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Abstract

Gearboxes are commonly used in rotary machines. Reliable fault diagnostics
in gearboxes is of great importance to industries to improve production qual-
ity and reduce maintenance costs. In this paper, an improved evolving fuzzy
(iEF) technique is proposed for real-time gear system health monitoring and
fault diagnosis. The architecture evolution is performed based on the compar-
ison of the potential of the incoming data set and the existing cluster centers.
The proposed evolving method has the ability of adding or subtracting clusters
adaptively. An enhanced Kalman filter (EKF) method is suggested to improve
parameter training efficiency and processing convergence. The effectiveness of
the developed classifier is evaluated firstly by simulation tests and then by ex-
perimental tests under different gear conditions.
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1. Introduction

Gearboxes are commonly used in rotating machinery such as electric vehicles,
manufacturing facilities, and wind turbines [1]. A gearbox is a system that consists
of a series of gears, shafts and support bearings. Gear failure in a machine can lead
to production quality degradation, malfunction, or even catastrophic failures. Re-
liable gear monitoring techniques and tools are critically needed in a wide range
of industries [2]. On the other hand, diagnostic information can also be used to
quickly recognize the damaged components in repairs without inspecting all of

the involved components in a gearbox, which can further reduce maintenance costs

[3].

The common defects in a gearbox include pitting, severe wear, tooth crack,

DOI: 10.4236/ica.2025.164007 Nov. 5, 2025 158

Intelligent Control and Automation


https://www.scirp.org/journal/ica
https://doi.org/10.4236/ica.2025.164007
http://www.scirp.org
https://www.scirp.org/
https://doi.org/10.4236/ica.2025.164007
http://creativecommons.org/licenses/by/4.0/

D.Y. Luo, W. Wang

scoring, etc. Gear fault analysis can be undertaken by analyzing different types of
information carriers, such as vibration, noise, or lubricant [4]. Vibration-based
analysis is the most used approach in gearbox health monitoring because of its
ease of measurement and high signal-to-noise ratio, which will also be used in this
work [5].

Fault diagnosis is a process involving two procedures: feature extraction and
diagnostic pattern classification. Feature extraction is a process to extract representa-
tive features from the collected vibration signal by using appropriate signal processing
techniques. Diagnostic classification is a process to classify the obtained representa-
tive features into different gear health categories [6]. As gear signal is periodic in
nature, the time synchronous average (TSA) can be used to extract signatures spe-
cific to a gear of interest [7]. There are many gear fault detection techniques avail-
able in literature. From systematic investigation by the authors’ research team, it
is found that the most effective fault detection techniques include phase demodu-
lation, beta kurtosis and wavelet transform amplitude [8]. This work will use features
obtained by using these three techniques to do fault diagnosis. Details of these tech-
niques can be found in [6] [8]-[10].

The diagnostic system will integrate these representative features for automatic
fault detection. Artificial intelligence tools, such as fuzzy logic, neural networks, and
synergetic paradigms, have been widely used in automatic gear fault detection and
diagnosis [11]. The authors’ research team has also developed several intelligent tools
for machinery fault diagnostics and prognosis [12]-[16]; in these diagnostic classi-
fiers, fixed reasoning structures are used in fuzzy reasoning, while system parameters
are updated online or offline. But these classification techniques with fixed reason-
ing structures may not be suitable for monitoring applications of gearboxes with
time-varying dynamics and operating conditions.

