
Intelligent Information Management, 2023, 15, 373-389 
https://www.scirp.org/journal/iim 

ISSN Online: 2160-5920 
ISSN Print: 2160-5912 

 

DOI: 10.4236/iim.2023.155018  Sep. 26, 2023 373 Intelligent Information Management 
 

 
 
 

Comparison of Defuzzification Operators on 
Geographic Data of Ratio Scale 

Thomas Hatzichristos1, Dimitrios Ntzanis2 

1Department of Geography and Regional Planning, School of Surveying & Geoinformatics Engineering, National Technical  
University of Athens, Athens, Greece 
2Department of Construction and Urban Planning, Municipality of Agrinio, Agrinio, Greece 

 
 
 

Abstract 
Fuzzy logic is a contemporary theory that has found numerous applications 
in Geographic Information Systems (GIS). Fuzzy logic allows for the repre-
sentation of uncertainty and imprecision in spatial data, making it a valuable 
tool for dealing with the inherent ambiguity present in many geographic da-
tasets. To solve a problem using a knowledge-based fuzzy system, the descrip-
tion and processing of the influencing factors or variables in fuzzy terms is 
required. The key components of a knowledge-based fuzzy system within the 
context of GIS are: Fuzzification, definition of the knowledge base, processing 
of the rules and finally defuzzification. Defuzzification is an important aspect 
of fuzzy logic and fuzzy set theory, as it helps convert fuzzy linguistic terms or 
fuzzy sets into crisp values that can be used in decision-making or analysis. 
Moreover, this might seem contradictory to the primary objective of fuzzy set 
theory, which is to model and work with uncertainty and imprecision. The 
aim of this paper is, first, to review defuzzification operators that are suitable 
for handling geographic data of ratio scale and second to compare these de-
fuzzification operators by applying them to actual geographic data sets. For 
this reason, a case study based on pollution data of the municipality of 
Athens, Greece, was carried out to estimate pollution produced by SO2. The 
results of the application of defuzzification operators for the above geograph-
ic data set are compared and final conclusions are presented.  
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1. Introduction 

Fuzzy logic is a generalization of the classic Boolean logic, which has been ex-
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tended to be able to handle truth values from “strictly true” to “strictly false”. It 
originates from the fuzzy set theory that was proposed by Lofti Zadeh [1] in the 
60’s and permits the notion of nuance. According to him: “Fuzzy logic is the 
methodology for calculations with linguistic terms.” In fuzzy logic, propositions 
are not limited to just being “true” or “false” as in Boolean logic. Instead, fuzzy 
logic allows for a continuum of truth values between 0 and 1, where 0 represents 
“completely false” and 1 represents “completely true”. In between, you can have 
values that indicate varying degrees of truth, such as “almost true”, “partially 
true”, “more true than false”, and so on [2]. Another fundamental idea of this 
theory is that the fuzzification procedure allows the generalization of a distinct 
theory to a continuous one. Fuzzy sets differ from Boolean sets (also known as 
crisp sets) in that they do not have sharply defined boundaries. Fuzzy sets allow 
for more nuanced and flexible modeling of uncertainty and imprecision, making 
them valuable in various real-world applications. 

Fuzzy degrees are not the same as probability percentages. Probabilities 
measure whether something will occur or not. Fuzziness measures the degree to 
which something occurs, or some condition exists. Crisp sets are a subset of 
fuzzy sets [3]. Only when an object belongs 100% to a group, are fuzzy sets iden-
tical to crisp sets, however. 

The analytical functions in the most contemporary Geographic Information 
software packages are based on binary logic which is by nature exact and abso-
lute and therefore does not handle properly the imprecision of geographical da-
ta. The ineffectiveness of traditional logic in matters of planning has become 
clear in the last decade [4] [5] [6]. Fuzzy logic is a contemporary theory that is 
applied in the field of GIS [7] [8] [9]. There are several applications that relate to 
all the phases of a GIS project, namely the input, the management, the analysis, 
and the spatial data representation while compromising the information fuzzi-
ness, human knowledge, perception, and thinking. This characteristic renders 
the fuzzy logic more appropriate for the problems confrontation of the real 
world since the bigger part of human thinking is inaccurate. To mention a few of 
the most important papers, Robinson and Strahler [10] utilized some of the op-
erations on fuzzy sets in a geographic database, while Wang [11] developed a 
natural query language in a GIS. Kollia and Voliotis [12] employing the relation-
al database INGRES presented a fuzzy GIS for soils.   

