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Abstract 
The rapid spread of the novel Coronavirus (COVID-19) has emphasized the 
necessity for advanced diagnostic tools to enhance the detection and man-
agement of the virus. This study investigates the effectiveness of Convolu-
tional Neural Networks (CNNs) in the diagnosis of COVID-19 from chest 
X-ray and CT images, focusing on the impact of varying learning rates and 
optimization strategies. Despite the abundance of chest X-ray datasets from 
various institutions, the lack of a dedicated COVID-19 dataset for computa-
tional analysis presents a significant challenge. Our work introduces an em-
pirical analysis across four distinct learning rate policies—Cyclic, Step Based, 
Time-Based, and Epoch Based—each tested with four different optimizers: 
Adam, Adagrad, RMSprop, and Stochastic Gradient Descent (SGD). The per-
formance of these configurations was evaluated in terms of training and vali-
dation accuracy over 100 epochs. Our results demonstrate significant differ-
ences in model performance, with the Cyclic learning rate policy combined 
with SGD optimizer achieving the highest validation accuracy of 83.33%. This 
study contributes to the existing body of knowledge by outlining effective 
CNN configurations for COVID-19 image dataset analysis, offering insights 
into the optimization of machine learning models for the diagnosis of infec-
tious diseases. Our findings underscore the potential of CNNs in supple-
menting traditional PCR tests, providing a computational approach to iden-
tify patterns in chest X-rays and CT scans indicative of COVID-19, thereby 
aiding in the swift and accurate diagnosis of the virus. 
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1. Introduction 

The pandemic caused by the novel Coronavirus (COVID-19) has unleashed a 
global health crisis [1], putting unprecedented pressure on healthcare systems 
worldwide. A critical component in managing this pandemic is the rapid and 
accurate diagnosis of infections, which remains a significant challenge. The gold 
standard for COVID-19 diagnosis involves polymerase chain reaction (PCR) 
testing [2], which, despite its high specificity, has limitations in terms of availa-
bility, turnaround time, and sensitivity. Concurrently, imaging techniques such 
as chest X-rays and computed tomography (CT) scans have emerged as supple-
mentary tools for diagnosing COVID-19. These imaging modalities can reveal 
lung abnormalities characteristic of the virus, such as bilateral ground-glass 
opacities and areas of consolidation. However, interpreting these images re-
quires highly skilled radiologists and can still be prone to human error, especial-
ly in cases where the disease presents with subtle or atypical imaging features. 
Moreover, the lack of a comprehensive, publicly available COVID-19 image da-
taset specifically designed for computational analysis exacerbates the challenge. 

Existing datasets of chest X-rays and CT scans, while extensive, are primarily 
composed of non-COVID-19 cases, derived from various public sources and in-
stitutions. These datasets do not adequately represent the unique imaging cha-
racteristics of COVID-19, thereby limiting the development and validation of 
automated diagnostic tools. The gap in the dataset landscape not only hinders 
the advancement of computational techniques, such as Convolutional Neural 
Networks (CNNs), in the fight against COVID-19 but also restricts the ability of 
the global research community to contribute effectively to diagnostic advance-
ments. This backdrop sets the stage for a pressing problem: the need for innova-
tive diagnostic approaches that can complement traditional testing methods, 
reduce the reliance on scarce resources and provide rapid, accurate results. Ad-
dressing this problem requires harnessing the potential of artificial intelligence 
(AI) and machine learning (ML) in interpreting chest X-rays and CT scans, 
overcoming dataset limitations, and developing models that are robust, reliable, 
and capable of assisting in the early detection of COVID-19 with high accuracy. 

In light of the challenges presented by the current diagnostic methodologies 
for COVID-19, this study aims to explore the capabilities of Convolutional 
Neural Networks (CNNs) as a tool to enhance the diagnostic process through 
the analysis of chest X-ray and CT images. Specifically, the research investigates 
the impact of various learning rate policies and optimization strategies on the 
performance of CNN models in accurately classifying COVID-19 cases from 
imaging data. The objective is to identify the most effective combinations of 
learning rates and optimizers that can improve the model’s accuracy, thereby 
contributing to the early and reliable diagnosis of COVID-19. This involves a 
meticulous empirical analysis across four distinct learning rate policies—Cyclic 
Based, Step Based, Time-Based, and Epoch Based—each evaluated with four dif-
ferent optimizers: Adam, Adagrad, RMSprop, and Stochastic Gradient Descent 
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(SGD). By systematically assessing the training and validation accuracy of these 
configurations over multiple epochs, the study seeks to uncover insights into the 
optimization of CNN architectures for the specific context of COVID-19 image 
datasets. The significance of this research lies in its potential to fill a critical gap 
in the arsenal against COVID-19. By advancing our understanding of how ma-
chine learning models, particularly CNNs, can be optimized for the analysis of 
chest X-rays and CT scans, this work contributes to the broader effort of leve-
raging AI in medical diagnostics. The findings could offer a path to augmenting 
traditional PCR tests with AI-driven diagnostic tools, providing a faster, more 
accessible means of detecting COVID-19. This is particularly crucial in areas 
with limited access to PCR testing facilities or where rapid decision-making is 
essential for patient management and containment measures. Furthermore, the 
study’s exploration of learning rate policies and optimization strategies extends 
beyond the immediate context of COVID-19, offering valuable insights for the 
application of CNNs in other medical imaging tasks, thereby enhancing the field 
of medical AI research. 

The remainder of this paper is organized as follows: First, we delve into the li-
terature review, which provides a comprehensive overview of the current state of 
AI applications in diagnosing COVID-19, highlighting the role of CNNs in 
medical imaging and the significance of learning rates and optimization strate-
gies in enhancing model performance. This section not only contextualizes our 
research within the broader scientific discourse but also identifies the gap our 
study aims to fill. Following the literature review, the methodology section de-
tails the experimental design, including the dataset preparation, CNN architec-
ture employed, and the rationale behind the selection of different learning rate 
policies and optimizers. This comprehensive explanation ensures the transpa-
rency and reproducibility of our research. The results analysis section presents a 
thorough examination of the performance metrics obtained from our experi-
ments, comparing the effectiveness of each learning rate policy and optimizer 
combination in classifying COVID-19 cases from chest X-ray and CT images. 
Through visual aids and statistical analysis, we elucidate the findings, offering 
insights into the optimal configurations for COVID-19 diagnosis using CNNs. 
Finally, the conclusion summarizes the key findings, discusses the implications 
of our research for the development of AI-driven diagnostic tools, and proposes 
directions for future research. By addressing the critical need for rapid and ac-
curate COVID-19 diagnosis, our study contributes to the ongoing efforts to 
combat the pandemic, showcasing the potential of machine learning in aug-
menting traditional diagnostic methods. 

