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Abstract 
This study explores the use of neural networks for occupational disease risk 
prediction based on worker and workplace characteristics. The goal is to de-
velop a tool to assist occupational physicians in monitoring workers. Using a 
dataset from the Italian MalProf National Surveillance System (2019-2023), an 
ensemble of one-vs-all classifiers is trained to identify six prevalent disease 
classes. Performance is evaluated using accuracy, sensitivity, specificity, posi-
tive predictive value (PPV), and negative predictive value (NPV). The results 
indicate promising performance. The specificity values for all six disease clas-
ses under study exceed 0.920 on average over 10 runs, and for five out of six 
classes, they surpass 0.967. Regarding sensitivity, the performance is positive 
(average over 10 runs greater than 0.920) for all classes, except for “Carpal 
Tunnel Syndrome and other Mononeuropathies of Upper Limb”, which per-
forms less effectively (average over 10 runs = 0.655). Future research could 
focus on optimizing neural network architectures, applying oversampling 
techniques for underrepresented classes, and analyzing misclassifications. 
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1. Introduction 

Employee health is a major concern for companies worldwide, not only for legal 
and ethical reasons but also for economic ones, as each case of occupational dis-
ease entails significant direct and indirect costs. The World Health Organization 
(WHO) also promotes initiatives aimed at improving workers’ physical, mental, 
and social well-being. Many countries are increasing their healthcare expendi-
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tures, not only due to rising life expectancy but also because of the extension of 
working life and the consequent prolonged exposure to risk factors, even at an 
advanced age. Healthcare costs could be reduced by expanding the use of machine 
learning algorithms in occupational medicine. This study explores the use of neu-
ral networks on a database of occupational diseases analyzed between 2019 and 
2023 by local health authorities participating in the Italian MalProf National Sur-
veillance System. Compared to the archive used for compensation purposes, Mal-
Prof contains fewer records but provides more detailed information, particularly 
regarding workers’ employment history. In 2019, significant modifications were 
made to the record structure, including the adoption of updated classification sys-
tems (e.g., ICD 10 for disease classification) and the addition of the exposure agent 
variable. For this reason, the two sections of the archive (pre- and post-2019) can-
not be analysed jointly. 

In recent years, data mining and machine learning techniques have been ap-
plied to many problems in occupational medicine. A decision support system for 
employee healthcare was developed in [1]; in [2], clustering techniques were ap-
plied to medical data to predict the likelihood of diseases; in [3], Artificial Neural 
Networks were used to forecast the incidence of occupational diseases; in [4], an 
Artificial Neural Network was employed to predict workers’ pneumoconiosis in 
an iron and steel company; in [5], a fuzzy system based on the Mamdani inference 
model was proposed to support the diagnosis of musculoskeletal disorders; in [6], 
a neuro-fuzzy network was employed to forecast absenteeism at work due to either 
short-term or long-term diseases; in [7], an Artificial Neural Network was used to 
identify and classify different levels of pneumoconiosis risk in coal miners with 
varying work histories; in [8], three machine learning techniques (Naïve Bayes, 
Decision Tree and Artificial Neural Network) were applied to forecast heart con-
ditions in coal miners. Works [9] and [10] proposed three variants of an unsuper-
vised classification system based on clustering, incorporating genetic optimization 
as an automatic feature selection engine, to predict the likelihood of contracting a 
disease based on worker and workplace characteristics. In [11], a study compared 
different machine learning techniques, including SVM, for predicting the risk of 
occupational diseases. The studies in [9] [10], and [11] analysed data from the 
1999-2009 period of the same MalProf system that is the subject of this study. 
Compared to previous research, this study, like [9] [10], and [11], simultaneously 
analyses multiple disease classes but employs neural networks and utilizes a data-
base with more recent data. Analysing multiple disease classes simultaneously is 
essential for developing a unified tool to support occupational physicians in mon-
itoring workers across different work sectors. In the Discussion section, the results 
of [10] and [11] are compared with those of the present study. 