An alternative solution to this problem is the use of some clustering algorithms
to generate classification reasoning architecture. Continuous and gradual adapta-
tion will make the classification operation smooth and regular over the intervals
of input parameters. As the fuzzy system is a universal approximator and can rep-
resent human knowledge in reasoning properly, it is generally used as the platform
in designing evolving systems. An evolving Takagi-Sugeno (eTS) scheme is pro-
posed in [17] for system control; its formulation of the clusters is determined by
a potential measurement, while least square estimator (LSE) algorithm is used to
update linear parameters. A problem with this clustering method is that the pre-
defined cluster information (e.g., centers and spreads) is usually sensitive to noise
in the data sets and processing errors. A parsimonious ensemble evolving classifier
is proposed in [ 18] to make dynamic selection of input features, but its selected sub-
set differs at each iteration. A transductive neuro-fuzzy inference (TWNFI) system
is suggested in [19] by introducing weighted data normalization for transductive
reasoning. Compared with the eTS in modelling of non-linear systems, the TWNFI
usually generates more clusters/rules and thus may result in lower processing effi-

ciency [20].
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One of the problems in the aforementioned evolving classifiers is related to their
blind classification reasoning, especially in the output space. In order to tackle this
problem, the objective of this work is to propose an improved evolving fuzzy (iEF)
technique for gear system condition monitoring and fault diagnosis. The proposed
iEF technique is new in the following aspects: 1) a new evolving algorithm is pro-
posed for better output space partition to eliminate contradictory clusters/rules gen-
erated due to noise-affected data sets. 2) A new training algorithm based on an en-
hanced Kalman filter (EKF) is suggested to train iEF system parameters classifier.
The iEF classifier is also implemented for real-time gear health monitoring. Its ef-
fectiveness is verified by simulation and experimental tests.

The remainder of this paper is organized as follows: The proposed iEF technique
and EKF training algorithm are discussed in Section 2. In Section 3, the effective-
ness of the new classifier is verified by simulation test, and then it is implemented

for gear system monitoring.

2. The Developed Evolving Fuzzy Technology

The proposed iEF technique and EKF training method will be discussed in this

section.

2.1.iEF Fuzzy Reasoning

Clustering is a process to group data into different data sets, so as to reveal patterns
in the data and to provide a concise representation of the data behavior. The iEF
reasoning framework is based on the Takagi-Sugeno (TS) method with the follow-
ing form:

SRJ.:If(x1 is Aljj)and...and(xn is A .)then y=y, (with weight w,) (1)

n,j

where R, denotes the jth fuzzy cluster/rule, ;e [l, R] , and Ris the total num-
ber of fuzzy clusters/rules; 4, , is the jth fuzzy setfor x,, i€ [1, n];
y, = [ Vi Vs Vo ] are the output fuzzy sets, in this case, related to healthy,
possibly damaged, and damaged categories. w, is the weight factor representing
the contribution of rule R, to the pattern classification.

In the proposed iEF technique, all the fuzzy set membership functions (MFs)
are in Gaussian form

B (x,-m,,)
My, = €Xp _Tfj )

where m,; and o, are the centers and spreads of the MF, respectively. A
Gaussian function not only has properties of continuity and generalization, but
also can be decomposed into multiple one-dimensional Gaussian MFs correspond-
ing to different input variables. These properties can facilitate the implementation
of input/output partition if each cluster is treated as a fuzzy cluster (rule) [14].

If a max-product operator is used for the premise fuzzy reasoning, the rule fir-

ing strength will be
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ij
After normalization of the rule firing strengths, the overall output will be

R
H; .
v=3 50, relLr] W

j=1 My
where ¢, is the result from the consequent part, and the firing strength of the

Jjth rule is normalized by

Hy =20y = 2P| —D ®)
Jj=1 j=1 i=1 O-i,j

2.2. The iEF Approach

The iEF is a data-driven, non-iterative, and one-pass method. Different from the
general potential-based methods, iEF partitions input and output spaces simulta-
neously to keep input/output mapping consistency and remove the noise-affected
outliers. It recursively updates the cluster centers and spreads, so as to make the gen-
erated clusters well-distributed over the input-output spaces. Different from other
evolving algorithms, the partitioning of the output space of the proposed iEF is per-
formed according to the machine health conditions. The processing procedures are
discussed below.