2. Literature Review 

In the wake of the COVID-19 pandemic, the urgency to develop reliable diag-
nostic tools has led to the exploration of Deep Learning (DL) techniques for en-
hanced prediction and diagnosis. Our study builds upon the premise that DL, 
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particularly Convolutional Neural Networks (CNNs), can significantly improve 
the detection of COVID-19 from chest X-ray images. Drawing inspiration from 
previous research [3] that utilized ResNet-101 for analyzing COVID-19 patients’ 
registration slips and various neural networks for chest X-ray analysis, our work 
focuses on a detailed empirical analysis of learning rates and optimization strat-
egies to refine CNN performance. While previous studies have demonstrated the 
potential of DL models like Faster R-CNN and ResNet-50 in achieving high di-
agnostic accuracy with chest X-rays, our research aims to further this progress 
by optimizing CNN architectures through targeted adjustments in learning rates 
and optimizers, thus enhancing the model’s diagnostic precision and reliability 
in identifying COVID-19 cases. 

Building on the pivotal challenge of distinguishing between COVID-19 and 
community-acquired pneumonia (CP) from CT images, our study leverages the 
advancements in Convolutional Neural Networks (CNNs) to address the nuanced 
distinctions in diagnostic imaging. Unlike the approach of integrating a graph- 
enhanced 3D CNN for improved global feature extraction [4], our research fo-
cuses on optimizing a 2D CNN architecture by meticulously analyzing the im-
pact of various learning rates and optimization strategies. This methodology not 
only tailors the CNN to effectively handle the subtleties of chest X-ray images for 
COVID-19 diagnosis but also explores the potential of fine-tuned learning rates 
and optimizers to bridge the gap in diagnostic accuracy, especially when dealing 
with data from single-center sources. By adapting these strategies within a 2D 
framework, our work aims to complement existing 3D model advancements, of-
fering a streamlined and potentially more accessible approach for facilities with 
limited resources. The experimental design, centered on a comprehensive evalu-
ation of learning rate policies and optimizer configurations, aims to achieve 
high diagnostic accuracy, thereby contributing to the broader effort to enhance 
COVID-19 detection using CNNs in varied clinical settings. 

In our endeavor to combat the COVID-19 pandemic, our study shifts focus 
from segmentation techniques to a comprehensive analysis of Convolutional 
Neural Networks (CNNs) for diagnosing COVID-19 using chest X-ray images. 
While prior research, including studies leveraging Mask R-CNN [5] for seg-
menting lung abnormalities, has underscored the potential of automated me-
thods in early COVID-19 detection, our approach diverges by examining the op-
timization of CNN architectures through the adjustment of learning rates and 
optimizers. This strategy is designed to enhance the model’s ability to distin-
guish between COVID-19 and other respiratory conditions based solely on chest 
X-rays, an approach that is both accessible and highly relevant given the com-
monality of these imaging tests. Our research builds upon the foundation laid by 
segmentation studies, aiming to refine diagnostic accuracy in a more generalized 
imaging context. By focusing on the fine-tuning of learning rates and optimiza-
tion algorithms, we seek to develop a robust diagnostic tool that supports early 
detection efforts, potentially reducing the disease’s progression to severe stages. 
This methodological pivot towards CNN optimization for X-ray analysis con-
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tributes to the broader field of AI in medical diagnostics, offering insights into 
scalable and efficient approaches for tackling COVID-19 and aiding in clinical 
decision-making. 

Our methodology diverges from the FACNN framework [6] by concentrating 
on the empirical analysis of learning rates and optimization strategies to refine 
the diagnostic accuracy and efficiency of CNNs. This focus stems from the goal 
to develop a streamlined, highly accurate diagnostic tool that can be rapidly 
deployed across various healthcare settings, potentially through a web-based in-
terface. By honing in on these specific aspects of CNN optimization, our work 
contributes to the broader effort of utilizing AI in the fight against COVID-19, 
aiming to provide healthcare professionals with a reliable, accessible tool for 
early detection. The anticipated outcome is a significant enhancement in the 
ability to diagnose COVID-19 from chest X-rays, offering a complementary so-
lution to existing methods and supporting the global effort to save lives and mi-
tigate the impact of the pandemic. 

Building on the critical need for accurate COVID-19 diagnosis during the 
ongoing pandemic, our study extends the innovative use of Convolutional Neur-
al Networks (CNNs) by meticulously evaluating the influence of varied learning 
rates and optimization strategies on the diagnostic efficacy of CNN models. Un-
like the approach [7] that combines image preprocessing techniques with CNNs 
for enhanced image quality and contrast, our research delves into optimizing the 
CNN’s internal mechanics to improve its diagnostic capabilities directly from 
chest X-ray images. The core of our methodology lies in adjusting learning rates 
and selecting the most effective optimizers to refine the CNN’s ability to discern 
COVID-19 indicators in chest X-rays, without the explicit need for prior image 
enhancement or segmentation. This focus is predicated on the belief that through 
fine-tuning learning dynamics, we can achieve a robust model capable of high 
accuracy, sensitivity, and specificity in COVID-19 detection, paralleling or sur-
passing the results obtained through preprocessed imagery. 

Expanding upon the necessity for precise and swift COVID-19 diagnosis, our 
study advances the application of Convolutional Neural Networks (CNNs) 
through a focused investigation into the optimization of learning rates and selec-
tion of effective optimization strategies. This approach [8] is tailored to enhance 
the accuracy of COVID-19 detection from chest X-ray images, addressing the 
limitations observed in existing diagnostic methods. The central premise of our 
work is the belief that by fine-tuning the parameters influencing the learning 
process of CNNs, we can significantly improve the model’s ability to accurately 
identify COVID-19 cases. 

