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Abstract 
Gearboxes are commonly used in rotary machines. Reliable fault diagnostics 
in gearboxes is of great importance to industries to improve production qual-
ity and reduce maintenance costs. In this paper, an improved evolving fuzzy 
(iEF) technique is proposed for real-time gear system health monitoring and 
fault diagnosis. The architecture evolution is performed based on the compar-
ison of the potential of the incoming data set and the existing cluster centers. 
The proposed evolving method has the ability of adding or subtracting clusters 
adaptively. An enhanced Kalman filter (EKF) method is suggested to improve 
parameter training efficiency and processing convergence. The effectiveness of 
the developed classifier is evaluated firstly by simulation tests and then by ex-
perimental tests under different gear conditions. 
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1. Introduction 

Gearboxes are commonly used in rotating machinery such as electric vehicles, 
manufacturing facilities, and wind turbines [1]. A gearbox is a system that consists 
of a series of gears, shafts and support bearings. Gear failure in a machine can lead 
to production quality degradation, malfunction, or even catastrophic failures. Re-
liable gear monitoring techniques and tools are critically needed in a wide range 
of industries [2]. On the other hand, diagnostic information can also be used to 
quickly recognize the damaged components in repairs without inspecting all of 
the involved components in a gearbox, which can further reduce maintenance costs 
[3].  

The common defects in a gearbox include pitting, severe wear, tooth crack, 
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scoring, etc. Gear fault analysis can be undertaken by analyzing different types of 
information carriers, such as vibration, noise, or lubricant [4]. Vibration-based 
analysis is the most used approach in gearbox health monitoring because of its 
ease of measurement and high signal-to-noise ratio, which will also be used in this 
work [5]. 

Fault diagnosis is a process involving two procedures: feature extraction and 
diagnostic pattern classification. Feature extraction is a process to extract representa-
tive features from the collected vibration signal by using appropriate signal processing 
techniques. Diagnostic classification is a process to classify the obtained representa-
tive features into different gear health categories [6]. As gear signal is periodic in 
nature, the time synchronous average (TSA) can be used to extract signatures spe-
cific to a gear of interest [7]. There are many gear fault detection techniques avail-
able in literature. From systematic investigation by the authors’ research team, it 
is found that the most effective fault detection techniques include phase demodu-
lation, beta kurtosis and wavelet transform amplitude [8]. This work will use features 
obtained by using these three techniques to do fault diagnosis. Details of these tech-
niques can be found in [6] [8]-[10]. 

The diagnostic system will integrate these representative features for automatic 
fault detection. Artificial intelligence tools, such as fuzzy logic, neural networks, and 
synergetic paradigms, have been widely used in automatic gear fault detection and 
diagnosis [11]. The authors’ research team has also developed several intelligent tools 
for machinery fault diagnostics and prognosis [12]-[16]; in these diagnostic classi-
fiers, fixed reasoning structures are used in fuzzy reasoning, while system parameters 
are updated online or offline. But these classification techniques with fixed reason-
ing structures may not be suitable for monitoring applications of gearboxes with 
time-varying dynamics and operating conditions.  

An alternative solution to this problem is the use of some clustering algorithms 
to generate classification reasoning architecture. Continuous and gradual adapta-
tion will make the classification operation smooth and regular over the intervals 
of input parameters. As the fuzzy system is a universal approximator and can rep-
resent human knowledge in reasoning properly, it is generally used as the platform 
in designing evolving systems. An evolving Takagi-Sugeno (eTS) scheme is pro-
posed in [17] for system control; its formulation of the clusters is determined by 
a potential measurement, while least square estimator (LSE) algorithm is used to 
update linear parameters. A problem with this clustering method is that the pre-
defined cluster information (e.g., centers and spreads) is usually sensitive to noise 
in the data sets and processing errors. A parsimonious ensemble evolving classifier 
is proposed in [18] to make dynamic selection of input features, but its selected sub-
set differs at each iteration. A transductive neuro-fuzzy inference (TWNFI) system 
is suggested in [19] by introducing weighted data normalization for transductive 
reasoning. Compared with the eTS in modelling of non-linear systems, the TWNFI 
usually generates more clusters/rules and thus may result in lower processing effi-
ciency [20]. 