2. Materials and Methods 
2.1. Dataset Description 

The dataset used in this study derives from the data entered from 2019 to 2023 by 
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the Italian Local Health Authorities adhering to the MalProf Surveillance system. 
In 2019, the record structure changed, through the updating of some classification 
systems and the addition of some variables including “exposure agent”. As a result 
of the changes, the data from years prior to 2019 are not consistent with those of 
more recent years. The MalProf dataset contains data on reports of diseases of 
suspected occupational origin. For each report, the following data are stored: dis-
ease (coded with the International Classification of Diseases—ICD 10), age, gen-
der and, for each work period, duration of the work period, sector of Economic 
Activity of the company (Ateco), worker’s activity, exposure agent. The connec-
tion between disease and each work period is graded according to a four-values 
scale: “highly probable”, “probable”, “improbable”, “highly improbable”. In this 
study, only work periods positively (“highly probable” or “probable”) linked to 
disease reports are considered. 

The number of records is higher than the number of disease reports because 
each disease report can be associated with more than one period (Figure 1). 

 

 
Figure 1. Example of the association between workers’ diseases and work periods. 

 
The descriptive variables are listed in Table 1. The sector of economic activity 

of the company is based on the Italian version of the NACE classification system. 
NACE (Nomenclature des Activités économiques dans la Communauté Eu-
ropéenne) is a European industry standard classification system similar in func-
tion to the Standard Industry Classification (SIC) and the North American Indus-
try Classification System (NAICS), used for classifying business activities. The 
classification of workers’ activities is carried out by ISTAT (the Italian National 
Institute of Statistics) and results from a process of aligning Italian specificities 
with the International Standard Classification of Occupations—ISCO-08. The 
classification of protective agents includes 19 items. The most frequent ones are: 
“Biomechanical overload of the upper and/or lower limbs” (44.18%), “Manual 
handling of loads” (27.91%), “Noise” (7.79%), “Asbestos” (4.94%), “Postural 
risks” (4.18%), and “Whole-body vibrations” (2.77%). 
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Table 1. Features. 

Code Meaning 

x1 Region of receipt of the report 

x2 Worker’s gender 

x3 Sector of economic activity of the company 

x4 Worker’s activity 

x5 Exposure agent 

x6 Worker’s age at the time of reporting 

x7 Duration of work period (years) 

 
After removing records with missing values in at least one of the descriptive 

variables, the dataset contains 45,846 records. The ICD 10 codes of the diseases 
were grouped into homogeneous classes by an occupational physician. Table 2 
presents the distribution of disease classes. Items with a frequency below 0.9% are 
grouped into the “Other” category. Table 2(a) to Table 2(f) show the details of 
disease distributions within each class. 

 
Table 2. Distribution of disease classes in the dataset. (a) Distribution of diseases in the 
“Musculoskeletal Diseases (excluding Spinal Diseases)” class; (b) Distribution of diseases 
in the “Spinal Diseases” class; (c) Distribution of diseases in the “Mononeuropathies of 
Upper Limb” class; (d) Distribution of diseases in the “Ear Disorders (including Hearing 
Loss)” class; (e) Distribution of diseases in the “Mesothelioma, Asbestosis and Pleural 
Plaque” class; (f) Distribution of diseases in the “Infectious Diseases” class.  

Disease class N % 

Musculoskeletal Diseases (excluding Spinal Diseases) 18,986 41.41 

Spinal Diseases 13,525 29.50 

Carpal Tunnel Syndrome and other Mononeuropathies of  
Upper Limb 

4561 9.95 

Ear Disorders (including Hearing Loss) 3592 7.83 

Mesothelioma, Asbestosis and Pleural Plaque 2130 4.65 

Infectious Diseases 413 0.90 

Other 2639 5.76 

Total 45,846 100.00 
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Continued  

(a) 

ICD 10 Disease N % 

M00-M25* Arthropathies 2346 12.36 

M60-M79* Soft tissue disorders 16,611 87.49 

M80-M94* Osteopathies and chondropathies 21 0.11 

M96.0 Pseudarthrosis after fusion or arthrodesis 2 0.01 

M99.8, M99.9 Other and unspecified biomechanical lesions 6 0.03 

 Total 18,986 100.00 

(b) 