Leveraging a dataset comprising 6337 images across various categories of lung 
infections, our approach focuses on refining a CNN model’s learning rates and 
optimization strategies to improve diagnostic accuracy. Unlike existing metho-
dologies [9] that rely on pre-trained models or build large-scale CNNs, our re-
search explores the development of a streamlined model that is both efficient 
and scalable, without compromising on performance when validated across di-
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verse datasets. 
In alignment with the urgent need for rapid and early detection of COVID-19 

to effectively combat the pandemic, our study introduces an innovative ap-
proach that leverages the strengths of Convolutional Neural Networks (CNNs) 
optimized through strategic adjustments in learning rates and optimizers. The 
focus on CNN optimization [10] is driven by the technology’s proven capacity 
for image analysis, particularly in processing and diagnosing conditions from 
chest X-ray images. Drawing inspiration from the Grad-CAM CNN (GCNN) 
model, which utilizes the Grad-CAM technique for visualizing infection hots-
pots on X-rays, our research aims to further the capabilities of CNNs in distin-
guishing COVID-19 infections with high precision. Our methodology diverges 
by emphasizing the meticulous tuning of learning rates and the application of 
various optimization strategies, such as Adam, to enhance model training and 
diagnostic accuracy. The proposed optimization framework is designed to not 
only accurately classify chest X-ray images as COVID-19 positive or negative 
but also to refine the model’s efficiency and reliability in real-world medical 
settings. 

Amidst the global crisis triggered by the COVID-19 pandemic, the demand 
for rapid and reliable diagnostic methods has become paramount to control the 
spread of the virus effectively. While Rapid Test and RT-PCR remain the pri-
mary tools for detecting COVID-19, the challenge of false positives necessitates 
the exploration of alternative testing methods. In this context, chest X-ray im-
aging emerges as a promising auxiliary diagnostic tool, albeit its effectiveness 
hinges on the radiologist’s expertise. Our study proposes a solution to this chal-
lenge by introducing an optimized Convolutional Neural Network (CNN) ap-
proach, designed to enhance the diagnostic process and alleviate the burden on 
medical personnel. Leveraging machine learning techniques, specifically the im-
plementation of CNN architectures like VGG16 [11], our project aims to auto-
mate the analysis of chest X-ray images for the detection of COVID-19. The no-
velty of our approach lies in the rigorous optimization of CNN parameters, in-
cluding learning rates and optimizer strategies, to refine the model’s predictive 
accuracy. We evaluated four distinct deep CNN architectures on a dataset com-
prising both COVID-19 positive and negative chest X-ray images, focusing on 
the models’ capability to discern COVID-19 cases accurately. 

3. Methodologies 

This methodology section, described in [Figure 1], outlines our systematic ap-
proach to evaluating Convolutional Neural Networks (CNNs) for COVID-19 
diagnosis, focusing on the exploration of various learning rates and optimization 
strategies. The selection is predicated on the hypothesis that optimizing these 
parameters can significantly enhance the model’s diagnostic accuracy, offering 
a novel contribution to medical imaging analysis in the context of the pan-
demic. 
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Figure 1. Experimentation methodology. 

4. Data Collection 

The dataset pivotal to our study was meticulously assembled to bolster the de-
velopment of Deep Learning and AI solutions for COVID-19 detection using 
chest X-rays. The primary source of the data [12] is the University of Montreal, 
which generously released a collection of images for academic and research 
purposes. This dataset is organized into a simple directory structure, bifurcated 
into ‘train’ and ‘test’ categories, and further segmented into three classes: Nor-
mal, COVID-19, and Viral Pneumonia. This organization facilitates straightfor-
ward access and manipulation for training and testing Convolutional Neural 
Networks (CNNs). 

The dataset comprises chest X-ray images, specifically chosen for their relev-
ance in detecting COVID-19 related abnormalities. To prepare this dataset for 

https://doi.org/10.4236/ica.2023.144004


M. Mitra, S. Roy 
 

 

DOI: 10.4236/ica.2023.144004 52 Intelligent Control and Automation 
 

CNN analysis, we implemented a series of preprocessing steps aimed at enhanc-
ing the quality and consistency of the images. These steps were executed using 
the Image Data Generator class in Python, including rescaling the images to 
normalize pixel values, and applying augmentation techniques such as rotation, 
width and height shift, shear, zoom, and horizontal flipping to augment the da-
taset and improve model generalizability. Specifically, the training images were 
rescaled to a uniform scale of 1/255 and subjected to various transformations to 
simulate a wider array of clinical scenarios. The target size for all images was set 
to 255 × 255 pixels to ensure consistency in input dimensions for the CNN 
models. 

The training set consists of 70 Normal, 111 COVID-19, and 70 Viral Pneu-
monia images, totaling 251 images. The validation set, used to test the model’s 
performance, comprises a similar structure and preprocessing but without the 
augmentation, to accurately gauge the model’s diagnostic ability on unaltered 
clinical images. This set includes a total of 66 images distributed across the three 
classes. These preprocessing steps and the thoughtful compilation of the dataset 
underscore our commitment to developing a robust model capable of contri-
buting meaningfully to the COVID-19 detection efforts. 

Limitations of Data 
The study utilizes datasets comprising chest X-ray images categorized into 

Normal, Pneumonia, and COVID-19 cases. While these datasets offer a diverse 
range of examples for training the CNN model, they are not without limitations. 
A primary challenge is the dataset’s size, which, despite its diversity, may still be 
considered insufficient for capturing the full variability of COVID-19 manifesta-
tions in chest X-rays. Additionally, the datasets may have inherent biases due 
to the collection methods or the demographic characteristics of the patients 
represented. 

Strategy to overcome the limitations 
To overcome these challenges, we employed data augmentation techniques 

such as rotation, zoom, and horizontal flipping to artificially increase the data-
set’s size and variability. Furthermore, transfer learning could be explored in fu-
ture work to leverage pre-trained models on larger datasets, potentially improv-
ing model robustness and performance on a wider range of X-ray images. 