Step 1: Initialize the parameters. The initial iEF classifier has an empty rule base.
Input the first data sample z, = [xk, yk] , k=1, which defines the first cluster
center: ¢, :=z,.Then, R:= 1, N,:= 1, m,, =x,, 6,,:= 010, m,, =y,,
6,0 = 010, £ (Zk ) =1, B (ck ) = 1,where N, isthe number of samples in
cluster , r €[l, R] and Ris the number of clusters/rules; m,,, m;,, 6.,
and o©,, arethe cluster centers and spreads in the input and output spaces, re-
spectively. P, (z,) is the potential of data sample z,,and P, (ck) is the poten-
tial of the centerc, .

Step 2: Compute the potential Input the next data sample, z, = [Xk , yk] ;
k=k+1.The potential of z, is calculated by

k-1
B(z)= (k=1)(8, +1)+6, —2v, (©)

where 6, = Zn:(zk.i )2 3 0 =0k +i(zk-u )2 Ve = izkiﬂki >
Boi=Bir+2 13 B, and o, ‘areinitialized to Zeros; n = dimension of the
inputs z, =[xk, yk].

Step 3: Update of existing clusters. The potential of all existing clusters at time

instant kare recursively updated by:
k-1)P,
) — ( ) k-1 (Crz (7)

(k-2 B (e) B ()2 (m0 20

i=1

k (cr

where ¢, represents the xand ycoordinates of all existing clusters, 7 e [I,R] .
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Step 4: Determine the winning cluster: The winning cluster is determined based
on the following law:

)If B, (Z i ) <P, (c, ) » or the potential of the current data point is less than the
potential of all existing clusters, then go to Step 6 and update consequent param-
eters.

2)If P,(z,)=F(c,), then determine the winning cluster in the input space

and output space, respectively:

K
we, = argr?i]n"ka =Xy "

K
WC, = argmin|m, , -y, |

where k €[l, K], and Kis the total number of data pairs.

Step 5: Recognize the fuzzy cluster structure: If WC, =WC,,, then merge the
new data set to the winning cluster. The winning cluster parameters are updated
in the input space and output space, respectively, whereas the other cluster infor-

mation remains unchanged:

(00, =(oc) 45 (s me ) (o)

w
. X, —m;_,
m,,=m;,_  + N
W
2 2 1 2 2
(“k,o) = (Gk—l,O) + (Xk _mk—l,O) _(Gk—l,O)
Ny
. X, —m,_,,
m, ,=m._ ,+
Ny,

where N, isthe number of samples in the winning cluster.

If WC, #WC,, then there is no winning cluster. Create a new cluster:
R=R+1, Ny=1, my, < x;, 6,,:= 010; m,, =y,, ¢,,:= 0.10.

These criteria are applied to exclude those clusters affected by noise. For exam-
ple, two closest clusters may not be merged to one cluster if they belong to different
output classes.

Step 6: Update the consequent weight parameters: The optimization is taken
by the use of the hybrid training method to be discussed in the following sub-
section.

Step 7: Calculate the classification output. The output is computed by Equation
(4). Proceed back to Step 2, until all the data samples have been input into the sys-
tem (ie, k = K).

2.3. The Proposed Enhanced Kalman Filter Training Method

Once the iEF reasoning structure is identified, as discussed in Section 2.2, the pa-
rameters (both linear and non-linear) should be properly optimized to improve
diagnostic classification accuracy. Linear parameters will be trained by the use of the

general LSE method. The non-linear parameters will be optimized by the use of
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the proposed EKF.

Many training algorithms have been proposed in the literature for non-linear
parameter optimization, such as the classical gradient algorithms, Levenberg-Mar-
quardt, and Kalman filtering (KF) [14] [21]. The gradient descent (GD) algorithm
is prone to being trapped by local minima; whereas Levenberg-Marquardt method
cannot be effectively used for large models that will generate oversized variance
matrices and significantly slow down the processing convergence. Among the KF-
associated methods, the node decoupled KF (NDKF) algorithm can simplify im-
plementation and reduce memory requirements, which outperforms other KF-re-
lated algorithms [22]. However, the accuracy of the NDKF is limited due to its sen-
sitivity to the implementation strategy. The classical NDKF takes two steps in op-
eration: updating and prediction [23]. In the prediction step, the posteriori states
are used to estimate the state at the current time step. In the update step, the priori
prediction is combined with the current information to update the state estimate
and the posteriori error covariance matrix. Consider a multivariable system in the
following form:

