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Abstract 
Local priority hysteresis switching logic is associated with adaptive control 
convergence when using an infinite set of candidate parameters via con-
straints added to the switching scheme. In this paper, we reevaluate these 
constraints on the basis of the persistent excitation assumption. This makes 
room for the adaptive control to converge to its optimum, resulting in im-
proved performance. Unconstrained local priority hysteresis switching logic 
is investigated, and global convergence conditions are proposed. This paper 
expands on the preliminary version of a conference paper [1] by adding nu-
merical simulation examples to validate both the application and the advan-
tage of the theory. 
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1. Introduction 

One of the earliest definitions of the term “adaption” was introduced by Drenick 
and Shahbender [2] in 1957: 

“Adaptive systems in control theory are control systems that monitor their 
own performance and adjust their parameters in the direction of better perfor-
mance.” 

Adaptive control ensures the satisfactory performance of a closed-loop system 
by switching among a set of candidate controllers K when no single controller k 
can achieve the targeted performance objectives. 

Two techniques have generally been used to achieve this goal: unfalsified 
adaptive control [3] [4] [5] and multiple model adaptive control [6] [7] [8]. In 
both cases, the switching process is supervised by a unit that provides the best 
controller k for the feedback loop from the controller set K based on the plant 
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input/output data and performance criterion ( )tµ . Figure 1 shows the general 
architecture of an adaptive control system. 

One serious challenge associated with adaptive control switching systems is a 
type of instability called chattering. Chattering means the switching system will 
cycle among two or more candidate controllers without ever converging. Vari-
ous techniques can help to avoid chattering for a finite and infinite candidate 
controller set. Using a continuum of candidate controllers instead of a finite set 
allows for greater flexibility for the adaptive control system to manage uncer-
tainty [9] [10] [11] [12]. 

One technique involves the hysteresis switching algorithm reported by Morse 
and Middleton in [13] [14]. Morse and his co-workers demonstrated adaptive 
control convergence for a finite controller set. Also, Hespanha et al. [9] [10] and 
Stefanovic et al. [11] proved adaptive control convergence for an infinite con-
troller set. 

These studies contributed to ensuring adaptive control switching system con-
vergence by adding constraints to the switching scheme that required strictly 
positive hysteresis and local priority constants. 

Unfortunately, however, such constraints in the switching scheme can hinder 
the adaptive control system in achieving optimality. 

This paper contributes to the body of knowledge by easing the local priority 
hysteresis switching logic constraints in switching schemes based on the persis-
tent excitation assumption. Easing these constraints is necessary to achieve the 
objective of high performance. 

This paper is organized as follows. In Section 2, preliminary facts are given. 
Section 3 reviews definitions of local priority hysteresis switching logic. Section 4 
contains the main results. Simulation examples are shown in Section 5. The con-
clusion and avenues for future work are provided in Section 6. 

2. Preliminaries 

Definition 1. Suppose that : nf R R→  is twice differentiable on nX R⊂   
 

 
Figure 1. Adaptive control system. 
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and that for some 0α > , 

( )2 , .f x I x Xα∇ ≥ ∀ ∈                      (1) 

Then, f is uniformly convex on X. 
With respect to uniform convexity, if ( )f x  is uniformly convex on a con-

nected set nX R⊂ , then for every 0α >  that satisfies (1), we have ([15], 
Prop.A.23) 

( ) ( )
( )( ) ( ) ( ) ( )( )

( )( ) ( )

1 1T 2
0 0

T 2

d d

2

f y f x

f x y x y x f x y y x t

f x y x y x

τ τ

α

−

= ∇ − + − ∇ + −

≥ ∇ − + −

∫ ∫

       

(2) 

for any 0α >  satisfying (1). 
Definition 2. A function ( ), ,k z tν  is said to be equi-quasi-positive definite 

(EQPD) in k if for some continuous monotonic function [ ) [ ]: 0, 0,φ ∞ ∞  
with ( )0 0φ =  and ( ) 0, 0x xφ > ∀ > , it holds for all sufficiently large values of 

0z ≠  and t that 
 ( ) ( ){ }arg min , ,

k
k t k z tν=  exists, and               (3) 

( )  ( )( )  ( )( ), , , , 0k z t k t z t k k tν ν φ− ≥ − >
             

(4) 

Definition 3. (Second order Taylor theorem expansion) Let nC ⊆  , and let 
: nf    be twice continuously differentiable over C. Then, 

( ) ( ) ( )( ) ( )2f x f a f a x a f ξ= +∇ − +∇  

a xξ≤ ≤  or ( )1a xξ α α= + −  for [ ]0,1α ∈  

where the gradient ( )f x∇  of the function ( )f x  is a row vector of size n, i.e., 

( ) ( ) ( ) ( )
1 2

, , ,
n

f f ff x x x x
x x x

 ∂ ∂ ∂
∇ =  ∂ ∂ ∂ 

  

the Hessian ( )2 f x∇  is an n n×  matrix. 