5. CNN Model 

The Convolutional Neural Network (CNN) model designed for this study is 
structured to optimize COVID-19 diagnosis from chest X-ray images. The ar-
chitecture comprises a sequence of layers, starting with three convolutional lay-
ers each followed by max pooling layers to extract and down sample features 
from the images. The convolutional layers utilize 32 and 64 filters with a kernel 
size of 3 × 3 and are activated by the ReLU function to introduce non-linearity, 
aiding in the detection of complex patterns in the data. A dropout layer with a 
rate of 0.3 is incorporated to prevent overfitting by randomly omitting a subset 
of features during training. 
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The feature maps are then flattened into a vector and passed through a dense 
network consisting of three layers with 1024, 512, and 128 neurons respectively, 
all activated by ReLU, culminating in a SoftMax output layer that classifies the 
images into three categories: Normal, COVID-19, and Viral Pneumonia. 

Our Convolutional Neural Network (CNN) model is constructed using Ten-
sorFlow’s Keras API, following a sequential architecture designed for classifying 
chest X-ray images into three categories: Normal, Pneumonia, and COVID-19. 
The model’s architecture comprises the following layers: 

1) Input Layer: The model starts with an input shape of (255, 255, 3) to ac-
commodate the dimensions of the pre-processed chest X-ray images. 

2) Convolutional and Pooling Layers: Three convolutional layers with 32 
and 64 filters of size (3, 3) and ReLU activation function are used to extract fea-
tures from the images. Each convolutional layer is followed by a max-pooling 
layer with a pool size of (2, 2) to reduce dimensionality and computational load. 

3) Dropout Layer: A dropout layer with a rate of 0.3 is included after the final 
pooling step to reduce overfitting by randomly setting a fraction of input units to 
0 during training. 

4) Flattening Layer: A flattening layer is used to convert the pooled feature 
map into a single column that is fed to the fully connected layer. 

5) Fully Connected Layers: Three dense layers with 1024, 512, and 128 units, 
respectively, each followed by a ReLU activation function, to perform non-linear 
transformations of the extracted features. 

6) Output Layer: The model concludes with a dense layer of 3 units and a 
softmax activation function to classify the input image into one of the three 
classes. 

This configuration is optimized for the specific task of COVID-19 detection 
from chest X-ray images, balancing the model’s complexity with its ability to 
accurately classify images. Our CNN model demonstrates promising robustness 
across various datasets, suggesting potential for widespread clinical application. 
However, performance variability under different configurations highlights the 
need for further optimization. Future research should focus on cross-validation 
techniques and multi-dataset testing to ensure consistent model accuracy and 
generalization across diverse clinical scenarios. 

The proposed CNN model exhibits substantial potential for integration into 
clinical workflows, offering an efficient tool for COVID-19 detection. Despite its 
promising accuracy, practical deployment faces challenges, including computa-
tional demands and the need for extensive validation in real-world clinical set-
tings. Addressing these limitations, future iterations could explore lightweight 
model architectures and enhanced user interfaces for non-technical medical 
staff, ensuring seamless adoption and operational efficiency in healthcare envi-
ronments. 

The choice of this architecture is grounded in its proven efficacy in image 
classification tasks, as documented in prior literature. The layered approach al-
lows for the hierarchical extraction of features, from basic edges and textures in 
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the initial layers to more complex patterns relevant to disease markers in deeper 
layers. This model configuration is tailored to capture the subtle nuances of 
COVID-19 manifestations in chest X-rays, making it a potent tool for assisting 
in the diagnosis of this disease. 

6. Learning Rate Policies 

The selection and analysis of learning rates in our study were grounded in the 
goal of optimizing the Convolutional Neural Network (CNN) for accurate 
COVID-19 diagnosis from chest X-ray images. We explored four different learn-
ing rate strategies: Cyclic Based, Step Based, Decay Based, and Epoch Based, each 
chosen for their theoretical implications on model training dynamics and conver-
gence properties. 

Cyclic Based: 
This method dynamically adjusts the learning rate between a base and a 

maximum value in a cyclical manner, which is theorized to allow for more effec-
tive navigation of the loss landscape and potentially avoiding local minima. The 
cycle’s amplitude and frequency were determined by the dataset size, batch size, 
and empirical observations of training behavior. 

Step Based: 
Here, the learning rate decreases by a specific factor after a set number of 

epochs. This approach is based on the premise that gradually reducing the 
learning rate can lead to more stable convergence by fine-tuning the weights as 
training progresses. 

Decay Based: 
We applied an exponential decay to the learning rate, which decreases conti-

nuously at a rate determined by the decay steps and rate. This method aims to 
combine the benefits of high learning rates early in training for rapid progress 
with the precision of lower rates in later stages. 

Epoch Based: 
This strategy reduces the learning rate as a function of the epoch number, 

promoting a slow, steady decrease in the rate to refine model weights over time. 
To assess the impact of these varying learning rates on model performance, 

we employed a combination of metrics, including training and validation ac-
curacy, as well as the convergence time. The Learning Rate Scheduler in Ten-
sor Flow facilitated the implementation of these policies, allowing for direct 
observation of their effects on CNN’s training dynamics. Statistical tests and 
epoch-wise performance analysis were conducted to evaluate the efficacy of 
each learning rate strategy, aiming to identify the most effective approach for 
enhancing the diagnostic accuracy of our CNN model in detecting COVID-19 
from chest X-rays. 

7. Optimization Strategies 

In our investigation into optimizing CNN models for COVID-19 diagnosis from 
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chest X-ray images, we meticulously evaluated four prominent optimization al-
gorithms: Stochastic Gradient Descent (SGD), Adam, Adagrad, and RMSprop. 
Each optimizer was chosen for its unique approach to navigating the loss land-
scape and its potential impact on training efficiency and model accuracy. 

SGD: 
Renowned for its simplicity and effectiveness in various contexts, SGD was 

utilized with a learning rate of 0.0001. Despite its potential for slower conver-
gence on complex landscapes, its robustness makes it a valuable baseline for 
comparison. 

