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Abstract 
In order to apply speech recognition systems to actual circumstances such as 
inspection and maintenance operations in industrial factories to recording 
and reporting routines at construction sites, etc. where hand-writing is diffi-
cult, some countermeasure methods for surrounding noise are indispensable. 
In this study, a signal detection method to remove the noise for actual 
speech signals is proposed by using Bayesian estimation with the aid of 
bone-conducted speech. More specifically, by introducing Bayes’ theorem 
based on the observation of air-conducted speech contaminated by surround-
ing background noise, a new type of algorithm for noise removal is theoreti-
cally derived. In the proposed speech detection method, bone-conducted 
speech is utilized in order to obtain precise estimation for speech signals. The 
effectiveness of the proposed method is experimentally confirmed by apply-
ing it to air- and bone-conducted speeches measured in real environment 
under the existence of surrounding background noise. 
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1. Introduction 

Many kinds of speech recognition systems have been developed according to the 
progress of digital information technique. For example, these systems are ap-
plied to inspection and maintenance operations in industrial factories and to re-
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cording and reporting routines at construction sites, etc. For speech recognition 
in such actual circumstances, some countermeasure methods for surrounding 
noises are indispensable. 

Previously reported methods for noise reduction in speech recognition can be 
classified into two categories. One is based on a single microphone [1] [2] and 
the other uses a microphone array [3]. Since the latter requires prior information 
on the number of noise sources, and the number of microphones needed is larg-
er than that of the noise sources in the case of multi-noise sources, this category 
demands large scale systems. Therefore, the former based on a single micro-
phone is more advantageous than the latter [4] [5]. 

In such a noise reduction task for speech signals based on a single micro-
phone, many algorithms applying Kalman filter have been proposed up to now 
by assuming Gaussian white noise [6] [7] [8]. The actual noises show complex 
fluctuation forms with non-Gaussian and non-white properties. From the above 
viewpoint, in our previously reported study, a noise suppression algorithm for 
the actual speech signals without requirement of the assumption of Gaussian 
white noise has been proposed [9]. 

Furthermore, in our previous study, a signal processing method to remove the 
noise for actual speech signals was proposed by jointly using the measured data 
of bone- and air-conducted speeches [10]. However, the algorithm of the pre-
vious method was highly complicated because it utilized lower and higher order 
correlations between the original speech signals, bone- and air-conducted 
speeches. Therefore, large computation time was required in the application to 
real speech signals data. Furthermore, a time transition model (i.e., system equa-
tion) of the speech signals was needed for recursive estimation, and it had to be 
established for each speech signal in advance. 

In this study, a method to detect the speech signals is proposed by applying 
the Bayesian estimation based on a posterior probability with observation data of 
air-conducted speech contaminated by surrounding background noise. In the 
proposed algorithm, by regarding the probability distribution with parameters 
based on the measurement of bone-conducted speech as a prior probability dis-
tribution, the precise estimation of the speech signals can be achieved. Though 
the bone-conducted speech is a kind of solid propagation sound with less effect 
by the surrounding noise, the high-frequency components of the signal are 
damped through the propagation process [11]. On the other hand, the air-con- 
ducted speech contains all frequency components though the signal is strongly 
affected by the surrounding noise. Therefore, by using jointly both air- and 
bone-conducted speeches, more accurate estimations of the speech signals can 
be expected whilst recovering the high-frequency components of the speech sig-
nals even in a very noisy circumstance. 

The algorithm derived in this study does not require any time transition mod-
els for speech signals, and can be applied to speech signals with arbitrary fluctua-
tion forms. Furthermore, since only the correlation information between the 
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speech signals and the observation of air-conducted speech is utilized in the 
proposed method, the estimation algorithm of the speech signals can be simpli-
fied, and the online processing can be expected due to the large reduction of the 
computation time. The effectiveness of the proposed method is confirmed by 
applying it to air- and bone-conducted speeches measured in an anechoic room 
at Hiroshima Prefectural Technology Research Institute cooperated with Pre-
fectural University of Hiroshima, under the existence of surrounding back-
ground noise. 