ICD 10 Disease N % 

M40-M54* Dorsopathies 13,523 99.99 

M99.5 Intervertebral disc stenosis of neural canal 2 0.01 

 Total 13,525 100.00 

(c) 

ICD 10 Disease N % 

G56.0 Carpal tunnel syndrome 4332 94.98 

G56.1, G56.2, 
G56.3, G56.8, 

G56.9 
Other mononeuropathies of upper limb 229 5.02 

 Total 4561 100.00 

(d) 

ICD 10 Disease N % 

H80-H83* Diseases of inner ear 2020 56.24 

H90-H95* Other disorders of ear 1572 43.76 

 Total 3592 100.00 

(e) 

ICD 10 Disease N % 

C45* Mesothelioma 1253 58.83 

J61* 
Pneumoconiosis due to asbestos and  

other mineral fibres 
324 15.21 

J92* Pleural plaque 553 25.96 

 Total 2130 100.00 
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Continued  

(f) 

ICD 10 Disease N % 

A15-A19* Tuberculosis 6 1.45 

A65-A69* Other spirochaetal diseases 1 0.24 

B15-B19* Viral hepatitis 1 0.24 

B25-B34* Other viral diseases 6 1.45 

B35-B49* Mycoses 4 0.97 

B85-B89* Pediculosis, acariasis and other infestations 2 0.48 

J09-J18* Influenza and pneumonia 13 3.15 

J20-J22* Other acute lower respiratory infections 1 0.24 

U07.1, U07.2 COVID-19 379 91.77 

 Total 413 100.00 

*Including all subcategories. 

2.2. Preprocessing 

The preprocessing phase was carried out in several steps. First, for each of the 33 
values of the variable “disease class”, a corresponding dummy variable was cre-
ated, with a value of 1 assigned if the record was associated with that disease class, 
and 0 otherwise (as indicated by the leftmost horizontal arrow in Figure 2). For 
each record, only one dummy column is set to 1, so the sum of the 1 values across 
the 33 dummy columns equals the total number of records (45,846). Next, to re-
duce data dispersion, the categories of some descriptive variables were grouped to 
form new, internally homogeneous, groups. This resulted in 44 values for the var-
iable x3 (sector of economic activity of the company), 20 values for x4 (worker’s 
activity), 8 values for x6 (age of the worker in years at the time of reporting), and 
7 values for x7 (duration of work period in years). 

For each of the six classifiers, the operational dataset consists of the seven de-
scriptive variables (x1, ∙∙∙, x7) and the disease class under consideration. The steps 
for constructing the datasets of the six classifiers from the initial dataset are sum-
marized in Figure 2, where, for graphical reasons, the set of descriptive variables 
is represented in a single column named “predictors value”. Analysis of the da-
tasets revealed the presence of records with identical values for the predictive var-
iables but different values for the disease class (target variable), such as records 
with IDs 3 and 4. These situations may arise either when the same worker reports 
two or more diseases or when different workers with the same characteristics (in 
terms of the considered parameters) report different diseases. To resolve these 
ambiguities, if a classifier’s dataset contains records with identical values for the 
descriptive variables but different values for the disease class, the records where 
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the disease class variable is 0 are eliminated (e.g., in classifier X’s dataset, records 
with IDs 4, 7, and 8 are removed, while in classifier Y’s dataset, records with IDs 
3 and 6 are removed). For classifier Z’s dataset, which is not shown in Figure 2, 
no records need to be removed. This procedure resulted in classifiers trained on 
datasets of different sizes: 39,153 records for the classifier for the disease class 
“Musculoskeletal Diseases (excluding Spinal Diseases)”, 41,270 for the classifier 
for the class “Spinal Diseases”, 36,041 for the classifier for the class “Carpal Tunnel 
Syndrome and other Mononeuropathies of Upper Limb”, 45,054 for the classifier 
for the class “Ear Disorders (including Hearing Loss)”, 45,693 for the classifier for 
the class “Mesothelioma, Asbestosis and Pleural Plaque”, and 45,837 for the clas-
sifier for the class “Infectious Diseases”. Each classifier, described in the following 
paragraph, uses the seven descriptive variables listed in Table 1 as predictors and 
the corresponding dummy column for the disease class under consideration as the 
target. 