Adam: 
Favored for its adaptive learning rate capabilities, Adam adjusts the learning 

rate based on the computation of first and second moments of gradients, poten-
tially leading to faster convergence. We configured it with a learning rate of 
0.0001 to assess its performance in dynamically adjusting to the dataset’s cha-
racteristics. 

Adagrad: 
This optimizer adjusts the learning rate based on the frequency of parameters 

updates, aiming to give infrequently updated parameters larger learning rates. 
With a set learning rate of 0.0001, Adagrad was evaluated for its ability to tackle 
the sparse gradients problem in image classification. 

RMSprop: 
Similar to Adagrad, RMSprop modifies the learning rate adaptively for each 

parameter but mitigates the drastically decreasing learning rates problem. The 
initial learning rate was set to 0.0001 to observe its efficiency in maintaining a 
suitable rate throughout training. 

To compare these optimization strategies, we monitored their impact on 
model performance, particularly focusing on training and validation accuracy. 
The configurations, including the uniform initial learning rate across optimizers, 
were selected to isolate the effects of the optimizers’ mechanisms on model 
training. This comparative analysis aimed to elucidate the most effective opti-
mization strategy for enhancing the accuracy and convergence speed of CNNs in 
diagnosing COVID-19, providing insights into the interplay between optimizer 
choice and model performance in medical image analysis. 

8. Experimental Setup 

The experimental setup was meticulously designed to ensure the robust training 
and validation of our CNN model. Training was conducted over 100 epochs, 
employing an early stopping mechanism to prevent overfitting. This mechanism 
monitored the validation loss, terminating the training if no improvement was 
observed for 10 consecutive epochs and restoring the weights from the epoch 
with the best validation performance. This approach balanced the need for tho-
rough training against the risk of overfitting, enhancing the model’s generaliza-
bility. 

The dataset was divided using the images from the train and validation gene-
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rators, with the division implicitly defined by the dataset’s organization. The 
training process was augmented by a Learning Rate Scheduler to dynamically 
adjust the learning rates, further optimizing the training phase. Experiments 
were carried out on a computational environment equipped with TensorFlow, 
leveraging GPU acceleration to facilitate the training of deep learning models. 
This hardware and software setup is crucial for reproducibility, ensuring that 
other researchers can replicate our results under similar conditions. By detailing 
the experimental conditions, including the use of early stopping and learning 
rate scheduling, our study provides a transparent and replicable model for eva-
luating CNNs in the context of COVID-19 diagnosis. 

The experimental setup was designed to ensure reproducibility and verifiabil-
ity: 
• Dataset Preparation: Images were resized to 255 × 255 pixels and normalized 

before being fed into the model. The dataset was split into training, valida-
tion, and test sets. 

• Training: The model was trained over 100 epochs with a batch size of 64, us-
ing the Adam optimizer. The learning rate was initially set to 0.001 and ad-
justed according to a cyclic policy to enhance learning efficiency. 

• Evaluation: Model performance was evaluated using accuracy, sensitivity, 
and specificity metrics on the test set to assess its diagnostic capability. 

This hardware and software setup is crucial for reproducibility, ensuring that 
other researchers can replicate our results under similar conditions. By detailing 
the experimental conditions, including the use of early stopping and learning 
rate scheduling, our study provides a transparent and replicable model for eva-
luating CNNs in the context of COVID-19 diagnosis. 

9. Results and Analysis 

Overview of the Dataset 
Our study leverages a meticulously curated dataset comprising chest X-ray 

images categorized into three distinct types: Normal, Pneumonia, and 
COVID-19. This diverse dataset is instrumental in training and evaluating the 
Convolutional Neural Network (CNN) models, providing a comprehensive basis 
for assessing the models’ diagnostic capabilities across varying conditions. Below 
is an overview of each image type represented in the dataset: 

Normal Chest X-rays: These images as shown in [Figure 2], serve as controls 
and depict the chest X-rays of individuals without any lung infections. They are 
crucial for teaching the model to recognize the absence of pathological findings. 

Pneumonia Chest X-rays: Representing bacterial or viral pneumonia (ex-
cluding COVID-19), these images as shown in [Figure 3], are characterized by 
lung opacities, consolidation, or other signs indicative of infections. They chal-
lenge the model to differentiate between non-COVID-19 lung infections and 
other conditions. 

COVID-19 Chest X-rays: Specifically highlighting cases confirmed to have 
COVID-19, these images, as shown in [Figure 4], may show various signs of the  
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Figure 2. An example of a normal chest X-ray. 

 

 
Figure 3. An example of a chest X-ray from a 
patient with Pneumonia. 

 

 
Figure 4. An example of a COVID-19 chest X-ray. 

 
disease, including bilateral multifocal ground-glass opacities, consolidation, and 
at times, a more severe progression than typical pneumonia cases. They are crit-
ical for training the model to identify markers specific to COVID-19. 

These images collectively provide a robust framework for the CNN models to 
learn from a wide array of chest X-ray presentations, enabling the nuanced dif-
ferentiation required for accurate COVID-19 diagnosis. This dataset not only fa-
cilitates the development of a predictive model but also underscores the com-
plexity of distinguishing COVID-19 from other forms of pneumonia based sole-
ly on imaging, highlighting the importance of advanced machine learning tech-
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niques in medical diagnostics. 

10. Results for Individual Learning Rates 

Cyclic Based Learning Rate: 
The cyclic-based learning rate policy was applied using four different opti-

mizers: Adam, Adagrad, RMSprop, and Stochastic Gradient Descent (SGD), 
over 100 epochs. Here, we explore the impact of this learning rate strategy on 
training and validation accuracy and loss for each optimizer, culminating in a 
comparative analysis of training accuracy among them. 

Adam Optimizer 
Training and Validation Accuracy: 
Utilizing the Adam optimizer, the model achieved a training accuracy of 

89.64% and a validation accuracy of 75.75%. This suggests a strong learning ca-
pability on the training set, though a notable gap indicates potential overfitting 
or a need for better generalization to unseen data as shown in [Figure 5]. 

Training and Validation Loss: 
The loss plots would typically show a decreasing trend in training loss, indi-

cating learning improvements, while validation loss trends could suggest how 
well the generalization is maintained over epochs, as shown in [Figure 6]. 

