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Abstract 
The deep learning method automatically extracts advanced features from a 
large amount of data, avoiding cumbersome manual feature screening, and 
using digital pathology and artificial intelligence technology to build a com-
puter-aided diagnosis system to help pathologists quickly make objective and 
reliable diagnoses and improve work efficiency. Because pathological images 
are limited by factors such as sample size, manual labeling expertise, and com-
plexity, artificial intelligence algorithms have not been extensively and in- 
depth researched on pathological images of lung cancer metastasis. Therefore, 
this paper proposes a lung cancer metastasis segmentation method based on 
pathological images, to further improve the computer-aided diagnosis me-
thod of lung cancer. 
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1. Introduction 

In the process of interpreting pathological maps, clinicians need to constantly 
move and review under the microscope and adjust low magnification and high 
magnification for observation and analysis at different resolutions. The image 
feature information obtained at different resolutions is different. For example, 
the morphological characteristics and distribution of tissues can be observed at 
low magnifications, and the morphological characteristics at the cell level can be 
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observed at high magnifications. Features at different resolutions are crucial for 
practical diagnosis. Therefore, aiming at the segmentation of lung cancer metas-
tases in pathological images, this paper designs a two-stage segmentation model 
of lung cancer metastases that combines multi-resolution features. First, the data 
was preprocessed, and two datasets of high- and low-resolution were produced. 
In the first stage, in order to reduce the false positive rate and improve the detec-
tion speed, the block pathological images are classified, and the pathological im-
ages classified as abnormal tissues are input to the next stage. In the second stage, 
the atrous convolution residual Unet network structure (ACR-Unet) was de-
signed as a segmentation model, and the atrous convolution residual block was 
added to increase the width and depth of the model while capturing context in-
formation, and the training idea of transfer learning was applied. By fusing high 
and low resolution information, the segmentation contour is refined. The overall 
structure of the two-stage lung cancer metastasis segmentation model fused with 
multi-resolution features is shown in Figure 1. 

2. Digital Pathology Image Production 

Digital pathology images are usually whole-slide images (WSI) made from tis-
sues stained with Hematoxylin and eosin (H & E). The production process is 
shown in Figure 2. First, fresh tissue blocks were obtained by puncture, and af-
ter trimming and sectioning, they were placed on glass slides for H & E staining 
to make sections. Then put the prepared slices into the scanning device, collect 
pictures of the target area and store them in the local database [1] [2]. 
 

 

Figure 1. Two-stage lung cancer metastasis lesion segmentation model incorporating multi-resolution features. 
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Figure 2. Digital pathology image production process. 
 

In the process of image acquisition, the whole pathological slide is scanned by 
automatic pathological slide scanning technology. First, the digital microscope is 
used to scan and image the slice under the low-magnification objective lens, and 
the micro-scanning platform automatically scans and moves according to the 
XY axis of the slice, and realizes the automatic focus on the Z axis. Then, the 
high-efficiency magnification of the optical magnification device is realized by 
the scanning control software, and high-resolution digital images are obtained 
according to the program-controlled scanning method. Finally, through image 
compression and storage software, the images are automatically seamlessly spliced 
and digitally sliced to generate a complete WSI. The fabricated WSI can be 
scaled arbitrarily, and viewed and analyzed in any direction, similar to operating 
an actual optical microscope. 

WSI is stored in a pyramid structure, as shown in Figure 3, images can be re-
trieved at different magnifications, and contain a large amount of detailed in-
formation from a medical and computational point of view, so the size of each 
slide is large. 

Digital pathology images were visualized, annotated, and automatically ana-
lyzed using the Automated Slide Analysis Platform (ASAP). The entire digital pa-
thological image of lung cancer metastasis is stored in svs format. The visualiza-
tion results at the lowest resolution are shown in Figure 4. The blue area is the 
cancer metastasis area marked by the doctor, in addition to normal tissue areas 
and large areas. An empty area. ASAP supports viewing most WSI formats, in-
cluding tif, svs, ASAP can not only zoom in and out to view images in multiple 
resolutions, but also use the annotation function to create new annotations, and 
visualize the results of partial annotations in high resolution. As shown in Fig-
ure 5, the details of cancerous cells and normal cells can be clearly observed at 
high resolution. 
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Figure 3. Schematic diagram of pyramid structure. 
 

