of interconnected discrete entities and network 
growth involves the creation of links among nodes with different attributes, em-
ploying discrete choice analysis provides a unified modeling approach to ex-
amine and combine the effects of various mechanisms in network formation. 
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