https://doi.org/10.4236/ica.2025.164007


D. Y. Luo, W. Wang 
 

 

DOI: 10.4236/ica.2025.164007 160 Intelligent Control and Automation 
 

One of the problems in the aforementioned evolving classifiers is related to their 
blind classification reasoning, especially in the output space. In order to tackle this 
problem, the objective of this work is to propose an improved evolving fuzzy (iEF) 
technique for gear system condition monitoring and fault diagnosis. The proposed 
iEF technique is new in the following aspects: 1) a new evolving algorithm is pro-
posed for better output space partition to eliminate contradictory clusters/rules gen-
erated due to noise-affected data sets. 2) A new training algorithm based on an en-
hanced Kalman filter (EKF) is suggested to train iEF system parameters classifier. 
The iEF classifier is also implemented for real-time gear health monitoring. Its ef-
fectiveness is verified by simulation and experimental tests. 

The remainder of this paper is organized as follows: The proposed iEF technique 
and EKF training algorithm are discussed in Section 2. In Section 3, the effective-
ness of the new classifier is verified by simulation test, and then it is implemented 
for gear system monitoring.  

2. The Developed Evolving Fuzzy Technology 

The proposed iEF technique and EKF training method will be discussed in this 
section. 

2.1. iEF Fuzzy Reasoning 

Clustering is a process to group data into different data sets, so as to reveal patterns 
in the data and to provide a concise representation of the data behavior. The iEF 
reasoning framework is based on the Takagi-Sugeno (TS) method with the follow-
ing form: 

jℜ : If ( 1x  is 1, jA ) and… and ( nx  is ,n jA ) then jy y=  (with weight 1w ) (1) 

where jℜ  denotes the jth fuzzy cluster/rule, [ ]1,  j R∈ , and R is the total num-
ber of fuzzy clusters/rules; ,i jA  is the jth fuzzy set for ix , [ ]1,  i n∈ ;  

1 2,  ,   , j j j jMy y y y =  
 are the output fuzzy sets, in this case, related to healthy, 

possibly damaged, and damaged categories. jw  is the weight factor representing 
the contribution of rule jℜ  to the pattern classification. 

In the proposed iEF technique, all the fuzzy set membership functions (MFs) 
are in Gaussian form 
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,
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                     (2) 

where ,i jm  and ,i jσ  are the centers and spreads of the MF, respectively. A 
Gaussian function not only has properties of continuity and generalization, but 
also can be decomposed into multiple one-dimensional Gaussian MFs correspond-
ing to different input variables. These properties can facilitate the implementation 
of input/output partition if each cluster is treated as a fuzzy cluster (rule) [14]. 

If a max-product operator is used for the premise fuzzy reasoning, the rule fir-
ing strength will be 
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After normalization of the rule firing strengths, the overall output will be 
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where jq  is the result from the consequent part, and the firing strength of the 
jth rule is normalized by 
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2.2. The iEF Approach 

The iEF is a data-driven, non-iterative, and one-pass method. Different from the 
general potential-based methods, iEF partitions input and output spaces simulta-
neously to keep input/output mapping consistency and remove the noise-affected 
outliers. It recursively updates the cluster centers and spreads, so as to make the gen-
erated clusters well-distributed over the input-output spaces. Different from other 
evolving algorithms, the partitioning of the output space of the proposed iEF is per-
formed according to the machine health conditions. The processing procedures are 
discussed below. 

Step 1: Initialize the parameters: The initial iEF classifier has an empty rule base. 
Input the first data sample [ ], k k k=z x y , :k =  1, which defines the first cluster 
center: :k k=c z . Then, :R =  1, :rN =  1, , :R I k=m x , , :R I =σ  0.10, , :R O k=m y , 

, :R O =σ  0.10, ( ) :k kP =z  1, ( ) :k kP =c  1, where rN  is the number of samples in 
cluster r, [1,   ]r R∈  and R is the number of clusters/rules; .R Im , .R Om , .R Iσ  
and .R Oσ  are the cluster centers and spreads in the input and output spaces, re-
spectively. ( )k kP z  is the potential of data sample kz , and ( )k kP c  is the poten-
tial of the center kc . 