A knowledge-based fuzzy system is a framework used to solve problems by 
representing and processing information in fuzzy terms. The key components of 
a knowledge-based fuzzy system within the context of GIS are: Fuzzification, de-
finition of the knowledge base, processing of the rules and finally defuzzification. 
Fuzzy systems are computational models used to handle and process imprecise 
and uncertain information. They are particularly useful when dealing with data 
that may not have clear boundaries or precise values. Fuzzy systems are based on 
the principles of fuzzy logic, which involves reasoning with linguistic variables 
rather than precise numerical values. The core of a fuzzy system typically con-
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sists of rules that describe how inputs, often represented as fuzzy sets, should be 
combined to produce fuzzy outputs. These rules are often expressed in the form 
of IF-THEN statements using linguistic variables. The combination of these 
rules results in a fuzzy set as the system’s output. 

Defuzzification is the process of converting a fuzzy output (a fuzzy set) into a 
single, crisp value. This step is essential when the output of a fuzzy system needs 
to be used for decision-making as many practical applications require numerical 
values. The choice of defuzzification method depends on the problem at hand 
and the desired characteristics of the output. Since it’s the last step and primarily 
serves to bridge the gap between fuzzy and crisp representations, it may be 
viewed as less central to the core concepts of fuzzy sets. This synthesis process 
goes against the main purpose of fuzzy set theory, which is to extend crisp con-
cepts and theories by capturing imprecision and uncertainty. In a way, defuzzi-
fication reduces the richness of the fuzzy set to a simpler, crisp value, which can 
be seen as contrary to the essence of fuzzy logic [2]. Despite these reasons, de-
fuzzification remains an important aspect of applying fuzzy logic in practice.  

The aim of this paper is the comparison of defuzzification operators on geo-
graphical data of ratio scale. More specifically, it examines and analyzes the ap-
plication of certain methods in raster geographical data of ratio scale, concern-
ing the estimation of pollution produced by SO2. The results of the application of 
defuzzification operators are compared and final conclusions are presented. 

In the next chapter of the paper, the basic elements of the fuzzy system are 
presented in detail, while thereafter the basic defuzzification operators used in 
the analysis of environmental geographic data of ratio scale are briefly over-
viewed. In the chapter “Case study”, the comparison of these operators is pre-
sented. In the last chapter there are the conclusions.  

2. Fuzzy Systems 

A knowledge-based fuzzy system is a type of artificial intelligence system that 
uses fuzzy logic to handle uncertainty and imprecision in decision-making. The 
basic elements of a knowledge-based fuzzy system, are: 

1) Fuzzification; 
2) Knowledge base; 
3) Processing; 
4) Defuzzification. 
These elements are briefly described. Several types of membership functions 

can be utilized [13]. The membership function reflects the knowledge of the spe-
cific object or event. Every continuous mathematical function can be approx-
imated by a fuzzy set. For example, the criterion “distance from a river” can be 
approximated from the membership function illustrated in Figure 1. 

The assignment of a membership function to every variable of the problem is 
called “fuzzification”. During this process, crisp subsets are transformed into 
linguistic subsets, such as small or great distance (Figure 1). The concept of the  
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Figure 1. Membership function for the criterion “distance from a river”. 
 
linguistic variable illustrates particularly clearly how fuzzy sets can form the 
bridge between linguistic expression and numerical information. The most 
widely used form of membership function is the triangular. Its maximum is the 
most representative value. Other forms also exist, however, such as the trapezo-
id, the Gaussian etc. The definition of the membership function becomes availa-
ble with a variety of “objective” methods.  

The second step in the Fuzzy systems methodological approach is the know-
ledge base. A knowledge-based fuzzy system contains the rules and domain-specific 
information needed for decision-making. These rules are typically expressed in 
the form of fuzzy IF-THEN rules. Each rule consists of antecedents (IF part) and 
consequents (THEN part), that specify how the system should behave based on 
the fuzzy inputs. These rules are often defined by experts in the field and encode 
their domain knowledge. There is no need to assign weights to the criteria used. 
The weights are implicitly considered through the rules defined. For example, if 
the output set “suitability” is comprised of two subsets called: “poor” and “ap-
propriate”, the rules could be: 

If the distance is small, then suitability is poor. 
If the distance is large, then suitability is appropriate. 