X = Fox g (8)

v, =Hx, +v, 9

where x, isa state vector (n X l) ; [, isatransition matrix (n X n) 5 ¥, isan
observation vector (Ixn); H, isan observation matrix (Ixn); u, and v,
are the respective process noise and observation noise, which satisfy the following

conditions:

E(u,)=E(v,)=0

0, ifi=k
E(wu] )= 10
() {0 ifik (10
R ifi=k
E(vy)=1 "
() {0 ifik

where E () denotes the expectation, O, and R, are the respective process noise
matrix and observation noise covariance matrix. In the prediction step, the predicted

state is

= F}cfck—l\k—l (11)

X1

where the subscript “k|k — 1” denotes the estimate at time instant & given obser-
vations up to steps &k — 1. The predicted estimate covariance matrix becomes

Sk\k—l = F;cSk-l\k—lF}cT +0 (12)

k
computed as:

where S, = cov(xk — X ) . In the updated step, the measurement residual is

di =y, _Hk')%k\k—l (13)
The optimal Kalman gain will be
-1
Ky =Sk\k—lH15 (HkSk\k—lHkT +Rk) (14)
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State estimate is updated by

fck\k = Ak\k—l +K,d, (15)

Estimate covariance matrix is updated by:

S/c\k = Sk\k—l + K HS, (16)

-1

The KF performance depends on process noise covariance matrix Q and obser-
vation error covariance matrix R, which are related to the application and process
dynamics [24]. The DEKEF filter may diverge from the optimum due to Qand R
errors. Generally, the covariance matrices are determined based on trials and er-
rors. However, for a complex dynamic system like a gearbox, it is difficult to de-
termine the reasonable covariance matrices in advance. On the other hand, empir-
ical approximation process may result in significant errors, which makes the train-
ing method unreliable. Correspondingly, a covariance matrix updating method,
EKF, will be proposed in this work to improve the performance of DEKF.

The covariance provides a measure of correlation between two or more random
variables. The proposed EKF method is to update process noise and observation

error covariance matrices, which are defined as:

Ve =(H,S

klk—1

-1
H{ +R,) (17)

where S, = FkSk-l\k—1FkT +0,.

The process noise and observation error are updated by

Rk\k = Rk\k—l + Rk‘k—l (Vk )ﬁ (18)
Qk\k = Qk\k—l - Qk\k—l (Vk )'B (19)

where fe [0, 1] is a design parameter. By systematic investigation, [ = ﬁ will

be utilized in this work, where Ris number of clusters.

The process noise covariance matrix and observation error covariance matrix are
diagonal matrices initialized at 0.01 and 0.80, respectively. A series of simulation
tests have been performed with initialization values ranging between 0.0001 and
1. After each epoch, the noise covariance matrix and observation error covariance
matrix are updated using Equation (18) and Equation (19), respectively.

During the training using the EKF, with the introduction of the scaling factor,
the predicted estimate covariance matrix Schanges at a slower rate, whereas the pro-
cess noise covariance matrix and observation error covariance matrix change at a
faster rate. Since all covariance matrices are being updated, the state estimate up-
date is more robust, making the training process more reliable, as can be noted in

Section 3.

2.4. Hybrid Training of the iEF Classifier

After the iEF reasoning structure is identified, system parameters will be trained

by the use of a hybrid method. In the forward pass, the non-linear premise pa-

DOI: 10.4236/ica.2025.164007

164 Intelligent Control and Automation


https://doi.org/10.4236/ica.2025.164007

D.Y. Luo, W. Wang

rameters are optimized using the proposed EKF method, while the linear parame-
ters remain fixed. In the backward pass, non-linear MF parameters remain un-
changed, but linear consequent weight parameters are updated using the LSE al-
gorithm [13]. A hybrid method usually has merits of reducing the trapping of local

minima and improving the training convergence [16].