 

Figure 4. Lung cancer metastasis WSI. 
 

 

Figure 5. Partial WSI annotation result. 

Lung Cancer Metastasis Pathology Image Dataset 

1) Introduction to Data and Samples 
The TNM staging of lung cancer consists of three stages: the size of the tumor 

(T stage), the spread of cancer cells to regional lymph nodes (N stage), and 
whether the cancer cells have metastasized to other parts of the body (M stage). 
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Lung cancer metastasis is most likely to occur, and the earliest occurrence is re-
gional lymph node metastasis. Regional lymph nodes include intrapulmonary 
lymph nodes, hilar lymph nodes, and mediastinal lymph nodes. In the experi-
ment, the pathological images obtained by regional lymph node biopsy were se-
lected, and the pathological image data set of lung cancer metastasis was made 
by the block sampling method. 

2) Block sampling method 
The block sampling method is also called the image patch-based method. Due 

to the ultra-high resolution and large size of histopathological images, they gen-
erally cannot be processed directly, but a sufficient number of samples can be 
extracted for training, and the image is cut into several images. Each image patch 
is called an image patch [3] [4]. For each image patch, the corresponding fea-
tures can be obtained, and then the features of these image patches can be ag-
gregated to predict the entire image. The size of pathological images usually 
reaches tens of thousands of pixels, and the input size required by neural net-
works is usually around 500 × 500 pixels. Therefore, ultra-high-resolution his-
topathological images, they cannot be input into the network for calculation at 
one time, and block sampling is usually required. 

3) Dataset production process 
The experiment uses the pathological images provided by the Thoracic Sur-

gery Department of Shanghai Pulmonary Hospital to create a pathological image 
dataset of lung cancer metastasis. The images are stored in SVS format and con-
tain images of multiple resolution versions. Level 0 (level 0) is the highest resolu-
tion. High-resolution images can observe the internal structure of cells more 
clearly, which is conducive to the discovery of tiny lesions and the metastasis of a 
single cell. The resolution of images above Level 1 gradually decreases, and the 
resolution of images above Level 2 (level 2) is low and can be observed. Consi-
dering the overall contour features of the pathological image, it is impossible to 
distinguish whether the cells are normal or cancerous. Therefore, the experiment 
selected level 0 and level 1 images to create a lung cancer metastasis pathological 
image data set. 

The specific production process is shown in Figure 6. Considering that the 
predicted image input into the network may contain blank areas, the area se-
lected in the entire pathological image should contain both normal tissues, ab-
normal tissues and blank areas. After determining the horizontal and vertical 
coordinates of the area boundary, start from the upper left corner, and then cut 
the patch. The size of each patch is 256 × 256, and the overlap rate is 50%. 9890 
patches were obtained at level 0 and level 1 respectively. 

The doctor’s annotation information is an XML file, and for training the seg-
mentation model, a corresponding mask needs to be generated. ASAP also pro-
vides a Python package module that can be used for reading and writing WSI 
images, and a multi-resolution image-interface Python package that converts 
annotations into masks document. 
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Figure 6. Lung cancer metastasis dataset production process. 
 

First, use the Python package provided by ASAP to convert the xml file into a 
corresponding mask file, and select the horizontal and vertical coordinates of the 
area in the mask to be consistent with the original image. In the selected area, 
the cropping and block processing is performed, the size of each block is still 256 
× 256, and the overlap rate (overlap) is 50%, and the corresponding mask data 
set is made. The mask (Mask) production process corresponding to the data set 
is shown in Figure 7 (the images shown in the figure are all low-resolution im-
ages). 
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Figure 7. Mask production process. 