The next step is the processing of the rules. This step is also called inference. It 
consists of the three stages, aggregation, implication, and accumulation. Aggre-
gation provides the degree of fulfillment for the entire rule concerned. All the 
Boolean algebra operations (like intersection, union, negation, etc.) can be easily 
extended to fuzzy set operations and can be used in this stage. In implication, the 
degree of fulfilment of the conclusion is determined. Accumulation brings to-
gether the individual results of the variables used. Details of this process can be 
found in Zadeh [14].  

After processing, the system needs to convert the fuzzy output values, which 
represent linguistic terms, back into a crisp or numerical result that can be used 
for decision-making. Defuzzification is the process of finding a single, real-valued 
output from the fuzzy set of outputs. Various methods, such as the center of 
gravity or maximum membership, can be used for defuzzification [15]. The most 
important of them, which, in our opinion, can be utilized in geographic data of 
ratio scale, are presented briefly in the next chapter. Defuzzification operators 
for geographic data of nominal scale have been discussed by Hatzichristos and 
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Potamias [16]. Also, defuzzification strategies on remote sensing data is dis-
cussed by Hofmann P. [17]. 

3. Defuzzification Operators 

The most important and widespread defuzzification methods suitable for geo-
graphical data of ratio scale of measurement are Maxima methods and more 
specifically, first of maxima (FOM), middle of maxima (MOM) and last of 
maxima (LOM), the center of gravity (COG) method, the indexed center of 
gravity (ICOG) method and finally the mean of maxima (MeOM) method. 
These methods are discussed in detail in Driankov et al. [18], Runkler and 
Glesner [19], in Jager and Filev [20] and in Užga-Rebrovs and Kuļešova [21]. In 
the following paragraphs some examples of these defuzzification operators are 
presented.  

Let us suppose that the results of the fuzzy system that estimates the pollution 
of SO2 are given in Table 1. To apply the above defuzzification methods, mem-
bership functions have to be defined to connect the linguistic output of the fuzzy 
system with crisp values. The membership function used is illustrated in Figure 
2. It concerns values of the pollutant SO2 in the range 0 to 44 μg/m3 and three 
subclasses. 
 

 

Figure 2. Membership function for the pollution caused from SO2. 
 
Table 1. Membership values for the pollution caused by SO2. 

Pixel Number 
Membership Value 

Small Medium Large 

1 0.6 0.8 0.4 

2 0.6 0.4 0.6 

3 0.7 0.7 0.3 

4 0.8 0.6 0.1 
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3.1. Maxima (FOM, MOM, LOM) 

In general, to calculate the defuzzified value D(A), when the Maxima methods 
are employed, the following procedure is applied.  
 The classes that display the greatest membership value are chosen. 
 On the graph, the line parallel to the X axis is plotted, commencing at the 

point (0, the greatest membership value). 
 The sectors of this line are connected with the class that constitutes the 

greatest membership value.  
 The defuzzified value D(A) is the value that arises, when the appropriate 

point is projected onto the X axis (Figure 3). In particular, for each method 
the appropriate point is as follows: 

 For the FOM method, the first point of the sector. 
 For the LOM the last point of the sector and, 
 For the MOM method, the midpoint of the straight line uniting the first and 

the last points of the sector.  

3.2. Center of Gravity (COG) 

To calculate the defuzzified value D(A) regarding the centre of gravity method 
(COG) the following procedure is used: 
 On the graph are plotted the lines parallel to the X axis, each of the lines 

starting at the point (0, membership value degree). 
 Then we locate the sections of each straight line by means of the branch of 

the membership function that corresponds to the subclass that contains the 
membership value defining the straight line in question.  

 Then we plot the polygon, or polygons, whose points are defined by the 
points of intersection of the straight lines by means of the membership func-
tion. 

 

 

Figure 3. Maxima operators (Pixel number 1). 
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 The centre of gravity of the polygon, or polygons, is located and the defuzzi-
fied value D(A) is the value that occurs when the centre of gravity of the po-
lygon is projected on the X axis (Figure 4). 

3.3. Indexed Center of Gravity (ICOG) 

To calculate the defuzzified value D(A) regarding the indexed centre of gravity 
method (ICOG) a method similar to that employed for the centre of gravity me-
thod is used. The sole difference in the present case lies in the fact that we now 
locate the centre of gravity of the polygon, or polygons, which are redefined, so 
that their lower base consists of the straight line defined as beginning from the 
point (0, α). The defuzzified value D(A) is the value that occurs when the centre 
of gravity of the polygon, or polygons, is projected onto the X axis (Figure 5). 
The user of the fuzzy system judges the threshold value α to be selected, with the  
 

 

Figure 4. The COG operator (Pixel number 1). 
 