2. Detection Method for Air- and Bone-Conducted Speeches 
2.1. Stochastic Model for Air- and Bone-Conducted Speeches 

In the actual environment with a surrounding noise, let kx , ky  and kz  be the 
original speech signal, the observation of air- and bone-conducted speech signals 
at a discrete time k. The observation ky  is contaminated by a surrounding 
background noise kv . According to the additive property of sound pressure, the 
following relationship can be established. 

k k ky x v= + ,                           (1) 

where the statistics of kv  are assumed to be known. 
In order to express the relationship between the original speech signal and 

bone-conducted speech, the correlation information between kx  and kz  is 
necessary in general. However, it is difficult to find the information in advance 
because kx  is an unknown signal to be estimated. In this study, a conditional 
probability distribution function in orthogonal expansion series is adopted as 
the relationship between kx  and kz : 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )1 2

0 0

,
| k k

k k k rs r k s k
r sk

P x z
P x z P x A x z

P z
θ θ

∞ ∞

= =

= = ∑∑          (2) 

with 
( ) ( ) ( ) ( )1 2

rs r k s kA x zθ θ≡ ,                      (3) 

where  denotes the averaging operation on variables. The linear and nonli-
near correlations between kx  and kz  are reflected hierarchically in each ex-
pansion coefficient rsA . From the definition of (3), the expansion coefficient sa-
tisfies the following conditions: 

00 1A = , 0 0 0r sA A= = , ( ), 1r s ≥ .                  (4) 

Functions ( ) ( )1
r kxθ  and ( ) ( )2

s kzθ  are orthonormal polynomials having 
weighting functions ( )kP x  and ( )kP z  respectively, and can be composed as 
follows: 

( ) ( ) ( )1 1

0

r
i

r k ri k
i

x xθ λ
=

= ∑ , ( ) ( ) ( )2 2

0

s
i

s k si k
i

z zθ λ
=

= ∑ ,              (5) 

where ( )1
riλ  and ( )2

siλ  are coefficients calculated by using Schmidt’s orthogona-
lization algorithm [12]. The expansion coefficients rsA  with order r R≤ , 
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s S≤  can be obtained from the correlation information between speech signal 

kx  and bone-conducted speech kz . Since the speech signal is unknown in the 
presence noises, these coefficients have to be estimated on the basis of the ob-
servation ky . Let’s regard the expansion coefficients rsA  as unknown parame-
ter vector a . 

( )11 1 12 2 1, , , , , , , , ,R R S RSa a a a a a ′≡    a , 

rs rsa A≡ , ( )1,2, , ; 1, 2, ,r R s S= =  ,               (6) 

where '  denotes the transpose of a matrix, and R S⋅  is the number of un-
known parameters to be estimated. Then a simple dynamical model: 

1k k+ =a a ,                           (7) 

is introduced for the simultaneous estimation of the parameter and the clean 
speech signal kx . 

2.2. Derivation of Speech Signal Detection Algorithm Based on  
Bayesian Estimation 

To derive an estimation algorithm for the speech signal kx , we place our basis 
on Bayes’ theorem for the conditional probability distribution [13]. Since the 
parameter ka  is also unknown, the conditional probability distribution of kx , 

ka  is expressed by 

( ) ( )
( )

1

1

, , |
, |

|
k k k k

k k k
k k

P x y Y
P x Y

P y Y
−

−

=
a

a ,                 (8) 

where { }( )1 2, , ,k kY y y y=   is a set of air-conducted speech data up to time k. 
By expanding the conditional joint probability distribution ( )1, , |k k k kP x y Y −a  
in a statistical orthogonal expansion series on the basis of the well-known stan-
dard probability distributions, which describe the dominant part of the actual 
fluctuation, the following expression is derived. 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 1 0 1
0 0

1 2 3 3
00

0

, | | |k k k k k k k l n
l n

l k k n k n n k
n

P x Y P x Y P Y B

x y B yϕ ϕ ϕ ϕ
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− −
= = =

∞

=

=

⋅

∑∑∑

∑

m
m 0

m

a a

a
      (9) 