Step 2: Compute the potential: Input the next data sample, [ ], k k k=z x y ; 
: 1k k= + . The potential of kz  is calculated by  

( ) ( )( )
1

1 1 2k k
k k k

kP
k

−
=

− + + −
z

θ σ v
              (6) 
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, 1, 1,k i k i k izβ β − −= + ; .k iβ  and kσ  are initialized to zeros; n = dimension of the 
inputs [ ],  k k kz x y= . 

Step 3: Update of existing clusters: The potential of all existing clusters at time 
instant k are recursively updated by: 

( ) ( ) ( )

( ) ( ) ( ) ( )
1

2
1 1 , 1,
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−
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where rc  represents the x and y coordinates of all existing clusters, [ ]1,r R∈ .  

https://doi.org/10.4236/ica.2025.164007


D. Y. Luo, W. Wang 
 

 

DOI: 10.4236/ica.2025.164007 162 Intelligent Control and Automation 
 

Step 4: Determine the winning cluster: The winning cluster is determined based 
on the following law:   

1) If ( ) ( )k k k rP P<z c , or the potential of the current data point is less than the 
potential of all existing clusters, then go to Step 6 and update consequent param-
eters.  

2) If ( ) ( )k k k rP P≥z c , then determine the winning cluster in the input space 
and output space, respectively: 

, ,1
arg min

K

I k I k Ik
WC

=
= −m x  

, ,1
arg min

K

O k I k Ik
WC

=
= −m y  

where [1,  ]k K∈ , and K is the total number of data pairs. 
Step 5: Recognize the fuzzy cluster structure: If I OWC WC= , then merge the 

new data set to the winning cluster. The winning cluster parameters are updated 
in the input space and output space, respectively, whereas the other cluster infor-
mation remains unchanged: 

( ) ( ) ( ) ( )2 2 2 2
, 1, 1, 1, 

1:k I k I k k I k I
WN− − −
 = + − −  
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1,
, 1,: k k I

k I k I
WN

−
−

−
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x m
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( ) ( ) ( ) ( )2 2 2 2
, 1, 1, 1, 

1:k O k O k k O k O
WN− − −
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σ σ x m σ  

1,
, 1,: k k O

k O k O
WN

−
−

−
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x m
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where WN  is the number of samples in the winning cluster. 
If I OWC WC≠ , then there is no winning cluster. Create a new cluster:  
: 1R R= + , : 1RN = , ,R I k←m x , , :R I =σ  0.10; , :R O k=m y , , :R O =σ  0.10. 
These criteria are applied to exclude those clusters affected by noise. For exam-

ple, two closest clusters may not be merged to one cluster if they belong to different 
output classes. 

Step 6: Update the consequent weight parameters: The optimization is taken 
by the use of the hybrid training method to be discussed in the following sub-
section.  

Step 7: Calculate the classification output: The output is computed by Equation 
(4). Proceed back to Step 2, until all the data samples have been input into the sys-
tem (i.e., k = K).  

2.3. The Proposed Enhanced Kalman Filter Training Method 

Once the iEF reasoning structure is identified, as discussed in Section 2.2, the pa-
rameters (both linear and non-linear) should be properly optimized to improve 
diagnostic classification accuracy. Linear parameters will be trained by the use of the 
general LSE method. The non-linear parameters will be optimized by the use of 
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the proposed EKF.  
Many training algorithms have been proposed in the literature for non-linear 

parameter optimization, such as the classical gradient algorithms, Levenberg-Mar-
quardt, and Kalman filtering (KF) [14] [21]. The gradient descent (GD) algorithm 
is prone to being trapped by local minima; whereas Levenberg-Marquardt method 
cannot be effectively used for large models that will generate oversized variance 
matrices and significantly slow down the processing convergence. Among the KF-
associated methods, the node decoupled KF (NDKF) algorithm can simplify im-
plementation and reduce memory requirements, which outperforms other KF-re-
lated algorithms [22]. However, the accuracy of the NDKF is limited due to its sen-
sitivity to the implementation strategy. The classical NDKF takes two steps in op-
eration: updating and prediction [23]. In the prediction step, the posteriori states 
are used to estimate the state at the current time step. In the update step, the priori 
prediction is combined with the current information to update the state estimate 
and the posteriori error covariance matrix. Consider a multivariable system in the 
following form: 