 

 
Figure 2. Steps to eliminate ambiguity. 

2.3. Data Analysis 

The proposed approach consists in defining the overall classifier as an ensemble 
of specific One-vs-All classifiers, each trained to recognize patterns of descriptive 
variables characterizing each disease class. This choice offers great flexibility, al-
lowing a customized solution for each class. The experimentation with multi-label 
classification, which could reveal relationships between disease classes, will be ad-
dressed in subsequent studies. In this study, only the six most frequent disease 
classes were considered (Table 2). 
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For each classifier, there is only one binary target variable, which takes the value 
1 (positive) for the records of the investigated disease class and 0 (negative) for 
the records of all other disease classes. Therefore, all records reporting other oc-
cupational diseases, with respect to the one under examination, were considered 
negative. All predictor variables were treated as categorical and processed using 
the one-hot encoding technique, which creates as many binary nodes as there are 
categories. For each variable, one and only one node is set to 1, while the others 
are set to 0. In total, the input nodes of the neural network are 117. The output 
neuron represents the disease class, and the desired output is 1 if the record cor-
responds to the investigated disease class, and 0 otherwise. 

The MATLAB environment was used to implement the procedures. To define 
the structure of the neural network and the hyperparameters, several experiments 
were conducted to find the best balance between learning ability (evaluated on the 
training datasets) and generalization ability (evaluated on the test datasets). For 
five of the six disease classes, a few experiments were sufficient to define a baseline 
network with two fully connected hidden layers containing 64 and 32 neurons, 
respectively, and a single output neuron (Figure 3). 

 

 
Figure 3. Baseline neural network structure. 

 
For the “Carpal Tunnel Syndrome and other Mononeuropathies of Upper 

Limb” class, hyperparameters tuning was performed using a systematic approach 
such as grid search. Figure 4 shows the performance on the test set, measured as 
the average of the mean values over 10 runs for sensitivity, specificity, PPV, and 
NPV across three neural network architectures, varying in the maximum number 
of epochs. The light blue line represents the performance of the architecture with 
two hidden layers containing 64 and 32 nodes, respectively. The orange line rep-
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resents the performance of the architecture with three hidden layers containing 
128, 64, and 32 nodes, respectively. The grey line represents the performance of 
the architecture with four hidden layers containing 256, 128, 64, and 32 nodes, 
respectively. The highest performance is achieved by the architecture with four 
hidden layers at 40 epochs. The leakyReLU activation function was used for the 
neurons of the hidden layers, and the sigmoid function for the output neuron. A 
normalization layer was inserted downstream of each hidden layer. Furthermore, 
the following hyperparameters were set: the Adam optimizer was used, the maxi-
mum number of epochs was set to 20 (except for the “Carpal Tunnel Syndrome” 
class, where it was set to 40), the minibatch size (which defines the size of the 
subsets into which the training dataset is divided to improve performance during 
training) was set to 512, and shuffling was enabled. For each classifier, a seed was 
set for the random number generator, and ten runs were performed. Within each 
run, the dataset was randomly divided into a training set (75%) and a test set 
(25%), maintaining the proportion of sick and healthy individuals in each of the 
two datasets as in the entire dataset. A different seed was used each time to gener-
ate the training set, the test set and the initial parameters, making each run an 
independent test. The trainnet function, introduced with the R2023b version of 
MATLAB and recommended over the previous trainNetwork, was used for train-
ing, along with the binary cross-entropy loss function. The learning rate was kept 
at a constant value of 0.001 (preset by MATLAB), as experiments with a constant 
learning rate of 0.01 or a decreasing learning rate starting from 0.1 resulted in 
worse performance. 

 

 
Figure 4. Grid search-based optimization of the neural network architecture and maxi-
mum number of epochs for the Carpal Tunnel Syndrome classification task. 

3. Results 

Five performance measures were considered: 
1) Accuracy, defined as the ratio of the number of correctly classified patterns 

to the total number of patterns. 
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2) Sensitivity, defined as the ratio of the number of positive patterns correctly 
classified as such to the total number of positive patterns. 

3) Specificity, defined as the ratio of the number of negative patterns correctly 
classified as such to the total number of negative patterns. 