( )
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Lemma 1. (Weierstrass theorem [15]) Let   be a non-empty subset of n  
and let :µ    be a lower semicontinuous function at all points of  . If   
is compact, then ( ) ( )ˆ arg min p

p
p t tµ

∈
=


 exists. 

Definition 4. The system is persistently excited if for all sufficiently large val-
ues of 0τ >  and all p values it holds that ( )( )2

p p Iµ τ α∇ ≥  for some 0α > . 
Under the persistent excitation assumption and for a sufficient length of time 

t, the function ( )pµ τ  is a uniformly convex function in p. Therefore, if the sys-
tem is persistently excited, the monitoring signal will become uniformly convex. 

The definition of persistent excitation (PE) is critical in adaptive scheme stu-
dies that seek parameter convergence; see, for example, [16]-[21]. 

3. Local Priority Hysteresis Switching Logic 

In this section, we present notations and definitions of local priority hysteresis 
switching logic. The intent is to introduce a switching scheme that can be ap-
plied when the unknown parameters of the system belong to a continuum set. 
Due to the differences between finite and infinite sets of candidate controllers, 
an infinite set of candidate controllers (typically, a continuum of controllers) can 
result in a better environment that facilitates the feasibility assumption (i.e., 
there is a controller in the candidate controller set can satisfy the adaptive con-
trol performance). 

The supervisory control approach [22] [23] is used to achieve or maintain a 
desired performance level in a closed-loop system via switching through the 
given set of candidate controllers. The basic idea in selecting a controller strategy 
is to determine which nominal process model is associated with the smallest 
monitoring signals “ ( )p tµ ”. Then, the corresponding candidate controller can 
be selected. 

Assume a linear single-input and single-output (SISO) finite-dimension un-
certain process   shown in Figure 2.   is assumed to be a stabilizable and 
observable model with control input signals u and measured output signals y. 

The supervisor contains three subsections, as shown in Figure 2. 
1) Multi-estimator Σ —is a dynamic system with inputs of u and y and 

outputs of the signals py , p∈ .   is a compact subset of a finite-dimension 
normalized linear vector space. 

2) Monitoring signal generator Σ —is a dynamic system with inputs of es-
timation errors p pe y y= −  and outputs of monitoring signals pµ , p∈  
where pµ  is defined as the integral norms of the estimation errors, called 
monitoring signals. 

3) Switching logic Σ —involves a switched system with inputs of the moni-
toring signals pµ  and outputs of the parameters that optimize the performance 
criterion p̂ , which is defined as follows. 

( ) ( ){ }ˆ arg min p
p

p t tµ
∈

=
                      

(5) 

( )p̂ t  takes its values in   and is used to select the associated controller para-
meter. 
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Figure 2. Supervisory control block diagram. 

 
Each py  converges to y if the transfer function of   equals the nominal 

process model transfer function pϑ  in the absence of disturbances. Unmodeled 
dynamics and noise, which represent disturbance inputs and noise signals, are 
represented by d and n, respectively. 

Assume that the transfer function of   from u, the output of the mul-
ti-controller “ ”, and y belong to a family of admissible process model transfer 
functions. 

( )
p

f p
∈

=





                         
(6) 

For each p, ( )f p  denotes a family of transfer functions centered in a known 
nominal process model transfer function pϑ , where p is a parameter with values 
based on a given index set   and   is typically a continuum. In the absence 
of noise, the unmodeled dynamics and disturbances (6) can be written as fol-
lows. 

p
p

ϑ
∈

=





                          
(7) 

The state-space equations for the three subsystems are described in [10]; the 
multi-estimator Σ  can be stated as follows. 

x A x b y d u= + +      

p py c x=  , p∈  

where x  is the estimated state that is assumed to be available for the controller 
at all times and A  is a stable matrix. 