1 1k k k kx F x u− −= +                        (8) 

k k k ky H x v= +                         (9) 

where kx  is a state vector ( )1n× ; kF  is a transition matrix ( )n n× ; ky  is an 
observation vector ( )1 n× ; kH  is an observation matrix ( )1 n× ; ku  and kv  
are the respective process noise and observation noise, which satisfy the following 
conditions: 

( ) ( ) 0k kE u E v= =  

( )     if 
0       if 

kT
k i

Q i k
E u u

i k
=

=  ≠
                   (10) 

( )     if 
0       if 

kT
k i

R i k
E v v

i k
=

=  ≠
 

where ( )E ⋅  denotes the expectation, kQ  and kR  are the respective process noise 
matrix and observation noise covariance matrix. In the prediction step, the predicted 
state is 

1 1 1ˆ ˆkk k k kx F x− − −=                       (11) 

where the subscript “k|k − 1” denotes the estimate at time instant k given obser-
vations up to steps k − 1. The predicted estimate covariance matrix becomes  

1 1 1
T

k k kk k k kS F S F Q− − −= +                    (12) 

where ( )1 1 ˆcov kk k k kS x x− − = − . In the updated step, the measurement residual is 
computed as: 

1ˆk k k k kd y H x −= −                        (13) 

The optimal Kalman gain will be 

( ) 1

1 1
T T

k k k k kk k k kK S H H S H R
−

− −= +                 (14) 
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State estimate is updated by 

1ˆ ˆ k kk k k kx x K d−= +                        (15) 

Estimate covariance matrix is updated by: 

1 1k kk k k k k kS S K H S− −= +                    (16) 

The KF performance depends on process noise covariance matrix Q and obser-
vation error covariance matrix R, which are related to the application and process 
dynamics [24]. The DEKF filter may diverge from the optimum due to Q and R 
errors. Generally, the covariance matrices are determined based on trials and er-
rors. However, for a complex dynamic system like a gearbox, it is difficult to de-
termine the reasonable covariance matrices in advance. On the other hand, empir-
ical approximation process may result in significant errors, which makes the train-
ing method unreliable. Correspondingly, a covariance matrix updating method, 
EKF, will be proposed in this work to improve the performance of DEKF. 

The covariance provides a measure of correlation between two or more random 
variables. The proposed EKF method is to update process noise and observation 
error covariance matrices, which are defined as: 

( ) 1

1
T

k k k kk kV H S H R
−

−= +                   (17) 

where 1 1 1
T

k k kk k k kS F S F Q− − −= + .  
The process noise and observation error are updated by 

( )1 1 kk k k k k kR R R V β
− −= +                   (18) 

( )1 1 kk k k k k kQ Q Q V β
− −= −                   (19) 

where [ ]0,1β ∈  is a design parameter. By systematic investigation, 1
2R

β =  will 

be utilized in this work, where R is number of clusters. 
The process noise covariance matrix and observation error covariance matrix are 

diagonal matrices initialized at 0.01 and 0.80, respectively. A series of simulation 
tests have been performed with initialization values ranging between 0.0001 and 
1. After each epoch, the noise covariance matrix and observation error covariance 
matrix are updated using Equation (18) and Equation (19), respectively.  

During the training using the EKF, with the introduction of the scaling factor, 
the predicted estimate covariance matrix S changes at a slower rate, whereas the pro-
cess noise covariance matrix and observation error covariance matrix change at a 
faster rate. Since all covariance matrices are being updated, the state estimate up-
date is more robust, making the training process more reliable, as can be noted in 
Section 3.  