4) Positive Predictive Value (PPV), defined as the ratio of the number of pos-
itive patterns correctly classified as such to the total number of patterns classified 
as positive (true or false positives). 

5) Negative Predictive Value (NPV), defined as the ratio of negative patterns 
correctly classified as such to the total number of patterns classified as negative 
(true or false negatives). 

For each disease class, Table 3 shows the mean values and the values corre-
sponding to the best of the ten runs for the five indicators listed above. The best 
run is the one with the highest Informedness value, defined as J = Sensitivity + 
Specificity − 1. The values on the left were calculated at the end of training on the 
training set. For quick comparison, the values calculated on the test set are shown 
on the right and in brackets. 

 
Table 3. Performance over ten runs for the six considered disease classes. Performance on the training set is shown on the left; 
performance on the test set is shown on the right and in brackets. 

Disease class 

Performance measure 

Accuracy Sensitivity Specificity 
Positive  

Predictive  
Value (PPV) 

Negative  
Predictive  

Value (NPV) 

Musculoskeletal Diseases  
(excluding Spinal Diseases) 

Best of ten runsa 0.956 (0.927) 0.962 (0.920) 0.950 (0.934) 0.948 (0.929) 0.964 (0.925) 

Average 0.953 (0.924) 0.953 (0.922) 0.954 (0.925) 0.951 (0.921) 0.956 (0.927) 

Spinal Diseases 
Best of ten runsa 0.982 (0.966) 0.969 (0.944) 0.988 (0.977) 0.974 (0.952) 0.985 (0.973) 

Average 0.979 (0.962) 0.965 (0.938) 0.986 (0.974) 0.971 (0.947) 0.983 (0.970) 

Carpal Tunnel Syndrome  
and other Mononeuropathies 

of Upper Limb 

Best of ten runsa 0.999 (0.929) 0.997 (0.694) 0.999 (0.964) 0.993 (0.734) 1.000 (0.956) 

Average 0.997 (0.927) 0.986 (0.655) 0.999 (0.967) 0.990 (0.742) 0.998 (0.951) 

Ear Disorders  
(including Hearing Loss) 

Best of ten runsa 0.999 (0.999) 0.995 (0.987) 1.000 (1.000) 0.997 (0.998) 1.000 (0.999) 

Average 0.999 (0.998) 0.991 (0.982) 1.000 (1.000) 0.998 (0.997) 0.999 (0.998) 

Mesothelioma, Asbestosis  
and Pleural Plaque 

Best of ten runsa 0.998 (0.993) 0.997 (0.957) 0.998 (0.995) 0.970 (0.906) 1.000 (0.998) 

Average 0.998 (0.993) 0.992 (0.934) 0.999 (0.996) 0.972 (0.925) 1.000 (0.997) 

Infectious Diseases 
Best of ten runsa 1.000 (1.000) 1.000 (0.981) 1.000 (1.000) 0.997 (0.990) 1.000 (1.000) 

Average 1.000 (0.999) 0.994 (0.952) 1.000 (1.000) 0.997 (0.980) 1.000 (1.000) 

aRun with the highest Informedness value, defined as J = Sensitivity + Specificity − 1. 
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The results obtained by the six classifiers on the test set are shown in Figure 5. 
The outcomes of the ten runs are represented using box plots: red horizontal 
markers indicate the median value; the top and bottom edges of each box corre-
spond to 75th and 25th percentiles, respectively; the whiskers extend to the max-
imum and minimum values. 

 

 
Figure 5. Box plots of performance over ten runs on the test set for the six considered disease classes. 
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4. Discussion 

The proposed approach of building an overall classifier as an ensemble of specific 
One-vs-All classifiers shows encouraging results. As illustrated by the boxplots in 
Figure 5, five disease classes—“Musculoskeletal Diseases”, “Spinal Diseases”, “Ear 
Disorders”, “Mesothelioma, Asbestosis and Pleural Plaque”, and “Infectious Dis-
eases”—achieve highly positive performances, with mean values across the ten 
runs exceeding 0.9 for all five indicators, and even higher values in the best run. 
The only classifier with less brilliant performance is the one dedicated to “Carpal 
Tunnel Syndrome and other Mononeuropathies of Upper Limb”. Specifically, its 
average sensitivity is 0.66, while the PPV is 0.74. The robustness of the six classi-
fiers is demonstrated by the low variability of the five indicators across the ten 
runs. Furthermore, the absence of outliers confirms the stability of the models. 