3. Performance Verification

The effectiveness of the proposed iEF technology is examined first by simulation
tests using some benchmark data sets. Then it is implemented for gear condition
monitoring. Some related classifiers are used for comparison: eTS [17] and TWNFI
[19] trained by hybrid methods of LSE and gradient descent (GD) algorithm. An-
other comparison is undertaken with a self-evolving fuzzy (SEF) classifier [15].
The developed iEF classifier, trained by the same EKF and LSE algorithms, will be
denoted by iEF-EKF; this comparison will be performed to examine the effective-
ness of the proposed iEF evolving algorithm. The iEF classifier trained by the pro-
posed GD and LSE, represented by iEF-GD, is used to check the effectiveness of the
EKF training algorithm. All of these classifiers will use the same inputs, with same

training conditions and initial values of the parameters to be updated.

3.1. Simulation Tests

Two benchmark data sets are used for these simulation tests.

3.1.1. Iris Dataset Testing

The first simulation test is undertaken using the Iris Dataset [25]. Iris dataset has
4 inputs: sepal length (x1), sepal width (x2), petal length (x3), and petal width (xi).
It has 3 output states or classes: Iris Setosa, Iris Versicolour, and Iris Virginica. This
test is conducted using 150 data pairs, 80 of which are used for training and remain-
ing 70 are used for testing. The simulation is undertaken using MATLAB 2023b.
In classification, once the clusters are generated, the classifier will calculate the
system output. The related training algorithms are used to optimize classifier lin-
ear and non-linear parameters. Table 1 summarizes the comparison results using
the related classifiers. All of the selected classifiers are operated to achieve optimal
results based on the input data. The success rates of each classifier represent the
accuracy values before and after training. It is clear that the related training algorithms
can clearly improve classification accuracy.

From Table 1, it is seen that during the verification test, the TWNFI performs
better than the eTS classifier (85.84% vs. 75.67%), even though both have gener-
ated 5 clusters. The SEF and iEF classifiers have generated 3 clusters only, which
can speed up the classification convergence. However, the iEF-DG outperforms
the SEF (79.46% vs. 85.73%) due to iEF’s more efficient evolving algorithm, which
can also be related to the formulation of 4 rules vs. 3 rules of the SEF. Comparing
iEF-GD and iEF-EKF, it is clear that the proposed EKF method can effectively con-
trol weights of the iEF system to improve diagnostic accuracy (95.34% vs. 85.73%)
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and processing efficiency (1.39 sec vs. 1.56 sec per epoch).

Table 1. Performance comparison of the related classifiers using the Iris data.

Classifier Success Rate (%) No.of  No.of Average Operation
Before Training  After Training Clusters  Rules Time (sec)
TWNFI 80.16 85.84 5 6 2.25
eTs 64.95 75.67 5 4 1.96
SEF 74.35 79.46 3 3 2.19
iEF-GD 78.98 85.73 3 4 1.56
iEF-NFK 93.65 95.34 3 4 1.39

Figure 1(a) shows the verification process of the developed iEF-EKF technique
for the Iris data. It generates four false indicators in classification, which misclas-

sify the output data. Figure 1(b) represents the absolute errors during the testing

process.
E 1
%038
0.6
=
@ Z04
202
& o
S 0 10 20 30 40 50 60 70 80
0.5
4]
(b)20.25 \
. |
[
10 20 30 40 50 60 70 80

Time Steps

Figure 1. Test results of the iEF-EKF classifier for the Iris data: (a) Performance of the iEF-
EKEF with respect to the desired output (red line) and classifier’s output (blue line); (b) Abso-
lute testing errors.

3.1.2. Breast Cancer Data Testing

Another simulation test is undertaken using the Wisconsin Breast Cancer Dataset
[26] to check the robustness of the proposed iEF-EKF classifier. This dataset has
four input variables: glucose (x1), homa (x;), adiponectin (x3), and MCP (x3). The
output has two classes: benign and malignant; or the output space is divided into
2 classes to be unbiased.