2.4. Hybrid Training of the iEF Classifier 

After the iEF reasoning structure is identified, system parameters will be trained 
by the use of a hybrid method. In the forward pass, the non-linear premise pa-
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rameters are optimized using the proposed EKF method, while the linear parame-
ters remain fixed. In the backward pass, non-linear MF parameters remain un-
changed, but linear consequent weight parameters are updated using the LSE al-
gorithm [13]. A hybrid method usually has merits of reducing the trapping of local 
minima and improving the training convergence [16]. 

3. Performance Verification 

The effectiveness of the proposed iEF technology is examined first by simulation 
tests using some benchmark data sets. Then it is implemented for gear condition 
monitoring. Some related classifiers are used for comparison: eTS [17] and TWNFI 
[19] trained by hybrid methods of LSE and gradient descent (GD) algorithm. An-
other comparison is undertaken with a self-evolving fuzzy (SEF) classifier [15]. 
The developed iEF classifier, trained by the same EKF and LSE algorithms, will be 
denoted by iEF-EKF; this comparison will be performed to examine the effective-
ness of the proposed iEF evolving algorithm. The iEF classifier trained by the pro-
posed GD and LSE, represented by iEF-GD, is used to check the effectiveness of the 
EKF training algorithm. All of these classifiers will use the same inputs, with same 
training conditions and initial values of the parameters to be updated. 

3.1. Simulation Tests 

Two benchmark data sets are used for these simulation tests. 

3.1.1. Iris Dataset Testing 
The first simulation test is undertaken using the Iris Dataset [25]. Iris dataset has 
4 inputs: sepal length (x1), sepal width (x2), petal length (x3), and petal width (x4). 
It has 3 output states or classes: Iris Setosa, Iris Versicolour, and Iris Virginica. This 
test is conducted using 150 data pairs, 80 of which are used for training and remain-
ing 70 are used for testing. The simulation is undertaken using MATLAB 2023b. 
In classification, once the clusters are generated, the classifier will calculate the 
system output. The related training algorithms are used to optimize classifier lin-
ear and non-linear parameters. Table 1 summarizes the comparison results using 
the related classifiers. All of the selected classifiers are operated to achieve optimal 
results based on the input data. The success rates of each classifier represent the 
accuracy values before and after training. It is clear that the related training algorithms 
can clearly improve classification accuracy.  

From Table 1, it is seen that during the verification test, the TWNFI performs 
better than the eTS classifier (85.84% vs. 75.67%), even though both have gener-
ated 5 clusters. The SEF and iEF classifiers have generated 3 clusters only, which 
can speed up the classification convergence. However, the iEF-DG outperforms 
the SEF (79.46% vs. 85.73%) due to iEF’s more efficient evolving algorithm, which 
can also be related to the formulation of 4 rules vs. 3 rules of the SEF. Comparing 
iEF-GD and iEF-EKF, it is clear that the proposed EKF method can effectively con-
trol weights of the iEF system to improve diagnostic accuracy (95.34% vs. 85.73%) 
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and processing efficiency (1.39 sec vs. 1.56 sec per epoch).  
 
Table 1. Performance comparison of the related classifiers using the Iris data. 

Classifier 
Success Rate (%) No. of 

Clusters 
No. of 
Rules 

Average Operation  
Time (sec) Before Training After Training 

TWNFI 80.16 85.84 5 6 2.25 

eTs 64.95 75.67 5 4 1.96 

SEF 74.35 79.46 3 3 2.19 

iEF-GD 78.98 85.73 3 4 1.56 

iEF-NFK 93.65 95.34 3 4 1.39 

 
Figure 1(a) shows the verification process of the developed iEF-EKF technique 

for the Iris data. It generates four false indicators in classification, which misclas-
sify the output data. Figure 1(b) represents the absolute errors during the testing 
process.  

 

 
Figure 1. Test results of the iEF-EKF classifier for the Iris data: (a) Performance of the iEF-
EKF with respect to the desired output (red line) and classifier’s output (blue line); (b) Abso-
lute testing errors.  