The use of an ensemble of specific One-vs-All classifiers, rather than a multi-
label classification approach, has the drawback of not capturing relationships be-
tween disease classes. However, it offers the advantage of customizing the neural 
network architecture and hyperparameters for each disease class individually. In 
this study, we leveraged this flexibility to optimize the neural network architecture 
and maximum number of epochs for class “Carpal Tunnel Syndrome and other 
Mononeuropathies of Upper Limb”. A systematic approach, such as grid search 
or Bayesian optimization, applied to the remaining five disease classes could po-
tentially enhance classifier performance. Moreover, it could be interesting to ex-
periment with oversampling techniques and customized penalty functions for un-
derrepresented disease classes, such as “Mesothelioma, Asbestosis, and Pleural 
Plaque” and “Infectious Diseases”, both accounting for less than 5% of cases. Mis-
classifications were not analysed in this study. Future research could examine the 
predictor variable values associated with misclassifications, particularly for “Car-
pal Tunnel Syndrome and other Mononeuropathies of Upper Limb”, to identify 
recurring patterns and potential model improvements. Additionally, a future 
study could evaluate the importance of each feature to enhance the interpretability 
of the model and its recommendations, also leveraging knowledge of occupational 
risk factors. 

Table 4 presents a comparison between the results of studies [10] and [11] and 
those of the present research. Study [10] introduced an unsupervised classification 
approach based on clustering, utilizing genetic optimization as an automatic fea-
ture selection mechanism to estimate the probability of developing a disease based 
on various worker and workplace characteristics. In [11], researchers explored 
different machine learning techniques, including SVM, to predict the risk of oc-
cupational diseases. Both studies [10] and [11] analysed data from the MalProf 
system covering the 1999-2009 period, the same system examined in the present 
research. The table presents the values of the five metrics used for performance 
evaluation—sensitivity, specificity, positive predictive value (PPV), and negative 
predictive value (NPV)—along with the Informedness value, defined as J = Sensi-
tivity + Specificity − 1. The first column (2025) refers to this study; the second 
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(2019 SVM – Table 6) and third (2019 SVM – Table 7) columns represent two 
different implementations of the SVM technique from study [11]; and the fourth 
(2016 Cluster + GA) refers to study [10]. Only five of the six classes are considered, 
as the “Infectious Diseases” class was not examined in previous studies. For each 
disease class, the highest J value is highlighted in bold. Using the J value for com-
parison, the 2025 model achieves the best performance in four out of the five dis-
ease classes, while for the remaining one (“Carpal Tunnel Syndrome and other 
Mononeuropathies of Upper Limb”) the results are nearly identical. 

 
Table 4. Comparison of the performance of four models on the test set over ten runs for the considered disease classes. The best 
performance for each disease class is highlighted in bold, and the Informedness (J = Sensitivity + Specificity − 1) is shown in the last 
line of each disease class. 

Disease Class (ID) 2025 
2019 SVM  
(Table 6) 

2019 SVM 
(Table 7) 

2016 cluster  
+ GA 

Spinal Diseases 

Accuracy 0.962 0.81 0.81 - 

Sensitivity 0.938 0.04 0.08 0.747 

Specificity 0.974 0.99 0.98 0.853 

PPV 0.947 0.51 0.48 0.413 

NPV 0.970 0.82 0.82 0.960 

J 0.912 0.03 0.06 0.600 

Musculoskeletal Diseases  
(excluding Spinal Diseases) 