3. Validation Dataset 

1) Introduction of Camelyon17 
The Camelyon17 dataset comes from the Camelyon17 Challenge, which is an 

automatic detection and assessment of breast cancer development based on 
complete slide images of histological lymph node sections. Lymph node metas-
tasis has an important impact on the prognosis of breast cancer. When cancer 
cells spread to lymph nodes, it will have a great impact on the survival and 
prognosis of patients. To improve the understanding of the lymphatic system, a 
method that can automatically detect and identify lymph node metastases is 
needed. An automated solution would greatly reduce pathologist’ workload and 
also reduce diagnostic subjectivity. Currently, accurate pathological grading of 
breast cancer remains a major challenge. In the case of breast cancer, the TNM 
stage is made up of the size of the tumor (T stage), the spread of the cancer to 
regional lymph nodes (N stage), and whether the cancer has metastasized to 
other parts of the body (M stage). Camelyon17 mainly studies the N-stage prob-
lem of breast cancer. 
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2) Dataset production process 
Camelyon17 is a dataset containing 1399 annotated whole-slide images of 

lymph nodes, including lymph nodes with and without metastasis, with a total 
data volume of 3 TB. The data were collected from five different medical centers 
and covered different image appearance and staining changes, and each intact 
slide image had an index indicating whether it contained metastases (including 
large metastases, small metastases) or isolated tumor cells. Label, where detailed 
hand-drawn outlines of their metastatic lesions are provided for 209 full-slide 
images. 

In order to make a block pathological image data set, this paper selects 5 piec-
es of breast cancer metastatic cell data from different institutions, covering full- 
slide images of small-area cancer cell metastasis and large-area cancer cell me-
tastasis. The processing process of the slide image is the same as that of the lung 
cancer metastasis pathological image data set, and the flow chart is the same as 
Figure 2. 11,621 patches were obtained at level 0 and level 1 respectively. A par-
tial screenshot of the Camelyon17 dataset is shown in Figure 4. The mask pro-
duction process of Camelyon17 is the same as in Figure 5, and some screenshots 
of the mask are shown in Figure 8. 

4. CNN-Based Classification Model for Blocky Pathological  
Images 

Directly performing end-to-end pixel clustering makes the model tend to only 
focus on low-level image features, such as color, contrast, etc., and lose the se-
mantic discriminativeness of features. Two-stage segmentation can avoid this  
 

 

Figure 8. Camelyon17 breast cancer metastasis dataset’s mask. 
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shortcoming. Moreover, most of the tissues in the pathological image are non- 
cancerous tissues and blank areas that do not contain cells. Classification is per-
formed before the segmentation of lung cancer metastatic lesions, which has the 
advantage of reducing the false positive rate and improving the detection effi-
ciency.  

Convolutional neural networks are widely used in target detection and recog-
nition, image classification, etc., and they show the best results in image classifi-
cation models. Especially for pathological images, CNN can be used to achieve 
classification, improve the accuracy of the algorithm and reduce the complexity 
of the algorithm. The classification process of blocky pathological images is 
shown in Figure 9.  

Convolutional neural networks generally include three types of layers: convo-
lutional layers, pooling layers, and fully connected layers. The combination of 
the convolutional layer and the pooling layer forms a feature extractor, which is 
responsible for the extraction of high-level and low-level features of the image. 
The fully connected layer is responsible for sending the features mapped by the 
extractor to the final output layer. 

1) Convolutional Layer 
The process of convolution is actually the process of feature extraction. The 

most important concept is the convolution unit (also called convolution kernel). 
Each convolution layer is composed of convolution kernels of different sizes. 
The size, stride and padding of the convolution kernel together determine the 
features extracted by the convolution layer and the size of the output feature 
map. For example, a 5 × 5 image is convolved with 3 × 3 non-zero padding and 
the stride is set to 1 to obtain a 3 × 3 feature map. Usually the first layer of con-
volution is responsible for extracting low-level semantic features, such as edges, 
contours, corners, etc., and the deeper convolutional layers are continuously ite-
rated from low-level features to extract more complex high-level semantic fea-
tures. 