3.1.2. Breast Cancer Data Testing 
Another simulation test is undertaken using the Wisconsin Breast Cancer Dataset 
[26] to check the robustness of the proposed iEF-EKF classifier. This dataset has 
four input variables: glucose (x1), homa (x2), adiponectin (x3), and MCP (x4). The 
output has two classes: benign and malignant; or the output space is divided into 
2 classes to be unbiased.  

A total of 116 data pairs are selected for analysis: 60 for training and remaining 
56 for verification testing. The classification results are summarized in Table 2. It 
is seen that the training can clearly improve the classification accuracy. In terms of 
the number of formulated clusters, the SEF and iEF are more efficient in the evolv-
ing process than the TWNFI and the eTS classifiers (i.e., 4 clusters vs. 2). Since the 
SEF classifier adopts 2 rules only, it results in the lowest classification accuracy in 
this case. With the comparison of the SEF and the iEF methods (i.e., iEF-GD and 
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iEF-EKF), it is clear that the proposed iEF evolving method is more efficient than 
the related methods. The iEF-EKF outperforms the iEF-GD in terms of classifica-
tion accuracy (89.21% vs. 84.07%) and processing speed (0.63 sec vs. 0.88 sec), due 
to its efficient EKF training. 

 
Table 2. Performance comparison of the related classifiers using the breast cancer data 

Classifier 
Success Rate (%) No. of 

Clusters 
No. of 
Rules 

Average Operation 
Time (sec) Before Training After Training 

TWNFI 75.39 82.17 4 5 1.61 

eTs 68.94 79.31 4 3 0.78 

SEF 56.33 69.72 2 2 0.91 

iEF-GD 76.46 84.07 2 3 0.88 

iEF-NFK 82.39 89.21 2 3 0.63 

 
Figure 2(a) shows the processing results of the iEF-EKF classifier; it generates 4 

missed alarms and 3 false alarms. Figure 2(b) shows the absolute testing errors. 
 

 
Figure 2. Test results of the iEF-EKF classifier for the breast cancer data: (a) Performance 
of the iEF-EKF with respect to the desired output (red line) and classifier’s output (blue line); 
(b) Absolute testing errors.  

3.2. Gear Health Condition Monitoring and Fault Diagnosis 
3.2.1. Monitoring Indices 
Gear fault can be classified into two categories: localized defects (e.g., broken tooth 
and chipped tooth) and distributed defects (e.g., scoring and wear). This work will 
focus on localized gear fault diagnosis because a localized fault will not only degrade 
transmission accuracy but also may cause sudden failures. In this work, the gear fault 
diagnosis is conducted gear by gear. As the measured vibration signal is generated 
from various vibratory sources in a gearbox, the first step is to differentiate the sig-
nal specific to each gear of interest by using a time synchronous average filter [6]. 
As a result, each gear signal can be processed and represented in one full revolu-
tion, called the signal average. 
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Many techniques have been proposed in the literature for gear fault detection, 
however, each technique has its own advantages and limitations. Each technique 
could be efficient for specific applications only. In this work, as discussed in Intro-
duction, three features will be selected for this diagnostic classification from three 
information domains: energy, amplitude, and phase: 

1) Beta kurtosis index (x1): Using the overall residual signal obtained by band-stop 
filtering out the gear mesh frequency frZ and its harmonics (up to the 5th harmonic), 
where fr is the gear rotation frequency (Hz) and Z is the number of teeth of the 
gear.  

2) Wavelet energy index (x2): Also using the overall residual signal. 
3) Phase demodulation index (x3): Using the signal average.  
Details of these signal processing techniques and filtering procedures can be found 

in papers [6] [8]. The determination of the monitoring indices can be found in pa-
per [6], both of which are from the authors’ research team. 

3.2.2. Experimental Setup 
Figure 3 shows the experimental setup used for performing this test.  
 

 
Figure 3. Experimental setup: (1) variable speed controller; (2) drive motor; (3) optical 
sensor; (4) flexible-coupling; (5) load disc; (6) accelerometers (sensors); (7) gearbox; (8) 
electric load controller; (9) magnetic brake load system.  