 

Figure 5. The ICOG operator (Pixel number 4). 
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result that all the membership values beneath this value are rendered equal to 0. 
The threshold value employed in the example is α = 0.2. 

3.4. Mean of Maxima (MeOM) 

The MeOM method displays a certain number of similarities to the COG me-
thod, since in fact it derives from the COG method. In particular, in the MeOM 
method, to calculate the defuzzified value D(A) the COG method is used. Here, 
however, the centre of gravity of the polygon is defined by the straight line that 
is defined by the highest membership value and by the corresponding branch of 
the membership function for the group in which the highest value appears 
(Figure 6).  

4. Case Study 

The aim of the fuzzy system developed in this application is to estimate the de-
gree of pollution caused by Sulphur dioxide emissions. The factors employed in 
estimating the SO2 pollution in this basic fuzzy system were the transportation 
network, sources of energy and industries. Geographic data, relating to the 
Athens area, Greece, was employed [22] (Figure 7).  

To allow analysis by means of fuzzy logic, the three geographical layers were 
converted into raster format, with a pixel size of 5 m. The Euclidean distance for 
every layer was calculated. The layers of the Euclidean distance were overlaid to 
form one layer. The attributes of this layer were exported to the fuzzy logic soft-
ware Data Engine 2.0., to perform an analysis of the data. 

The first step involved in a fuzzy system is fuzzification, the definition of 
membership functions for every criterion. For every Euclidean distance crite-
rion, we set a linguistic variable. Subclasses for every function were defined and 
a trapezoidal form was chosen as the appropriate form for rendering the func-
tion in question. The linguistic terms employed are “small-scale pollution”,  
 

 

Figure 6. The MeOM opearator (Pixel number 3). 
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Figure 7. Case study area and criteria. 
 
“medium-scale pollution” and “large-scale pollution”. The membership func-
tions for the three criteria are illustrated in Table 2 and Figure 8. 

The next step involved the definition of rules linking pollution to the three 
criteria. In total eight rules were created, of which three deal with small-scale 
pollution, two with medium-scale and three with large-scale pollution. These 
eight rules are given below.  

Rules for small-scale pollution 
If distance from transportation network is large and distance from energy 

sources is large and distance from industries is large, then pollution is small-scale 
to a degree of 100% certainty. 

If distance from transportation network is large and distance from energy 
sources is large and distance from industries is small, then pollution is small-scale 
to a degree of 75% certainty. 

If distance from transportation network is large and distance from energy 
sources is small and distance from industries is large, then pollution is small-scale 
to a degree of 75% certainty. 

Rules for medium-scale pollution 
If distance from transportation network is large and distance from energy 

sources is small and distance from industries is small, then pollution is medium-scale 
to a degree of 100% certainty. 

If distance from transportation network is small and distance from energy 
sources is large and distance from industries is large, then pollution is medium-scale 
to a degree of 75% certainty. 

Rules for large-scale pollution 
If distance from transportation network is small and distance from energy 

sources is small and distance from industries is small, then pollution is large-scale 
to a degree of 100% certainty. 
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Figure 8. Graphical representation of membership functions. 
 
Table 2. Membership functions for the estimation of SO2 pollution. 

Criterion 
Linguistic 
Variable 

Membership Function 

Transportation 
Network 

Distance: 
Small (x) 
Large (x) 

Large(x) = 

( )
( )( ) ( )

( )

0, if distance x 30
distance x 30 40, if 30 distance x 70

1, if distance x 70

 <


− ≤ ≤
 >

 

Industries 
Distance: 
Small (x) 
Large (x) 

Large(x) = 

( )
( )( ) ( )

( )

0, if distance x 25
distance x 25 30, if 25 distance x 55

1, if distance x 55

 <


− ≤ ≤
 >

 

Energy 
Sources 

Distance: 
Small (x) 
Large (x) 

Large(x) = 

( )
( )( ) ( )

( )

0, if distance x 20
distance x 20 20, if 20 distance x 40

1, if distance x 40

 <


− ≤ ≤
 >

 

 
If distance from transportation network is small and distance from energy 

sources is small and distance from industries is large, then pollution is large-scale 
to a degree of 75% certainty. 

If distance from transportation network is small and distance from energy 
sources is large and distance from industries is small, then pollution is large-scale 
to a degree of 75% certainty. 