2) Pooling Layer 
The pooling process is actually a down-sampling process, which simulates the 

human visual system to achieve data dimensionality reduction. In convolutional 
neural networks, pooling layers are periodically inserted between convolutional 
layers. The purpose of pooling includes: reducing the amount of data to be 
processed in the next layer to avoid overfitting; enhancing the scale invariance 
and rotation invariance of the model. Commonly used truths include mean 
pooling, maximum pooling, random pooling, median pooling, combined pool-
ing, etc. The most commonly used pooling step size is 2, that is, every 2 pixels 
are divided into 2 × 2 image blocks, and then the maximum value of the 4 num-
bers in each image block is taken, that is, the maximum pooling operation, so 
that the amount of data is reduced by 75%. Since pooling layers reduce the data 
size too quickly, most of the research tends to use fewer pooling layers or even 
no pooling layers. 
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Figure 9. Pathological image classification process. 
 

3) Fully connected Layer 
In the convolutional neural network structure, after multiple convolutional 

layers and pooling layers, one or more fully connected layers are connected. 
When the features extracted by the feature extractor are sufficient, it is necessary 
to play the role of the fully connected layer for classification. Each neuron in the 
fully connected layer is fully connected to all neurons in the previous layer. The 
function is to reduce the data from high-dimensional to low-dimensional, and 
capture the class-discriminative parts of the convolutional layer or pooling layer. 
information is integrated. The fully connected layer of the last layer uses Softmax 
logistic regression for classification, and this layer can also be called a Softmax 
layer. If the target task is divided into 5 categories, then the last layer can be set 
with 5 fully connected units. 

The convolutional neural network has the characteristics of high accuracy, fast 
classification speed, and stable model, so the convolutional neural network is 
used as a block pathological image classifier. The classifier consists of 2 5 × 5 
convolutions, 1 pooling, and 3 full connections, and the stacking method is 
shown in Figure 1.  

During training, a high-resolution dataset is used as input. See Equation (1) 
when the output is abnormalP . 

( )0abnormal levelP Classifier I=                      (1) 

First, image features are extracted through two 5 × 5 convolutional layers and 
a maximum pooling layer, and the equation is shown in Equation (2). 

( )( )( )0 5 5 5 5 0level mp levelF C f C I× ×=                    (2) 

Then use 3 fully connected layers to classify the extracted features, the formula 
is shown in Equation (3). 

( )( )( )3 2 1 0abnormal levelP fc fc fc F=                    (3) 

5. Segmentation Model of Lung Cancer Metastases 

Image segmentation belongs to the visual task of pixel-level classification. Ac-
cording to different granularity levels, it can be divided into: semantic segmenta-
tion, instance segmentation, and panoptic segmentation. Semantic segmentation 
is to divide all pixels in the input image into different categories according to the 
objects of interest they belong to. Instance segmentation is based on semantic 
segmentation to segment different objects of the same category. Panoramic seg-
mentation combines semantic segmentation and instance segmentation. Pa-
noramic segmentation assigns semantic labels and instance labels to each pixel. 
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Semantic segmentation is often used in the segmentation of medical images, 
such as the segmentation of lesion areas in medical images, which belongs to the 
special case of semantic segmentation, binary segmentation, that is, semantic 
segmentation with only a single category in the foreground. 

Aiming at the difficulty of segmenting lesion regions in pathological images, 
first, pathological images are characterized by the background of purple-red tis-
sue fluid and ordinary cell nuclei. Cancerous cells generally appear to have blurred 
nuclei and slightly larger outlines than normal cells. Other areas such as large 
areas of white are background information. The shape and size of normal cells 
and cancer cells vary greatly with the degree of differentiation. Normal cells are 
mostly oval or round, while cancer cells are irregular in shape and vary in size. 
Second, cancerous cells are often difficult to distinguish from normal cells, and 
even the naked eye requires sufficient magnification to detect them. 