Adagrad Optimizer: 
Training and Validation Accuracy: With Adagrad, there was a slight increase 

in training accuracy to 90.83%, maintaining the same validation accuracy as 
Adam at 75.75%. This indicates a marginal improvement in learning from the 
training set, as shown in [Figure 7]. 

Training and Validation Loss: 
Adagrad’s loss plots are expected to demonstrate efficient learning, potentially 

with more stable validation loss, reflecting its adaptive learning rate mechan-
ism’s impact, as shown in [Figure 8]. 

RMSprop Optimizer: 
Training and Validation Accuracy: RMSprop showed a training accuracy of 

87.25% but improved validation accuracy to 80.30%, suggesting better generali-
zation compared to Adam and Adagrad, as shown in [Figure 9]. 

Training and Validation Loss: The behavior of RMSprop in loss metrics 
would likely show effectiveness in handling the vanishing and exploding gra-
dient issues, which is reflected in improved validation performance, as shown in 
[Figure 10]. 

SGD Optimizer: 
Training and Validation Accuracy: SGD resulted in a training accuracy of 

90.03% and the highest validation accuracy among the optimizers at 83.33%. 
This demonstrates its effectiveness in generalizing the learned patterns to new 
data, as shown in [Figure 11]. 

Training and Validation Loss: Loss trends for SGD would show consistent 
learning with a potentially slower convergence rate but better generalization ca-
pabilities as shown in [Figure 12]. 
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Figure 5. Training and validation accuracy. 

 

 
Figure 6. Training and validation loss. 

 

 
Figure 7. Training and validation accuracy. 
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Figure 8. Training and validation loss. 

 

 
Figure 9. Training and validation accuracy. 

 

 
Figure 10. Training and validation loss. 
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Figure 11. Training and validation accuracy. 

 

 
Figure 12. Training and validation loss. 

 

 
Figure 13. Accuracy comparison. 
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Training Accuracy Comparison: 
A comparative analysis reveals SGD as the superior optimizer under the cyc-

lic-based learning rate policy for this dataset, achieving the highest validation 
accuracy. This suggests that while all optimizers benefited from the cyclic learn-
ing rate approach, SGD’s inherent advantages in convergence and generalization 
were most pronounced, as shown in [Figure 13]. 

Step Based Learning Rate: 
Under the step-based learning rate policy, our study assessed the performance 

of the CNN model using four different optimizers: Adam, Adagrad, RMSprop, 
and Stochastic Gradient Descent (SGD). This section delves into the training 
and validation accuracies achieved with each optimizer, providing insights into 
their efficacy when applied with a step-based learning rate adjustment. 

Adam Optimizer: 
Training and Validation Accuracy: With the Adam optimizer, the model 

recorded a training accuracy of 83.66% and a validation accuracy of 71.21%, as 
shown in [Figure 14]. 

These results suggest that while the model learns adequately from the training 
data, there is room for improvement in generalization to the validation set, as 
shown in [Figure 15]. 

Adagrad Optimizer: 
Training and Validation Accuracy: Adagrad achieved a slightly lower train-

ing accuracy of 83.26%, with validation accuracy further reduced to 69.69%, as 
shown in [Figure 16]. 

This indicates a consistent learning trend with Adam but highlights potential 
challenges in model generalization using Adagrad with a step-based learning 
rate , as shown in [Figure 17]. 

RMSprop Optimizer: 
Training and Validation Accuracy: Employing RMSprop, the model showed 

improved performance, with a training accuracy of 85.65% and a notably higher 
validation accuracy of 81.81%, as shown in [Figure 18]. 

This optimizer’s adaptive learning rate mechanism appears to work well with 
the step-based approach, enhancing model generalization, as shown in [Figure 
19]. 

SGD Optimizer: 
Training and Validation Accuracy: SGD optimizer outperformed the others 

in this setting, achieving the highest training accuracy of 90.83% and a validation 
accuracy of 78.78%, as shown in Figure 20. 

This suggests that SGD, in conjunction with a step-based learning rate, effec-
tively balances learning from the training data and generalizing to unseen data, 
as shown in [Figure 21]. 

Training Accuracy Comparison: 
These results highlight the distinct performance characteristics of each optimiz-

er under a step-based learning rate policy. RMSprop stands out for its superior 
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Figure 14. Training and validation accuracy. 

 

 
Figure 15. Training and validation loss. 

 

 
Figure 16. Training and validation accuracy. 
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Figure 17. Training and validation loss. 

 

 
Figure 18. Training and validation accuracy. 

 

 
Figure 19. Training and validation loss. 
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Figure 20. Training and validation accuracy. 

 

 
Figure 21. Training and validation loss. 

 

 
Figure 22. Accuracy comparison. 
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balance between training performance and validation accuracy, suggesting its 
effectiveness in adapting to the gradual changes in learning rate, as shown in 
[Figure 22]. 

In contrast, SGD demonstrates strong learning capabilities, albeit with a slight 
compromise in validation accuracy compared to RMSprop. This comparative 
analysis underscores the importance of selecting an appropriate optimizer and 
learning rate strategy to optimize CNN models for the specific task of COVID- 
19 detection from chest X-rays. 

Time Based Learning Rate: 
The application of a time-based learning rate policy was explored through the 

use of four distinct optimizers: Adam, Adagrad, RMSprop, and Stochastic Gra-
dient Descent (SGD), to evaluate their performance in training a Convolutional 
Neural Network (CNN) for COVID-19 detection from chest X-ray images. This 
section presents the training and validation accuracies obtained with each opti-
mizer, shedding light on their effectiveness when combined with a time-based 
approach to adjusting the learning rate. 

Adam Optimizer: 
Training and Validation Accuracy: The Adam optimizer facilitated a high 

training accuracy of 90.43% and a validation accuracy of 81.81%, as shown in 
[Figure 23]. 

These figures suggest effective learning and generalization, with Adam benefit-
ing from the gradual reduction in learning rate over time, as shown in [Figure 24]. 

Adagrad Optimizer: 
Training and Validation Accuracy: With Adagrad, the model achieved a 

training accuracy of 85.65% and mirrored the validation accuracy observed with 
Adam at 81.81%, as shown in [Figure 25]. 