The next step, after the designation of the rules, deals with the procedure by 
which the results are drawn from the existing facts and available knowledge is 
exported. In order to export the conclusion arising from the fuzzy system of the 
application the following operators were employed.  

Aggregation operator: Gamma (0.5) 
Implication operator: Algebraic Product 
Accumulation operator: Algebraic Sum 
Table 3 gives the degree of participation for each of the three classes—small-scale, 

medium-scale and large-scale-regarding the results arising from the fuzzy sys-
tem evaluation of SO2 pollution. 
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Table 3. Results of the fuzzy system for the estimation of the pollution by SO2 (partial). 

Pixel ID 
Pollution 

Small-Scale Medium-Scale Large-Scale 

1 0.6124 0.7906 0.0000 

2 0.5000 0.8660 0.0000 

3 0.3536 0.9354 0.0000 

…. … … … 

3546 1.0000 0.0000 0.0000 

3547 1.0000 0.0000 0.0000 

3548 1.0000 0.0000 0.0000 

 
Figure 9 presents a depiction of the results arising from the fuzzy system 

evaluation of SO2 pollution in the area studied. 
It is necessary to employ a membership function for the conversion of the 

linguistic variables into crisp numbers. Figure 10 shows the membership func-
tion defined to defuzzify the output of the fuzzy system. 

The results arising from the application of the six defuzzification methods re-
ferred to in the previous subsection are given in Table 4. 

In order to present the results in a more comprehensible form and for ease of 
interpretation, the equal interval method with five categories was employed. Ta-
ble 5 and Figure 11 present this new statistical information grouped according 
to the five categories and this information in graph form respectively. 

Figure 12 presents the spatial distribution of the defuzzified results grouped 
according to equal interval classes. 

On upon examining Figure 11 and the spatial distribution of the results in 
Figure 12, we observe the following: 

As regards the maxima methods (FOM, LOM, MOM), it is obvious that for 
the first category (involving values for SO2 < 8 μg/m3), the MOM method is not 
to be observed at all, whilst in the fourth category (involving values for SO2 < 8 
μg/m3), the LOM method is not to be observed, either. Moreover, the defuzzified 
values that arise present a considerable deviation. In the final category (involving 
values for SO2 > 32 μg/m3) the frequency of values for the FOM method is fol-
lowed by the values for the MOM method. Lastly, the greatest values of all ap-
pear in the LOM method. 

As regards the results of the COG, ICOG (a = 0.1) and ICOG (a = 0.2) me-
thods, no significant differences are to be observed, other than the fact that there 
is no first category for the COG method. If we consider the results of the ICOG 
method for the two threshold values, it becomes clear that, in the case in which 
the value rises (a = 0.2), there is an increase in values only in the case of the first 
category (involving values of SO2 < 8 μg/m3) and the last (with values of SO2 > 32 
μg/m3), whilst values in the remaining three categories correspondingly de-
crease. 

https://doi.org/10.4236/iim.2023.155018


T. Hatzichristos, D. Ntzanis 
 

 

DOI: 10.4236/iim.2023.155018 384 Intelligent Information Management 

 

 

Figure 9. SO2 Poluttion in the study area. 
 

 

Figure 10. Defuzzification membership function of the variable “pollution—SO2”. 
 
Table 4. Defuzzification results (partial). 

Pixel ID 

Pollution (SO2 Values in μg/m3) 

FOM MOM LOM COG 
ICOG 

(a = 0.1) 
ICOG 

(a = 0.2) 
MeOM 

1 19.0680 24.9320 22.0000 16.3958 16.1380 15.9381 22.0000 

2 20.1244 23.8756 22.0000 17.2604 17.1737 17.2334 22.0000 

3 21.0958 22.9042 22.0000 18.5022 18.7148 19.2719 22.0000 

… … … … … … … … 

3546 0.0000 8.0000 4.0000 8.0444 7.6126 7.1843 8.0444 

3547 0.0000 8.0000 4.0000 8.0444 7.6126 7.1843 8.0444 

3548 0.0000 8.0000 4.0000 8.0444 7.6126 7.1843 8.0444 

 
Moreover, upon considering the results in Table 5, it will be seen that in the 

case of the LOM, MOM and COG methods, there are in fact four categories, al-
though in anything pertaining to the MeOM method, there are only three cate-
gories to be observed. Only in the case of the FOM, ICOG (a = 0.1) and ICOG (a 
= 0.2) methods, results are observed for all of the four categories created for the  
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Figure 11. Chart of the defuzzified results grouped according to equal interval classes. 
 