The matrix pc  is designed based on each p∈  so that pc  exists and is 
unique (see reference [22]; Section IV). Moreover, for   to form a continuum, 

pc  is assumed to be linearly dependent on p, which ensures tractability (see 
reference [22]; Section XI). Therefore, the matrix pc  can be written as follows. 
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T
pc p A b= +                          (8) 

For a SISO system, A is a nonzero matrix with a dimension n n× , p is 1n×  
unknown process parameters, and b is a 1 n×  vector. 

In [9], the candidate controller set = { }:pk p∈  is selected so that each 
p∈ , pk  is a controller stabilizing all the process models in ( )f p , where 
  is any element of  . We assume that feasibility holds. A set Dγ  is defined 
as follows. 

( ) { }: :D q p q pγ γ= ∈ − ≤
                   

(9) 

where ⋅  is a norm function in   and γ  is a proper positive constant. The 
output of Σ  at each instance is ( )p̂ t . In this case, a hysteresis constant 

0h >  is selected, and ( ) ( ){ }ˆ 0 arg min 0p
p

p µ
∈

=


. Assume that at time it , ( )ˆ ip t  
switches to q∈  and remains fixed until time 1i it t+ > , such that the following 
inequality is satisfied. 

( ) ( ){ }
( )

( ){ }1 11 min minp i p ip p D q
h t t

γ
µ µ+ +∈ ∈

+ ≤


 

We set ( ) ( ){ }1ˆ arg min 1i p i
p

p t tµ+
∈

= +


. Repeating these steps yields a sequence 
of switching signals that converge as time passes. 

Assume ( )k̂ t  is the controller parameter associated with the process para-
meter ( )p̂ t , then the active controller in the feedback loop ( )Lk t  changes as 
follows. 

( ) ( )ˆ .L i ik t k t=                         (10) 

A key result is the local priority hysteresis switching convergence lemma, 
which can be stated as follows. 

Lemma 2. (Convergence Lemma [10]) Assume that both of the following hold: 
1) Monotonicity: For all p it holds that 

( ) ( )p ptµ µ τ≥  for all t τ>  

2) Feasibility: A p ∈  exists for which the monitoring signal is uniformly 
bounded 

( )*sup .
pt

tµ < ∞  

Then, if constant γ  and hysteresis constant h are strictly positive, the local 
priority hysteresis switching logic converges after a finite number of switches. 

A concern with constant γ  required by Lemma 2 is that the constant γ  
prevents the adaptive system from switching to a new parameter ( )p̂ t  that mi-
nimizes the monitoring signal ( )p tµ  if this parameter is in the set Dγ  (i.e., 
( )p̂ t Dγ∈ ). Another notable issue with this lemma is that the strictly positive 

hysteresis constant h can slow the supervisor’s adaptive response and limit the 
accuracy with which the supervisor can minimize the monitoring signal ( )p tµ  
to h± . 

In the following section, we re-examine the local priority hysteresis switching 
logic convergence when the constraints on the switching scheme are eased, al-
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lowing the supervisor to instantaneously respond and continuously use the op-
timal, adaptive, zero-hysteresis trend. 

( ) ( )ˆ
Lk t k t=                         (11) 

4. Main Results 

The following lemmas and theorem establish that under the PE assumption, if 
the strictly positive local priority and hysteresis constants are eased in the local 
priority hysteresis switching logic convergence lemma, the optimal process pa-
rameter ( )p̂ t , as defined in (5), still converges as t →∞  under the same con-
ditions (i.e., monotonic monitoring signal and feasible system) given in [9] and 
with the identical monitoring signal. 

Recall that the authors in [9] use the following monitoring signal. 

( ) ( ) 2

0
dp pe t t

τ
µ τ = ∫                      

(12) 

Since T
pc p A b= + , p py c x=   and p pe y y= − , ( )p tµ  can be written as 

follows. 

( ) ( ) ( ) ( )
2T

0
dp p A b x t y t t

τ
µ τ = + −∫                

(13) 

Then, 

( )( ) ( ) ( )2 T T
0

2 dp p Ax t x t A t
τ

µ τ∇ = ∫                  
(14) 

The following lemmas will be used in the proof of the main result. 
Lemma 3. Let ( )p tµ  be monotonically increasing in t for all p, and suppose 

that a minimizing value ( ) ( ){ }ˆ arg min p
p

p t tµ=  exists for all t. Then, 

( ) ( ) ( ) ( )ˆ ˆm nm np t p tt tµ µ≥  for all m nt t≥ . 