A total of 116 data pairs are selected for analysis: 60 for training and remaining
56 for verification testing. The classification results are summarized in Table 2. It
is seen that the training can clearly improve the classification accuracy. In terms of
the number of formulated clusters, the SEF and iEF are more efficient in the evolv-
ing process than the TWNFI and the eTS classifiers (i.e., 4 clusters vs. 2). Since the
SEF classifier adopts 2 rules only, it results in the lowest classification accuracy in
this case. With the comparison of the SEF and the iEF methods (Ze., iEF-GD and
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iEF-EKF), it is clear that the proposed iEF evolving method is more efficient than
the related methods. The iEF-EKF outperforms the iEF-GD in terms of classifica-
tion accuracy (89.21% vs. 84.07%) and processing speed (0.63 sec vs. 0.88 sec), due
to its efficient EKF training.

Table 2. Performance comparison of the related classifiers using the breast cancer data

Classifier Success Rate (%) No.of  No.of Average Operation
Before Training  After Training Clusters — Rules Time (sec)
TWNEFI 75.39 82.17 4 5 1.61
eTs 68.94 79.31 4 3 0.78
SEF 56.33 69.72 2 2 0.91
iEF-GD 76.46 84.07 2 3 0.88
iEF-NFK 82.39 89.21 2 3 0.63

Figure 2(a) shows the processing results of the iEF-EKF classifier; it generates 4

missed alarms and 3 false alarms. Figure 2(b) shows the absolute testing errors.

S
Output of iEF-NKF

Cooo

10 20 30 40 50 60
Time Steps

Figure 2. Test results of the iEF-EKF classifier for the breast cancer data: (a) Performance
of the iEF-EKF with respect to the desired output (red line) and classifier’s output (blue line);
(b) Absolute testing errors.

3.2. Gear Health Condition Monitoring and Fault Diagnosis

3.2.1. Monitoring Indices

Gear fault can be classified into two categories: localized defects (e.g., broken tooth
and chipped tooth) and distributed defects (e.g., scoring and wear). This work will
focus on localized gear fault diagnosis because a localized fault will not only degrade
transmission accuracy but also may cause sudden failures. In this work, the gear fault
diagnosis is conducted gear by gear. As the measured vibration signal is generated
from various vibratory sources in a gearbox, the first step is to differentiate the sig-
nal specific to each gear of interest by using a time synchronous average filter [6].
As aresult, each gear signal can be processed and represented in one full revolu-

tion, called the signal average.
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Many techniques have been proposed in the literature for gear fault detection,
however, each technique has its own advantages and limitations. Each technique
could be efficient for specific applications only. In this work, as discussed in Intro-
duction, three features will be selected for this diagnostic classification from three
information domains: energy, amplitude, and phase:

1) Beta kurtosis index (x1): Using the overall residual signal obtained by band-stop
filtering out the gear mesh frequency £.Zand its harmonics (up to the 5® harmonic),
where £ is the gear rotation frequency (Hz) and Zis the number of teeth of the
gear.

2) Wavelet energy index (x3): Also using the overall residual signal.

3) Phase demodulation index (x3): Using the signal average.

Details of these signal processing techniques and filtering procedures can be found
in papers [6] [8]. The determination of the monitoring indices can be found in pa-

per [6], both of which are from the authors’ research team.

3.2.2. Experimental Setup
Figure 3 shows the experimental setup used for performing this test.

Figure 3. Experimental setup: (1) variable speed controller; (2) drive motor; (3) optical
sensor; (4) flexible-coupling; (5) load disc; (6) accelerometers (sensors); (7) gearbox; (8)
electric load controller; (9) magnetic brake load system.

This system is driven by a 2.2 kW induction motor, with speed ranging from 50
rpm to 4200 rpm. The motor speed is changed by using a variable frequency speed
controller (VFD022B21A). A flexible coupling is used to dampen the high-frequency
vibration components and shocks from the motor. An optical sensor (ROS-W, 40
mA and 3 - 15 V) is used to provide a one-pulse-per-revolution signal, used for time-
synchronous average filtering operations.