Accuracy 0.924 0.73 0.72 - 

Sensitivity 0.922 0.06 0.09 0.778 

Specificity 0.925 0.98 0.97 0.664 

PPV 0.921 0.53 0.50 0.215 

NPV 0.927 0.73 0.74 0.962 

J 0.847 0.04 0.06 0.442 

Carpal Tunnel Syndrome and 
other Mononeuropathies  

of Upper Limb 

Accuracy 0.927 0.86 0.83 - 

Sensitivity 0.655 0.01 0.12 0.880 

Specificity 0.967 1.00 0.94 0.816 

PPV 0.742 0.43 0.28 0.275 

NPV 0.951 0.86 0.87 0.988 

J 0.622 0.01 0.06 0.696 

Mesothelioma, Asbestosis  
and Pleural Plaque 

Accuracy 0.993 0.98 0.98 - 

Sensitivity 0.934 0.80 0.81 0.931 

Specificity 0.996 0.99 0.99 0.883 

PPV 0.925 0.83 0.80 0.425 

NPV 0.997 0.99 0.90 0.993 

J 0.930 0.79 0.80 0.814 
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Continued  

Ear Disorders  
(including Hearing Loss) 

Accuracy 0.998 0.74 0.74 - 

Sensitivity 0.982 0.39 0.42 0.842 

Specificity 1.000 0.89 0.88 0.726 

PPV 0.997 0.62 0.61 0.789 

NPV 0.998 0.77 0.77 0.791 

J 0.982 0.28 0.30 0.568 

5. Conclusion 

This study investigates the application of neural networks for predicting the risk 
of occupational diseases based on worker and workplace characteristics. An en-
semble of one-vs-all classifiers is trained to identify six prevalent disease classes. 
Model performance is assessed using accuracy, sensitivity, specificity, positive 
predictive value, and negative predictive value. The results show promising per-
formance in most disease classes. For all six disease classes, the specificity values 
are higher than 0.920 when averaged over 10 runs on the test sets, and for five of 
the six classes, they exceed 0.967. Regarding sensitivity, the performance is posi-
tive (average over 10 runs greater than 0.920) for all classes, except for the classi-
fier for “Carpal Tunnel Syndrome and other Mononeuropathies of Upper Limb”, 
which performs less effectively (accuracy: 0.93, sensitivity: 0.66, specificity: 0.97, 
PPV: 0.74, NPV: 0.95). Therefore, although the comparison with results from pre-
vious studies is encouraging, the classifiers still need improvement on multiple 
fronts, some of which were mentioned in the previous section. Finally, testing the 
tool in real-world conditions with occupational physicians could provide valuable 
insights. 

Limitations of the Study 

The MalProf System does not cover the entire national territory. Moreover, rec-
ords are often incomplete or contain inconsistent information. Finally, although 
the approach of using an overall classifier as an ensemble of specific One-vs-All 
classifiers allowed for customization of each classifier, this potential has not been 
fully exploited.  

Acknowledgements 

This study is based on reports of suspected occupational diseases collected be-
tween 2019 and 2023 by the Italian Local Health Authorities participating in the 
MalProf National Surveillance System. I sincerely thank all the users of the Mal-
Prof System who contributed to this study by providing data for the national da-
tabase. 

Conflicts of Interest 

The author declares no conflicts of interest regarding the publication of this paper. 

https://doi.org/10.4236/health.2025.175037


P. Montanari 
 

 

DOI: 10.4236/health.2025.175037 593 Health 
 

References 
[1] Mukherjee, C., Gupta, K. and Nallusamy, R. (2012) A Decision Support System for 

Employee Healthcare. 2012 Third International Conference on Services in Emerging 
Markets, Mysore, 12-15 December 2012, 130-135.  
https://doi.org/10.1109/icsem.2012.25 

[2] Paul, R. and Hoque, A.S.M.L. (2010) Clustering Medical Data to Predict the Likeli-
hood of Diseases. 2010 Fifth International Conference on Digital Information Man-
agement (ICDIM), Thunder Bay, 5-8 July 2010, 44-49.  
https://doi.org/10.1109/icdim.2010.5664638 

[3] Huang, Z.H., Yu, D.H. and Zhao, J.Y. (2000) Application of Neural Networks with 
Linear and Nonlinear Weights in Occupational Disease Incidence Forecast. IEEE 
APCCAS 2000. 2000 IEEE Asia-Pacific Conference on Circuits and Systems. Elec-
tronic Communication Systems. (Cat. No.00EX394), Tianjin, 4-6 December 2000, 
383-386. https://doi.org/10.1109/apccas.2000.913515 