 
This system is driven by a 2.2 kW induction motor, with speed ranging from 50 

rpm to 4200 rpm. The motor speed is changed by using a variable frequency speed 
controller (VFD022B21A). A flexible coupling is used to dampen the high-frequency 
vibration components and shocks from the motor. An optical sensor (ROS-W, 40 
mA and 3 - 15 V) is used to provide a one-pulse-per-revolution signal, used for time-
synchronous average filtering operations.  

The tested gear system is shown in Figure 4(a), which consists of two pairs of 
spur gears. The first pair has 32 and 80 teeth for the pinion and the gear, respec-
tively. The second pair has 96 and 48 teeth for the pinion and the gear, respec-
tively. A magnetic brake unit (B150-24-H, Placid Industries) is used to provide 
dynamic loads to the gear system. The vibration signals are collected using ICP 
accelerometers (SN98697, ICP-IMI) with sensitivity of 100 mV/g. These ICP sen-
sors are mounted on the gearbox housing to collect data along different directions. 
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These sensors are connected to a data acquisition board (NI PCI-4472), attached 
to a computer. A software interface has been developed to control the data acqui-
sition operations in real-time, in terms of the sensor network, sampling frequency, 
data size, etc. 
 

 
Figure 4. The tested gearbox: (a) A two-stage gear system: (1) input gear; (2) input pinion; 
(3) output pinion; (4) output; (b) A simulated gear damage with one tooth partially broken.  

 
Three gear health states (classes) are tested as illustrated in Figure 5:  
1) Healthy gear: 52 data sets are collected for analysis; 
2) Cracked gear: 67 data sets are collected; 
3) Partially broken gears: 74 data sets are collected for analysis, as shown in Fig-

ure 4(b).  
The health conditions of each gear are constrained to three state classes: C1 = 

healthy, C2 = cracked tooth damage, C3 = partially broken tooth damage. In pro-
cessing, the scopes are selected as: health C1 if [ ]0,  0.33y∈ , crack gear damaged C2 
if ( ]0.33,  0.67y∈ , and partially broken tooth damage C3 if ( ]0.67,  1.0y∈ .  
 

 
Figure 5. Tested gear classes: (a) Healthy gears; (b) Cracked gears; (c) Partially broken gear. 

3.2.3. Test Results Analysis 
Similarly to the conditions in simulation tests in Section 3.1, five related classifiers 
are used for comparison: eTS, TWNFI, SEF, iEF-DG and iEF-EKF. All of these clas-
sifiers have three inputs, and with same training conditions.  

Tests are undertaken under different load and speed conditions. The sampling fre-
quency is selected to make sure each tooth period contains about 50 data samples. For 
example, if the shaft speed is 1200 rpm, or fr = 20 Hz, the gear has Z = 32 teeth, the 
sampling frequency should be about: fs = 32 teeth × 50 samples × 20 Hz ≈ 32,000 Hz. 

Once the gear signal is collected, it is first processed by the use of the time syn-
chronous average filtering to get signal average. Then the signal average is further 
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processed to generate the monitoring indices of beta kurtosis (x1), wavelet ampli-
tude (x2) and phase information (x3), which are input variables to the classifiers.  

In processing, 157 data sets are used for healthy gear condition monitoring (70 
for training, 32 for validation and 55 for testing); 108 data sets are used for cacked 
gear condition monitoring (48 for training, 25 for validation and 35 for testing); 
and 117 data sets are used for partially broken gear condition monitoring (55 for 
training, 20 for validation and 42 for testing). 

Table 3 summarizes the diagnostic results using related classification techniques. 
In gear fault diagnosis, two types of errors are considered: 1) false alarm: the rec-
ognized gear fault is caused by other reasons (e.g., speed/load variations) instead of 
real gear defect; 2) missed alarm: the gear fault is not recognized by the diagnostic 
classifier. From Table 3, it is seen that the proposed iEF technique outperforms the 
classical eTS and TWNFI classifier, as well as the SEF classifier, with fewer clusters 
and higher diagnostic accuracy. That is mainly because the iEF technique has a more 
efficient evolving approach with the appropriate partition strategy. On the other 
hand, with the comparison of iEF-GD and iEF-EKF, the proposed EKF training 
method can improve not only classification accuracy (99.34% vs. 96.57%), but also 
processing efficiency (1.62 sec vs. 1.87 sec per epoch), which makes it more suitable 
for real-time monitoring applications.  
 