( )
11

11
0 0

, , ,
RS

RS
m m

m m
∞ ∞ ∞

= = =

 
≡ ⋅⋅ ⋅ ≡ 

 
∑ ∑ ∑ 

m 0
m  

with 
( ) ( ) ( ) ( ) ( ) ( )1 2 3

1|l n l k k n k kB x y Yϕ ϕ ϕ −≡m m a .            (10) 

The above three functions ( ) ( )1
l kxϕ , ( ) ( )2

kϕm a  and ( ) ( )3
n kyϕ  are orthonor-

mal polynomials of degrees l, m  and n with weighting functions ( )0 1|k kP x Y − , 
( )0 1|k kP Y −a  and ( )0 1|k kP y Y − . 
As examples of standard probability functions for the speech signal, the para-

meters and observations of the air-conducted speech, we adopt Gaussian distri-
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butions, as 

( ) ( )*
0 1| ; ,

kk k k k xP x Y N x x− = Γ , 

( ) ( ),

*
0 1 , ,

1 1
| ; ,

rs k

R S

k k rs k rs k a
r s

P Y N a a−
= =

= Γ∏∏a , 

( ) ( )*
0 1| ; ,k k k k kP y Y N y y− = Ω                   (11) 

with 

( ) ( )2
2

22

1; , exp
22

x
N x

µ
µ σ

σσ

 − ≡ − 
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, 

*
1|k k kx x Y −≡ , ( )2*

1|
kx k k kx x Y −Γ ≡ − ,  

*
, , 1|rs k rs k ka a Y −≡ , ( ),

2*
, , 1|

rs ka rs k rs k ka a Y −Γ ≡ − , 

*
1|k k ky y Y −≡ , ( )2*

1|k k k ky y Y −Ω ≡ − .             (12) 

The orthonormal polynomials with three weighting probability distributions 
in (11) are then specified as 

( ) ( )
*
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H

m
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 Γ 

∏∏m a , 

( ) ( )
*

3 1
!

k k
n k n

k

y y
y H

n
ϕ

 −
=   Ω 

,                 (13) 

where ( )lH  denotes the Hermite polynomial with lth order [14]. The non- 
Gaussian properties of the speech signal and observations of the air-conducted 
speech are reflected in each expansion coefficient l nB m . 

Based on (9), the estimates of kx  and ,rs ka  for mean can be expressed as 

{ } ( ) ( )

( ) ( )

31, 1,
0 0 1 1

0

3
0

0

ˆ |
n n n k

n
k k k

n n k
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rs k rs k k
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        (15) 

with 

,

1, 1, 0,1 0,1
0 1 0 , 01, , , .

k rs k

*
k x rs k aC x C C a C∗= = Γ = = Γ0 0

0 0 0          (16) 

Furthermore, the estimate of ,rs ka  for variance is derived as follows: 
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( )
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with 

( ) ( ), , ,

20,2 * 0,2 0,2
0 , , 01 , , 02ˆ ˆ, 2 , 2

rs k rs k rs k

*
a rs k rs k a rs k rs k aC a a C a a C= Γ + − = Γ − = Γ0 . (18) 

Using the property of conditional expectation, (1) (2) and (7), the variables in 
(14) can be calculated as follows: 

* *
1|k k k k k ky x v Y x v−= + = + , ( )k kv v≡ ,              (19) 

( )2*
1|
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*
, , 1 1 , 1ˆ|rs k rs k k rs ka a Y a− − −= = ,                  (23) 

( ), , 1

2
, 1 , 1 1ˆ |

rs k rs ka rs k rs k k aa a Y P
−− − −Γ = − = .             (24) 

The coefficients 1rd  and 2rd  in (21) and (22) are determined in advance by 
expanding kx  and ( )2*

k kx x−  in the orthogonal series of ( ) ( )1
r kxθ , as follows: 

( ) ( )1 1
10 10 11d λ λ= − , ( )1

11 111d λ= , 

( ) ( )( ) ( ) ( )( ) ( ) ( )1 1 1 1 1 1*2 *
20 10 11 21 22 20 222k kd x xλ λ λ λ λ λ= + + − , 

( )( ) ( ) ( )( )1 1 1*
21 11 21 221 2 kd xλ λ λ= − + , ( )1

22 221d λ= .           (25) 