[4] Yuan, C., Li, G., Peihong, Z. and Li, C. (2010). Artificial Neural Network Modeling 
of Prevalence of Pneumoconiosis among Workers in Metallurgical Industry—A Case 
Study. 2010 International Conference on Intelligent System Design and Engineering 
Application, Changsha, 13-14 October 2010, 388-393.  
https://doi.org/10.1109/isdea.2010.111 

[5] Filho, D.V., dos Santos, M.A., Ludermir, T.B. and Silva, M.J. (2002) A Fuzzy Ap-
proach to Support a Musculoskeletal Disorders Diagnosis. VII Brazilian Symposium 
on Neural Networks, 2002. SBRN 2002. Proceedings, Pernambuco, 11-14 November 
2002, 154. https://doi.org/10.1109/sbrn.2002.1181461 

[6] Martiniano, A., Ferreira, R.P., Sassi, R.J. and Affonso, C. (2012) Application of a 
Neuro Fuzzy Network in Prediction of Absenteeism at Work. Iberian Conference on 
Information Systems and Technologies (CISTI), Madrid, 20-23 June 2012, 1-4. 

[7] Liu, H., Tang, Z., Yang, Y., Weng, D., Sun, G., Duan, Z., et al. (2009) Identification 
and Classification of High Risk Groups for Coal Workers’ Pneumoconiosis Using an 
Artificial Neural Network Based on Occupational Histories: A Retrospective Cohort 
Study. BMC Public Health, 9, Article No. 366.  
https://doi.org/10.1186/1471-2458-9-366 

[8] Srinivas, K., Rao, G.R. and Govardhan, A. (2010) Analysis of Coronary Heart Disease 
and Prediction of Heart Attack in Coal Mining Regions Using Data Mining Tech-
niques. 2010 5th International Conference on Computer Science & Education, Hefei, 
24-27 August 2010, 1344-1349. https://doi.org/10.1109/iccse.2010.5593711 

[9] Di Noia, A., Montanari, P. and Rizzi, A. (2014) Occupational Diseases Risk Predic-
tion by Cluster Analysis and Genetic Optimization. Proceedings of the International 
Conference on Evolutionary Computation Theory and Applications, Rome, 22-24 
October, 68-75. https://doi.org/10.5220/0005077800680075 

[10] di Noia, A., Montanari, P. and Rizzi, A. (2015) Occupational Diseases Risk Prediction 
by Genetic Optimization: Towards a Non-Exclusive Classification Approach. In: 
Merelo, J.J., Rosa, A., Cadenas, J.M., Dourado, A., Madani, K. and Filipe, J., Eds., 
Computational Intelligence, Springer, 63-77.  
https://doi.org/10.1007/978-3-319-26393-9_5 

[11] Di Noia, A., Martino, A., Montanari, P. and Rizzi, A. (2019) Supervised Machine 
Learning Techniques and Genetic Optimization for Occupational Diseases Risk Pre-
diction. Soft Computing, 24, 4393-4406.  
https://doi.org/10.1007/s00500-019-04200-2 

https://doi.org/10.4236/health.2025.175037
https://doi.org/10.1109/icsem.2012.25
https://doi.org/10.1109/icdim.2010.5664638
https://doi.org/10.1109/apccas.2000.913515
https://doi.org/10.1109/isdea.2010.111
https://doi.org/10.1109/sbrn.2002.1181461
https://doi.org/10.1186/1471-2458-9-366
https://doi.org/10.1109/iccse.2010.5593711
https://doi.org/10.5220/0005077800680075
https://doi.org/10.1007/978-3-319-26393-9_5
https://doi.org/10.1007/s00500-019-04200-2

	Occupational Diseases Risk Prediction by Neural Networks
	Abstract
	Keywords
	1. Introduction
	2. Materials and Methods
	2.1. Dataset Description
	2.2. Preprocessing
	2.3. Data Analysis

	3. Results
	4. Discussion
	5. Conclusion
	Limitations of the Study
	Acknowledgements
	Conflicts of Interest
	References