Table 3. Gear monitoring test results using the related classifiers.  

Classifier 
Success Rate (%) Healthy 

Gear 
Cracked 

Gear 
Partially 
Broken 

Overall  
Accuracy (%) 

Average Operation 
Time (sec) No. of Clusters No. of Rules 

TWNFI 5 6 87.2 85.36 90.96 88.57 2.83 

eTs 5 6 87.71 88.7 91.03 89.22 2.27 

SEF 4 4 96.38 94.31 94.28 95.03 1.99 

iEF-GD 3 4 97.91 95.86 97.06 96.88 1.87 

iEF-NFK 3 4 99.13 97.12 98.97 98.64 1.62 

 

 
Figure 6. Test results of the iEF-EKF classifier during the test period: (a) Performance of 
the iEF-EKF with respect to the desired output (red line) and classifier’s output (black line); 
(b) Absolute errors.  
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Figure 6(a) shows the classification process of the iEF-EKF classifier during the 
testing process. It is seen that iEF-EKF classifier is efficient in separating healthy 
state from the faulty state of the gearbox, but it has generated some errors in gear 
fault diagnosis with two false alarms and one missed alarm. Figure 6(b) illiterates 
the absolute errors. 
 

 
Figure 7. The output space processing results: The dotted circles C1 - C2 represent the con-
strained output space patterns. Solid circles represent the recognized clusters in the output 
space. 

 

 
Figure 8. The identified iEF classifier model after 50 training epochs. 

 
Figure 7 illustrates the output clusters (dotted circles) and the recognized clus-

ters in the output space using the iEF-EKF classifier, as indicated by the solid lines, 
in terms of x1 (beta-kurtosis) versus x2 (wavelet energy amplitude). Figure 8 shows 
the recognized fuzzy model architecture after 50 training epochs, after all of the 
training data sets have been input to the classifier. It is a 6-layer network. During 
the evolving process, this structure is updated gradually and continuously. Initially, 
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each input variable (in layer 1) had 3 MFs (in layer 2): S., M. and L. that are related 
to each cluster formation. After the evolution, 3 clusters are generated, which re-
sult in 4 rules, R1 - R4. Both x1 and x3 have three MFs: S., M. and L. On the other 
hand, x2 has two MFs only: S2 and L2. S2 is related to R1, while L2 is related to R3. 
M2 is not represented as it is not related to any reasoning rules. The firing strength 
of each rule is calculated in layer 3 by the related inference operation in Equation 
(3). After normalization in layer 4 and defuzzification (e.g., centroid), the output 
indicator value y can be computed in layer 5 using Equation (4). 

4. Conclusion 

An improved evolving fuzzy technology, iEF in short, has been developed in this 
work for real-time gearbox health condition monitoring and fault diagnosis. Clus-
ter evolution is performed based on the constrained output space partitions (e.g., 
healthy and different gear damaged states), so as to prevent possible misleading 
diagnostic information. The suggested evolving algorithm has the ability of add-
ing or subtracting clusters adaptively, and the representative patterns can be rec-
ognized between the input space and the constrained output space partitions. An 
enhanced Kalman filter, EKF, training method is proposed to improve parameter 
training efficiency and classification efficiency. The effectiveness of the developed 
iEF-EKF classifier has been examined by simulation tests using some benchmark 
data sets. It is also implemented for gear system monitoring under different gear 
health conditions. Test results have shown that the developed iEF classifier can ef-
fectively partition the input-output spaces with the appropriate constrained evolv-
ing strategy. It outperforms other related evolving algorithms. The proposed EKF 
training method can improve classification convergence with higher diagnostic 
accuracy and training efficiency using less processing time. It has potential to be ap-
plied for real-time gearbox health condition monitoring and fault diagnosis in in-
dustrial applications. 
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