The tested gear system is shown in Figure 4(a), which consists of two pairs of
spur gears. The first pair has 32 and 80 teeth for the pinion and the gear, respec-
tively. The second pair has 96 and 48 teeth for the pinion and the gear, respec-
tively. A magnetic brake unit (B150-24-H, Placid Industries) is used to provide
dynamic loads to the gear system. The vibration signals are collected using ICP
accelerometers (SN98697, ICP-IMI) with sensitivity of 100 mV/g. These ICP sen-

sors are mounted on the gearbox housing to collect data along different directions.

DOI: 10.4236/ica.2025.164007

168 Intelligent Control and Automation


https://doi.org/10.4236/ica.2025.164007

D.Y. Luo, W. Wang

These sensors are connected to a data acquisition board (NI PCI-4472), attached
to a computer. A software interface has been developed to control the data acqui-
sition operations in real-time, in terms of the sensor network, sampling frequency,

data size, etc.

®)

Figure 4. The tested gearbox: (a) A two-stage gear system: (1) input gear; (2) input pinion;
(3) output pinion; (4) output; (b) A simulated gear damage with one tooth partially broken.

Three gear health states (classes) are tested as illustrated in Figure 5:

1) Healthy gear: 52 data sets are collected for analysis;

2) Cracked gear: 67 data sets are collected;

3) Partially broken gears: 74 data sets are collected for analysis, as shown in Fig-
ure 4(b).

The health conditions of each gear are constrained to three state classes: G =
healthy, G, = cracked tooth damage, C; = partially broken tooth damage. In pro-
cessing, the scopes are selected as: health G if y e [O, 0.33] , crack gear damaged G,
if ye (0.33, 0.67] , and partially broken tooth damage G; if y € (0.67, 1.0].

(a) (b) (c)
Figure 5. Tested gear classes: (a) Healthy gears; (b) Cracked gears; (c) Partially broken gear.

3.2.3. Test Results Analysis

Similarly to the conditions in simulation tests in Section 3.1, five related classifiers
are used for comparison: eTS, TWNFI, SEF, iEF-DG and iEF-EKF. All of these clas-
sifiers have three inputs, and with same training conditions.

Tests are undertaken under different load and speed conditions. The sampling fre-
quency is selected to make sure each tooth period contains about 50 data samples. For
example, if the shaft speed is 1200 rpm, or £ =20 Hz, the gear has Z = 32 teeth, the
sampling frequency should be about: £ = 32 teeth x 50 samples x 20 Hz = 32,000 Hz.

Once the gear signal is collected, it is first processed by the use of the time syn-

chronous average filtering to get signal average. Then the signal average is further
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processed to generate the monitoring indices of beta kurtosis (x:), wavelet ampli-
tude (x;) and phase information (x3), which are input variables to the classifiers.

In processing, 157 data sets are used for healthy gear condition monitoring (70
for training, 32 for validation and 55 for testing); 108 data sets are used for cacked
gear condition monitoring (48 for training, 25 for validation and 35 for testing);
and 117 data sets are used for partially broken gear condition monitoring (55 for
training, 20 for validation and 42 for testing).

Table 3 summarizes the diagnostic results using related classification techniques.
In gear fault diagnosis, two types of errors are considered: 1) false alarm: the rec-
ognized gear fault is caused by other reasons (e.g., speed/load variations) instead of
real gear defect; 2) missed alarm: the gear fault is not recognized by the diagnostic
classifier. From Table 3, it is seen that the proposed iEF technique outperforms the
classical eTS and TWNFI classifier, as well as the SEF classifier, with fewer clusters
and higher diagnostic accuracy. That is mainly because the iEF technique has a more
efficient evolving approach with the appropriate partition strategy. On the other
hand, with the comparison of iEF-GD and iEF-EKEF, the proposed EKF training
method can improve not only classification accuracy (99.34% vs. 96.57%), but also
processing efficiency (1.62 sec vs. 1.87 sec per epoch), which makes it more suitable

for real-time monitoring applications.