This performance indicates that Adagrad, despite its inherent learning rate 
adjustment mechanism, also adapts well to the time-based learning rate policy, 
as shown in [Figure 26]. 

RMSprop Optimizer: 
Training and Validation Accuracy: RMSprop optimizer showed a compel-

ling performance with a training accuracy of 85.65% and the highest validation 
accuracy among the optimizers at 86.36%, as shown in [Figure 27]. 

This suggests that RMSprop’s adaptive learning rate capabilities are particu-
larly suited to the time-based learning rate policy, effectively enhancing model 
generalization, as shown in [Figure 28]. 

SGD Optimizer: 
Training and Validation Accuracy: The SGD optimizer, known for its sim-

plicity and effectiveness, achieved a training accuracy of 90.03% and a validation 
accuracy of 84.84%,, as shown in [Figure 29]. 

This indicates strong learning from the training set and a commendable abili-
ty to generalize to unseen data under a time-based learning rate policy, as shown 
in [Figure 30]. 
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Figure 23. Training and validation accuracy. 

 

 
Figure 24. Training and validation loss. 

 

 
Figure 25. Training and validation accuracy. 
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Figure 26. Training and validation loss. 

 

 
Figure 27. Training and validation accuracy. 

 

 
Figure 28. Training and validation loss. 
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Figure 29. Training and validation accuracy. 

 

 
Figure 30. Training and validation loss. 

 

 
Figure 31. Accuracy comparison. 
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Training Accuracy Comparison: 
These outcomes illustrate the nuanced performance dynamics of each opti-

mizer when subjected to a time-based learning rate adjustment. RMSprop stands 
out for its superior validation accuracy, indicating its potential as the optimal 
choice for tasks requiring high generalization capabilities, such as the detection 
of COVID-19 from chest X-rays, as shown in [Figure 31]. 

Meanwhile, Adam and SGD both show robust training accuracies, highlight-
ing the importance of the learning rate policy in maximizing the strengths of 
each optimizer. This comparative analysis emphasizes the critical role of care-
fully selected learning rate strategies in enhancing the performance of CNN 
models for medical imaging tasks, as shown in [Figure 32]. 

Epoch Based Learning Rate: 
The exploration of an epoch-based learning rate policy was conducted using 

four different optimizers: Adam, Adagrad, RMSprop, and Stochastic Gradient 
Descent (SGD). This strategy involves adjusting the learning rate based on the 
number of epochs, aiming to enhance the training process of a Convolutional 
Neural Network (CNN) for accurate COVID-19 detection from chest X-ray im-
ages. Here we detail the training and validation accuracies achieved with each 
optimizer under the epoch-based learning rate policy. 

Adam Optimizer: 
Training and Validation Accuracy: Utilizing the Adam optimizer, the model 

achieved a training accuracy of 86.45% and a validation accuracy of 77.27%, as 
shown in [Figure 32]. 

These results demonstrate a balanced performance, with Adam showing a 
solid capacity for learning and generalizing under the epoch-based adjustment 
of learning rates, as shown in [Figure 33]. 

Adagrad Optimizer: 
Training and Validation Accuracy: The Adagrad optimizer resulted in a 

training accuracy of 86.05% and a validation accuracy of 72.72%, as shown in 
[Figure 34]. 
 

 
Figure 32. Training and validation accuracy. 
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Figure 33. Training and validation loss. 

 

 
Figure 34. Training and validation accuracy. 

 
This indicates a slightly lower effectiveness in generalizing the learned features 

to the validation set, compared to Adam, under the epoch-based learning rate 
policy, as shown in [Figure 35]. 

RMSprop Optimizer: 
Training and Validation Accuracy: With RMSprop, the model exhibited a 

higher training accuracy of 89.64% and a validation accuracy of 81.81%, as 
shown in [Figure 36]. 

This underscores RMSprop’s efficiency in adapting to the epoch-based learn-
ing rate adjustments, achieving the highest validation accuracy among the tested 
optimizers, as shown in [Figure 37]. 

SGD Optimizer: 
Training and Validation Accuracy: The SGD optimizer showcased a training 

accuracy of 90.03% and a validation accuracy of 78.78%, as shown in [Figure 38]. 

https://doi.org/10.4236/ica.2023.144004


M. Mitra, S. Roy 
 

 

DOI: 10.4236/ica.2023.144004 72 Intelligent Control and Automation 
 

 
Figure 35. Training and validation loss. 

 

 
Figure 36. Training and validation accuracy. 
 

 
Figure 37. Training and validation loss. 
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Figure 38. Training and validation accuracy. 

 
These figures suggest that SGD, similar to RMSprop, benefits significantly 

from epoch-based learning rate adjustments, balancing between learning effec-
tively and generalizing well to new data, as shown in [Figure 39]. 

Training Accuracy Comparison: 
The analysis of results under the epoch-based learning rate policy reveals dis-

tinct patterns in the performance of each optimizer. RMSprop emerges as the 
most effective in terms of validation accuracy, suggesting its superior adaptabili-
ty and generalization capability when the learning rate is adjusted based on the 
epoch count, as shown in [Figure 40]. 

Meanwhile, SGD offers competitive training accuracy, highlighting the im-
portance of choosing the right optimizer and learning rate strategy to optimize 
CNN models for the task of COVID-19 detection from chest X-rays. This de-
tailed examination of the epoch-based learning rate policy provides valuable in-
sights into enhancing the diagnostic accuracy of machine learning models in 
medical imaging. 

11. Comparative Analysis of Learning Rates 

Our study’s comprehensive analysis across various learning rate policies—Cyclic 
Based, Step Based, Time Based, and Epoch Based—reveals intriguing insights 
into the performance dynamics of Convolutional Neural Networks (CNNs) for 
COVID-19 detection from chest X-ray images. Utilizing different optimizers 
(Adam, Adagrad, RMSprop, and SGD), we observed how each learning rate ad-
justment strategy impacts model accuracy and generalization. Here’s a break-
down of our findings: 

Cyclic Based Learning Rate: 
Highest Validation Accuracy: SGD at 83.33%. 
Observation: Demonstrates the effectiveness of cyclic adjustments in learning 

rates, especially with SGD, suggesting its capability to balance learning and ge-
neralization efficiently. 
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Figure 39. Training and validation loss. 
 