Furthermore, substituting (1) into (13) and using an additive theorem of 
Hermite polynomial: 

( )
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1 2

/22 2 2
1 2 1 1 2 2

2 2 2
1 2

1
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,
!

i
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n
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n i i
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ξ ξ ξ

ξ
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= ∑ ∏

        (26) 
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the orthonormal polynomial ( ) ( )3
n kyϕ  can be expressed as follows: 

( ) ( )

*
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∑

,   (27) 

Therefore, using (2) and (27), the expansion coefficient l nB m  defined by (10) 
can be calculated as follows: 
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where ,l n i rd + −  is appropriate coefficient that satisfies the following equality: 

( ) ( ) ( ) ( )
*

1 1
,

0
k

l n i
k k

l k n i l n i j j k
jx

x x
x H d xϕ θ

+ −

− + −
=

 −  =
 Γ 

∑ .              (29) 

From (19)-(22) and (28), the variables *
ky , kΩ  and the expansion coefficient 

l nB m  in the estimation algorithms (14)-(18) are given by the measurement data 
of bone-conducted speech kz , estimates of parameter rsa  at the discrete time 

1k −  and statistics of the surrounding noise kv . Therefore, the estimation of 
the speech signal can be performed by observing air-conducted speech ky  in a 
recursive way. 

The flow chart of the proposed speech signal detection algorithm is illustrated 
in Figure 1. As compared with the previously reported algorithm [10], time 
transition model for the speech signal is not required in the proposed algorithm 
and the calculation process of the algorithm can be fairly simplified. 
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Figure 1. Flow chart of the proposed signal detection algorithm. 

3. Application to Real Speech Signal 

In order to confirm the effectiveness of the proposed signal detection algorithm, 
it was applied to real speech signals. The speech signal data were measured in the 
anechoic chamber in the acoustic laboratory building of the West Region Indus-
trial Research Centre, Hiroshima Prefectural Technology Research Institute. For 
a male and a female speech signals digitized with sampling frequency of 10 kHz 
and quantization of 16 bits, we estimated the speech signal based on the observa-
tion corrupted by additive noise. More specifically, we created noisy air-conducted 
speeches on a computer by mixing the original air-conducted speech signal 
measured in a noise-free environment with machine noise recorded in advance, 
as an example of actual surrounding noise. By setting the amplitude (i.e., mean 
squared value of instantaneous signal) of the noise to 1, 2, 3, 4, 5 and 10 times of 
that of the noise-free speech signals, we have applied the proposed algorithm to 
extremely difficult situations with low SNR. Furthermore, the bone-conducted 
speech was simultaneously measured by use of an acceleration sensor with the 
air-conducted speech. The noise-free air-conducted male speech signal and the 
created noisy air-conducted speech observation by using machine noise with the 
same amplitude as the noise-free speech signal are shown in Figure 2 and Fig-
ure 3, and the observed wave of the bone-conducted speech is shown in Figure 
4. Furthermore, for the female speech signal, the noise-free air-conducted speech 
signal, noisy air-conducted speech observation and bone-conducted speech are 
respectively shown in Figures 5-7. 
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Figure 2. Noise free male speech signal. 

 

 
Figure 3. Noisy air-conducted speech observation by using 
machine noise with the same amplitude as the noise-free 
male speech signal. 

 

 
Figure 4. The observed wave of the bone-conducted male 
speech. 
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Figure 5. Noise-free female speech signal. 

 

 
Figure 6. Noisy air-conducted speech observation by using 
machine noise with the same amplitude as the noise-free 
female speech signal. 

 

 
Figure 7. The observed wave of the bone-conducted female 
speech. 
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The estimated results by using the algorithm based on (14)-(18) are shown in 
Figure 8 for the male speech signal and in Figure 9 for the female speech signal. 
For comparison, the estimated results of the male and female speech signals by 
using the estimation algorithm based on only the observation of air-conducted 
speech are shown in Figure 10 and Figure 11. 

Furthermore, the estimated results by the previously reported method [10] are 
shown in Figure 12 for the male speech signal and in Figure 13 for the female 
speech signal. 