Table 3. Gear monitoring test results using the related classifiers.

Classifi Success Rate (%) Healthy  Cracked  Partially Overall Average Operation
assifier
No. of Clusters  No. of Rules Gear Gear Broken Accuracy (%) Time (sec)
TWNEFI 5 6 87.2 85.36 90.96 88.57 2.83
eTs 5 6 87.71 88.7 91.03 89.22 2.27
SEF 4 4 96.38 94.31 94.28 95.03 1.99
iEF-GD 3 4 9791 95.86 97.06 96.88 1.87
iEF-NFK 3 4 99.13 97.12 98.97 98.64 1.62
o1 T
% 08 - e'
5 AT *
0.6 )\ [
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Figure 6. Test results of the iEF-EKF classifier during the test period: (a) Performance of
the iEF-EKF with respect to the desired output (red line) and classifier’s output (black line);
(b) Absolute errors.
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Figure 6(a) shows the classification process of the iEF-EKF classifier during the
testing process. It is seen that iEF-EKF classifier is efficient in separating healthy
state from the faulty state of the gearbox, but it has generated some errors in gear
fault diagnosis with two false alarms and one missed alarm. Figure 6(b) illiterates

the absolute errors.

o
o

X2 (Wavelet Energy)

0.4 0.6 0.8 1
X1 (Beta Kurtosis)

Figure 7. The output space processing results: The dotted circles G - G represent the con-
strained output space patterns. Solid circles represent the recognized clusters in the output

space.

e I e e T B Tt

Figure 8. The identified iEF classifier model after 50 training epochs.

Figure 7 illustrates the output clusters (dotted circles) and the recognized clus-
ters in the output space using the iEF-EKEF classifier, as indicated by the solid lines,
in terms of x; (beta-kurtosis) versus x; (wavelet energy amplitude). Figure 8 shows
the recognized fuzzy model architecture after 50 training epochs, after all of the
training data sets have been input to the classifier. It is a 6-layer network. During

the evolving process, this structure is updated gradually and continuously. Initially,
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each input variable (in layer 1) had 3 MFs (in layer 2): S., M. and L. that are related
to each cluster formation. After the evolution, 3 clusters are generated, which re-
sult in 4 rules, R, - R, Both x; and x; have three MFs: S., M. and L. On the other
hand, x; has two MFs only: S and L,. & is related to R, while Z, is related to Rs.
M, is not represented as it is not related to any reasoning rules. The firing strength
of each rule is calculated in layer 3 by the related inference operation in Equation
(3). After normalization in layer 4 and defuzzification (e.g., centroid), the output

indicator value y can be computed in layer 5 using Equation (4).

4. Conclusion

An improved evolving fuzzy technology, iEF in short, has been developed in this
work for real-time gearbox health condition monitoring and fault diagnosis. Clus-
ter evolution is performed based on the constrained output space partitions (e.g.,
healthy and different gear damaged states), so as to prevent possible misleading
diagnostic information. The suggested evolving algorithm has the ability of add-
ing or subtracting clusters adaptively, and the representative patterns can be rec-
ognized between the input space and the constrained output space partitions. An
enhanced Kalman filter, EKF, training method is proposed to improve parameter
training efficiency and classification efficiency. The effectiveness of the developed
iEF-EKF classifier has been examined by simulation tests using some benchmark
data sets. It is also implemented for gear system monitoring under different gear
health conditions. Test results have shown that the developed iEF classifier can ef-
fectively partition the input-output spaces with the appropriate constrained evolv-
ing strategy. It outperforms other related evolving algorithms. The proposed EKF
training method can improve classification convergence with higher diagnostic
accuracy and training efficiency using less processing time. It has potential to be ap-
plied for real-time gearbox health condition monitoring and fault diagnosis in in-

dustrial applications.
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