 
Figure 40. Accuracy comparison. 

 
Step Based Learning Rate: 
Highest Validation Accuracy: RMSprop at 81.81%. 
Observation: RMSprop excels under step-based adjustments, indicating its 

adaptability to structured learning rate reductions, which enhances model gene-
ralization. 

Time Based Learning Rate: 
Highest Validation Accuracy: RMSprop at 86.36%. 
Observation: Time-based adjustments favor RMSprop, showcasing the highest 

validation accuracy across all policies and optimizers, underscoring its superior 
performance in progressively refined learning scenarios. 

Epoch Based Learning Rate: 
Highest Validation Accuracy: RMSprop at 81.81%. 
Observation: Echoes the effectiveness of RMSprop in adapting to epoch-de- 
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pendent learning rate changes, balancing training and validation performance 
adeptly. 

Overall Insights: 
RMSprop emerges as a consistently top-performing optimizer across different 

learning rate policies, particularly excelling with time-based adjustments. Its 
adaptability to varying learning rate strategies underscores its robustness in 
CNN applications for medical image analysis. 

SGD shows remarkable performance in cyclic and epoch-based policies, hig-
hlighting its potential in scenarios requiring steady learning rate adjustments. 

Adam and Adagrad exhibit competitive but slightly lower validation accura-
cies compared to RMSprop and SGD, suggesting that while effective, they may 
require more nuanced tuning to match the generalization capabilities of the oth-
er optimizers. 

Implications: 
This comparative analysis underscores the critical importance of selecting the 

appropriate learning rate policy and optimizer combination to maximize the 
performance of CNNs in the context of COVID-19 detection from chest X-rays. 
RMSprop, coupled with time-based learning rate adjustments, stands out as a 
particularly effective strategy for enhancing model accuracy and generalization, 
offering valuable insights for the development of diagnostic tools in the fight 
against COVID-19. 

12. Discussion and Implications of Findings 

The comprehensive analysis conducted across various learning rate policies 
and optimizers for the Convolutional Neural Network (CNN) model aimed at 
COVID-19 detection from chest X-ray images yields several critical insights and 
implications for the field of medical imaging and diagnostics. Our findings high-
light the nuanced relationship between learning rate adjustments, optimizer se-
lection, and model performance, emphasizing the importance of strategic confi-
guration in developing effective diagnostic tools. Here are the key discussion 
points and their broader implications: 

Optimizer Efficiency: 
RMSprop’s Superiority: The consistent performance of RMSprop across dif-

ferent learning rate policies, especially its leading validation accuracies in the 
time-based and epoch-based adjustments, underscores the efficiency of adaptive 
learning rate optimizers in handling complex image classification tasks such as 
COVID-19 detection. This suggests that future research should consider adap-
tive optimizers for tasks requiring nuanced differentiation between similar pat-
terns, such as distinguishing COVID-19 from other types of pneumonia. 

Learning Rate Policies: 
Adaptation to Time-Based Adjustments: The observation that time-based 

learning rate adjustments yield the highest overall validation accuracy with 
RMSprop points to the effectiveness of gradually decreasing learning rates in 
enhancing model generalization. This finding implies that for medical imaging 
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tasks where overfitting is a concern, time-based adjustments could be a key 
strategy for improvement. 

Model Generalization: 
SGD’s Cyclic-Based Performance: The success of SGD under cyclic-based 

learning rate adjustments highlights the potential of cyclical approaches to bal-
ance between exploration and exploitation of the learning landscape. This could 
be particularly useful in medical diagnostics, where models must generalize well 
to diverse and often limited datasets. 

Practical Implications: 
Deployment in Clinical Settings: The practical application of our findings 

could significantly impact the deployment of AI-driven diagnostic tools in clini-
cal settings. With the right combination of learning rate policy and optimizer, 
CNN models can achieve high accuracy and reliability, offering support to radi-
ologists and potentially reducing the workload and time-to-diagnosis in critical 
care scenarios. 

Future Directions: 
Further Optimization and Validation: While our study provides a solid foun-

dation, further research should explore additional combinations of optimizers 
and learning rate policies, including more complex models and larger, more di-
verse datasets. Additionally, real-world validation with clinical practitioners 
could help refine these models for practical application. 

13. Conclusions 

Our comprehensive study on the application of Convolutional Neural Networks 
(CNNs) for COVID-19 diagnosis from chest X-ray images has yielded signifi-
cant insights into the optimization of learning rates and optimizer strategies for 
enhancing model performance. Through the meticulous experimentation across 
various learning rate policies—Cyclic Based, Step Based, Time Based, and Epoch 
Based—with different optimizers (Adam, Adagrad, RMSprop, SGD), our re-
search has demonstrated the profound impact of these parameters on the accu-
racy of COVID-19 detection. 

The findings indicate that the Cyclic Based learning rate policy, particularly 
when combined with the SGD optimizer, achieved the highest validation accu-
racy of 83.33%, suggesting that dynamic adjustments of learning rates can sig-
nificantly improve model efficacy in medical image analysis. Similarly, the 
Time-Based learning rate policy with RMSprop optimizer showed promising 
results, with a notable validation accuracy of 86.36%, underscoring the potential 
of adaptive learning rate strategies in addressing complex diagnostic challenges. 
These results highlight the critical role of tailored learning rate adjustments and 
optimizer configurations in developing robust and accurate diagnostic tools for 
COVID-19. The superior performance of certain combinations points towards 
the importance of choosing the right learning rate policy and optimizer for spe-
cific tasks, which in this case, is the classification of chest X-ray images into 
COVID-19 positive or negative cases. Enhancing the model’s performance could 
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involve incorporating more sophisticated neural network architectures and ex-
panding the training dataset to include a wider array of chest X-rays. Integrating 
clinical data alongside imaging for a more comprehensive diagnostic approach 
represents a significant advancement. Future research directions may also in-
clude developing models for real-time analysis and focusing on improving in-
terpretability to gain trust among medical professionals, ensuring that AI-driven 
diagnostics complement traditional healthcare practices effectively. 
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