 
Figure 12. Depiction in visual form of the defuzzified results. 
 
Table 5. Defuzzified results grouped according to equal interval classes. 

Pollution 
(SO2 Values 

in μg/m3) 

Number of Pixels 

FOM MOM LOM COG 
ICOG 

(a = 0.1) 
ICOG 

(a = 0.2) 
MeOM 

<8 1185 0 1159 0 419 740 0 

8 - 16 3 1159 11 859 485 261 1170 

16 - 24 636 306 654 769 704 598 654 

24 - 32 433 344 0 885 801 680 0 

>32 1289 1739 1724 1034 1139 1269 1724 
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needs arising from this particular application. Upon careful examination of the 
graphic, it is noticed that, in the first category (with values for SO2 < 8 μg/m3) 
only the FOM, MOM ICOG (a = 0.1) and ICOG (a = 0.2) methods appear. 
Moreover, in the case of the fourth category (with values for SO2 24 - 32 μg/m3), 
the FOM, LOM, COG, ICOG (a = 0.1) and IOG (a = 0.2) methods are to be ob-
served, whilst all the methods appear in the remaining categories. 

Observation of the spatial distribution of the layers of each method indicate 
that the GOG and IGOG methods give a gradual rendering of the differences 
between the pollution subgroups, in contrast with the Μaxima and the MOM, 
MeOM methods, which depict these changes more sharply. 

If the layers of defuzzified results deriving from the methods that yield them 
are subtracted, some interesting points emerge (Figure 13). 

As for the couples derived from the Maxima methods, it is to be noticed that 
the difference between them is the highest of all, especially in the LOM-FOM 
couple. Moreover, the spatial pattern is the same in all the Maxima methods 
couples. The highest difference lies in the transitional zone between the sub-
classes. 

The difference between MOM and MeOM is very low. Spatially, the difference 
is located in the highest values of the “large-scale pollution” subclass. The dif-
ference between GOG-IGOG (0.1) and GOG-IGOG (0.2) is also low. There is a  
 

 
Figure 13. Visualization of the substraction of the associated defuzzification methods. 
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gradation in the transitional zone between the subclasses, in contrast to the re-
sults derived from the maxima methods. 

5. Conclusions 

In most geographic applications employing fuzzy sets, defuzzification is treated 
in far less detail than the other elements involved. The main reason for this is 
that the whole concept of defuzzification, namely the extension of crisp concepts 
and theories, is completely opposite to the main thrust of fuzzy set theory. The 
aim of this paper has been to review defuzzification operators that might be ap-
plied in geographic data of ratio scale. These operators are compared through an 
application of Spatial Planning. 

The comparison of the methods employed may be summarized in the follow-
ing terms. 
 Maxima methods are simple and quick, but their results present a wide de-

gree of internal deviation. We therefore suggest that they be employed in ap-
plications that are required to ensure large, medium, and correspondingly 
smallest possible values.  

 Regarding the MOM and MeOM methods, it becomes clear that they follow 
almost the same pattern of distribution, except that in the case of the MeOM 
method the values are greater. 

 Values deriving from the COG method display the pattern of normal distri-
bution, their results show a gradation. In fact, it is this gradation that max-
imizes and maintains information, together with the ICOG method. 

 The ICOG method can be regarded as specialized form, as it were, of the 
COG method. It indeed excludes, or rather, filters, so to speak, the classes 
that display a low membership value. It favors groups that show high mem-
bership values. 

 Moreover, as regards any comparison among the results derived from the 
ICOG method, it becomes clear that for choice of threshold, the user should 
always perform a sensitivity analysis, if she/he is to arrive at the desired re-
sults. The analysis is of course always to be performed with the features of the 
problem being investigated in mind.  

The application of defuzzification methods to the geographical problem se-
lected shows that it is not possible to indicate a priori the most appropriate me-
thod of defuzzification in any GIS application. Trials always need to be made 
and a decision as to the most suitable method should be reached based on the 
requirements and peculiarities of each application. In fact, it is better to utilize 
all the results derived from all the methods available, to evaluate the complete 
extent of possible solutions. 

Further research needs to be carried out on other defuzzification operators 
potentially capable of use on geographical data of ratio scale. The existence of an 
appropriate Graphical User Interface (GUI) for defuzzification purposes in a GIS 
environment would also be very helpful. 
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