By comparing Figure 8, Figure 10 and Figure 12 with the original male 
speech signal shown in Figure 2, and comparing Figure 9, Figure 11, Figure 13 
with Figure 5, it is obvious that the proposed method can suppress the effects of 
real machine noise better than the method based on observation of only 
air-conducted speech and the previously reported method. 
 

 
Figure 8. Estimated male speech signal by use of the pro-
posed method. 

 

 
Figure 9. Estimated female speech signal by use of the 
proposed method. 
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Figure 10. Estimated male speech signal by use of the 
method based on only the observation of air-conducted 
speech. 

 

 
Figure 11. Estimated female speech signal by use of the 
method based on only the observation of air-conducted 
speech. 

 

 
Figure 12. Estimated male speech signal by use of the 
previous method. 
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Figure 13. Estimated female speech signal by use of the previous 
method. 

 
Table 1. Performance comparisons for a male speech signal contaminated by machine 
noise. 

S/N 
Ratio 

RMS Error PEI 

Proposed 
Method 

Compared 
Method 

Previous 
Method 

Proposed 
Method 

Compared 
Method 

Previous 
Method 

1/1 0.017125 0.026065 0.019172 5.4578 1.8092 4.4769 

1/2 0.019116 0.031325 0.019757 4.5022 0.21255 4.2161 

1/3 0.020016 0.034177 0.020262 4.1030 −0.54429 3.9967 

1/4 0.020533 0.036012 0.020798 3.8813 −0.99868 3.7657 

1/5 0.020870 0.037291 0.022099 3.7400 −1.3018 3.2428 

1/10 0.021611 0.040187 0.022310 3.4369 −1.9514 3.1602 

 
Table 2. Performance comparisons for a female speech signal contaminated by machine 
noise. 

S/N 
Ratio 

RMS Error PEI 

Proposed 
Method 

Compared 
Method 

Previous 
Method 

Proposed 
Method 

Compared 
Method 

Previous 
Method 

1/1 0.015122 0.018922 0.014828 3.3381 1.3909 3.5083 

1/2 0.017412 0.022791 0.017592 2.1131 -0.22529 2.0424 

1/3 0.018452 0.024837 0.019537 1.6092 -0.97169 1.1132 

1/4 0.019044 0.026115 0.020103 1.3350 -1.4075 0.86505 

1/5 0.019422 0.026977 0.020456 1.1645 -1.6899 0.71357 

1/10 0.020310 0.028752 0.021072 0.8014 -2.2431 0.47891 

 
The estimation RMS (root mean square) error and the PEI (performance 

evaluation index) defined by 

( )2

1

1 ˆRMS Error
N

k k
k

x x
N =

= −∑ ,                    (30) 
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 
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∑
∑

.                 (31) 

are shown in Table 1 (the male speech signal) and Table 2 (the female speech 
signal). 

Furthermore, the computation time of the proposed method was reduced by 
39.3% of the previous method. From these results, the improved effectiveness of 
the proposed method in the simplified algorithm with the aid of bone-conducted 
speech can be clearly noticed in comparison with the estimation by the com-
pared method based on the observation of only air-conducted speech and the 
previous method in the complicated algorithm. 

4. Conclusions 
4.1. Novel Contribution 

In this study, a new method to detect speech signals under the existence of sur-
rounding noise has been proposed from the viewpoint of Bayesian estimation by 
observing air-conducted speech with the aid of measurement of bone-conducted 
speech. Furthermore, it has been revealed by experiments that the proposed 
method is more effective than the method based on the observation of only 
air-conducted speech and the previous method in the complicated algorithm, to 
remove the surrounding noise in real noise environment. 

4.2. Future Researches 

The proposed approach is quite different from the traditional standard tech-
niques. However, we are still in an early stage of development, and a number of 
practical problems are yet to be investigated in the future. These include: 1) ap-
plication to a diverse range of speech signals in actual noise environment; 2) ex-
tension to cases with multi-noise sources; 3) finding an optimal number of ex-
pansion terms for the expansion-based probability expression adopted; and 4) 
improvement of estimation precision by considering higher order statistics of 
surrounding noise. 
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