Proof. By monotonicity 

( ) ( ) ,p m p n m nt t t tµ µ≥ ∀ ≥                    (15) 

Also, since ( )p̂ t  minimizes ( )p tµ  

( ) ( ) ( )ˆ , .pp t t t pµ µ≤ ∀ ∈
                    

(16) 

From (15) and from (16) 

( ) ( ) ( ) ( )ˆ ˆ .
m nn np t p tt tµ µ≥  

Hence, 

( ) ( ) ( ) ( )ˆ ˆ , .
m nm n m np t p tt t t tµ µ≥ ∀ ≥

 
☐

 

Lemma 4. Let ( )p tµ  be monotonically increasing in t for all p, and suppose that a  
minimizing value ( ) ( ){ }ˆ arg min p

p
p t tµ=  exists for all t. If the system is persistently  

excited (def. 4), then ( ) ( ) ( ) ( ) ( ) ( )( )ˆ ˆ ˆ ˆ ,
m nm n m n m np t p tt t p t p t t tµ µ φ− ≥ − ∀ ≥ . 
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Proof. Writing the monitoring signal ( )p tµ  in the second order Taylor 
theorem expansion form 

( ) ( ) ( ) ( )( ) ( ) ( )( )
( )( ) ( ) ( )( ) ( )( )

T
ˆ ˆ

T 2

ˆ

1 ˆ ˆ
2

p pp t p t

p t

t t p p t t

p p t t p p tξ

µ µ µ

µ

= + − ∇

+ − ∇ −
          

(17) 

where ( )tξ  can be written as ( ) ( )ˆ1p p tα α+ −  and [ ]0,1α ∈ . 
Since ( )p̂ t  minimizes ( )p tµ , we have 

( ) ( )( )ˆ 0.p p t tµ∇ =
                       

(18) 

Additionally, since the system is persistently excited, 

( )( )2 0.p p tµ α∇ ≥ >
                     

(19) 

From (18) and (19), Equation (17) can be written as follows. 

( ) ( ) ( ) ( ) 2
ˆ ˆ

2p p tt t p p tαµ µ− ≥ −
                 

(20) 

or, equivalently, 

( ) ( ) ( ) ( ) ( ) ( ) 2
ˆ ˆ ˆ ˆ

2m nn n m np t p tt t p t p tαµ µ− ≥ −
            

(21) 

By monotonicity 

( ) ( ) ( ) ( )ˆ ˆ ,
m mm n m np t p tt t t tµ µ≥ ∀ ≥

                 
(22) 

Therefore, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

ˆ ˆ ˆ ˆ

2ˆ ˆ ,
2

m n m nm n n np t p t p t p t

m n m n

t t t t

p t p t t t

µ µ µ µ

α

− ≥ −

≥ − ∀ ≥
 

and hence for all m nt t≥  

( ) ( ) ( ) ( ) ( ) ( ) 2
ˆ ˆ ˆ ˆ .

2m nm n m np t p tt t p t p tαµ µ− ≥ −
 

☐
 

Theorem 1. (Main Result) Consider the supervisory control system in Figure 2. 
Assume that the following conditions hold. 
1) Monotonicity: For all p, it holds that 

( ) ( )p ptµ µ τ≥  for all t τ> . 

2) Feasibility: A p ∈  value exists for which the monitoring signal is un-
iformly bounded, as follows. 

( )*sup .
pt

tµ < ∞  

If the system is persistently excited (def. 4), then the optimal process parame-
ter ( )p̂ t  converges as t increases to infinity to a point in the closure of the set 
 . 

Proof. By feasibility and by Lemma 3, ( ) ( )* ˆsup p tm t
tµ µ=  exists and ( ) ( )p̂ t tµ  

is monotonic in t and has an upper bound. Hence, 
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( ) ( )ˆlim p tm t
tµ µ∗

→∞
=

                      
(23) 

( ) ( )ˆ ,p t t tµ≥ ∀
                     

(24) 

Since the systems is persistently excited, it follows from Lemma 4 that for all 

m nt t≥ , 

( ) ( ) ( ) ( ) ( ) ( ) 2
ˆ ˆ ˆ ˆ

2m nn n m np t p tt t p t p tαµ µ− ≥ −
             

(25) 

Thus, for all m nt t≥ , it holds that 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )*

2
ˆ ˆ ˆ ˆ ˆ

2n m nn m n m np t p t p tm
t t t p t p tαµ µ µ µ− ≥ − ≥ −  

Therefore, for every 0> , there exists t  such that for all ,n mt t t≥  . 

( ) ( ) ( ) ( ) ( ) ( ) 2
ˆ ˆ ˆ ˆ .

2m nm n m np t p tt t p t p t

φ

αµ µ≥ − ≥ −


  

Moreover, ( ) ( ) 2ˆ ˆ 0
2 m np t p tα

− →  as t →∞ . Since, 0α > , φ  is a non-

decreasing continuous function that satisfies ( )0 0φ =  and ( ) 0xφ >  for  

0x > , it follows that for every 0δ > , a tδ  exists, such that ( ) ( ) 2ˆ ˆm np t p t δ− <  
for all ,n mt t tδ≥ . Therefore, the sequence ( ){ } 0

ˆ
t

p t
∞

=
 is a Cauchy sequence. 

Since every Cauchy sequence converges [24], it follows that ( )p̂ t  converges as 
t →∞  to a point in the closure of the set  . 

Remark 1. (Performance Improvement) According to the certainty equiva-
lence concept [25], 

“The nominal process model with the smallest performance criterion signal 
‘best’ approximates the actual process, and therefore the candidate controller 
associated with that model can be expected to do the best job of controlling the 
process.” 

The basic idea is to determine which nominal process model is associated with 
the smallest monitoring signals. Then, the corresponding candidate controller 
can be selected. 

As shown in theorem 1, the approach introduced in this paper (which relies 
on easing the local priority hysteresis switching logic constraints) improves 
adaptive controller convergence. Based on certainty equivalence [25], this me-
thod also improves adaptive control performance. 

5. Simulation Examples 

In this section, two systems are examined to demonstrate the unconstrained 
performance criterion introduced in this work and how it can converge to an 
optimum solution within a certain time without unstructured uncertainty or 
plant/sensor noise. In both examples, the reference signal is set to a unit step 
function. 

Example 1: Consider the model reference adaptive control in Figure 2 with a  
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first-order model reference 1
4m s

=
+

  and actual plant 1
s p

=
+

 , where p is  

a parameter with values from index set   and   is [ ]0,10 . The simulation 
starts with the initial process parameter set to 0.1p = − . The monitoring signal 
“ pµ ” converges to the optimum value if parameter p converges to −4. The re-
sults are shown in Figure 3 and Figure 4. The graph in Figure 3 shows that the  

 

 
Figure 3. Simulation results for example 1. 

 

 
Figure 4. Simulation results for example 1. 
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performance criterion instantaneously and continuously responds and the out-
put of the plant converges to the output of the reference model “ py y→ ” when 
“ 4p → − ”, which is the point when the error “e” reaches zero. The graph in 
Figure 4 shows the rapid and smooth convergence of the error and process pa-
rameters to optimal values. In both graphs, exact matching is achieved. 

Example 2: In this example, a second-order system shows how the uncon-
strained performance criterion manages a system that exhibits a transient response. 
Consider the model reference adaptive control in Figure 2 with a second-order  

model reference 
( )( )

1
6 9m s s

=
+ +

  and actual plant 
( )( )1

1
9s p s

=
+ +

 ,  

where 1p  is a parameter with values from the index set   and   is [ ]0,12 . 
The simulation starts with the initial process parameter set to 1 0.1p = − . The 
results are shown in Figure 5 and Figure 6. The graph in Figure 5 shows that 
the error “e” reaches zero when the process parameter “ 1p ” converges to −6. 
The graph in Figure 6 shows the smooth convergence of the error and process 
parameter to the optimal values over a short time. In this example, the plant 
performance and error convergence results are satisfactory, and exact matching 
is achieved. 

6. Conclusion and Future Work 
6.1. Conclusion 

In this paper, we examined the local priority hysteresis switching logic and es-
tablished performance criteria under which the hysteresis constant can be set to 
zero. The main results indicate that when the convergence lemma conditions  

 

 
Figure 5. Simulation results for example 2. 
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Figure 6. Simulation results for example 2. 

 
(i.e., monotonic monitoring signal and feasible system) hold, the PE assumption 
ensures convergence in local priority hysteresis switching logic without adding 
constraints to the switching logic. Easing these constraints improves adaptive 
control convergence, which results in improved performance. 

6.2. Future Work 

The quadratic model reference performance criterion in the example satisfies the 
EQPD condition, but it lacks the fading memory term, which may lead to diffi-
culties for plants with unstructured uncertainty or plant/sensor noise. In those 
cases, a performance criterion with a fading memory term that satisfies the 
EQPD condition must be designed. Whether such a performance criterion exists 
remains an open question to address in future studies. 
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