Therefore, this paper uses images of multiple resolutions to train the network 
model, and designs a segmentation model that incorporates multi-resolution 
features. High-resolution images also bring a lot of detailed information. Adding 
the hole convolution residual module to U-Net increases the depth of the net-
work model and improves the ability of the model to learn the detailed features 
of high-resolution images. 

1) Dilated Convolutional Residual U-Net Network Model 
High-resolution pathological images contain rich details of cancerous cells 

and normal cells, such as nuclei and cell outlines. Studies have shown that the 
deep network model has a strong ability to extract feature information, and the 
U-Net [5] model has fewer layers, which is not conducive to processing deep 
semantic information of high-resolution images [6], and there is a small local 
receptive field that cannot express The problem with long range dependencies. 

Aiming at the problem of insufficient feature extraction ability of U-Net, the 
model replaces the original codec structure block by stacking the empty space 
pyramid pooling module and the convolutional layer, and designs the empty 
convolution residual U-Net as shown in Figure 1 (Atrous Convolution Residual- 
Unet, ACR-Unet) network model to improve the model's ability to locate the le-
sion area. 

When the low-resolution data set is used as input for training and the output 
is 1

o
levelI , the overall expression is shown in Equation (4). 

( )1 1
o
level levelI ACRUnet I=                      (4) 

For the encoder part, the encoder receives the input 1i
enI −  from the previous 

layer and outputs feature information i
enI , where the values of i are 1, 2, 3, 4, 5, 

the formula is shown in Equation (5). 

( )1
1

5i i
en i eniI Encoding I −

=
= ∑                     (5) 

Each layer of the encoder contains two ACRB modules, a 3 × 3 convolutional 
layer and a 3 × 3 deconvolutional layer, the formula is shown in Equation (6). 
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( ) ( ){ }1 1
3 3 3 3 0

i T i
i en ACRB eni

nEncoding I C C H I− −
× × =

 =  ∑             (6) 

In Equation (6), n is the number of ACRB modules, which is 2 in this paper. 
For the decoder part, each layer of the decoder is the same as the encoder, and 

at the same time, the input 1i
deI −  of each layer is fused with the feature informa-

tion of the corresponding encoder layer, and the output feature information 
o
deI : 

( ){ }5 11
1

5 , io i
de i de eniI Decoding I I − −−

=
 
 = ∑                (7) 

2) Dilated Convolutional Residual Module 
Atrous Convolution Residual Block (ACRB), the structure is shown in Figure 

10. Among them, each layer of the codec contains two repeated ACRB modules, 
and each module contains a 1 × 1 convolution, an ASPP module, a 3 × 3 convo-
lution and a skip connection structure. The ACRB module generates rich feature 
information by increasing the width and depth of the network, and multi-scale 
fusion can make full use of feature information. When the module receives the 
input feature F, the feature information Fc is obtained, and the Equation is as 
follows: 

( )0C ACRBk
nF H F
=

= ∑                      (8) 

First, the feature map undergoes a 1 × 1 convolution, a normalization pro- 
cessing layer β  (Batch Normalization, BN), and a Relu activation function δ  
to obtain the prediction result, and the expression form is shown in Equation (9). 

( )( )( )1 1preF C F×= δ β                     (9) 

The preprocessed feature map Fpre is input to the ASPP module, and the mul-
ti-scale fusion feature map FA is output, the expression is as follows: 

( )A preF ASPP F=                     (10) 

Secondly, perform 3 × 3 convolution on the multi-scale fusion feature map, 
extract deep-level features, and perform normalization processing to improve 
the feature extraction ability of the model, and obtain the feature FAD, the ex-
pression is shown in Equation (11). 

( )( )3 3AD AF C F×= β                   (11) 

 

 

Figure 10. ACRB module structure. 
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The multi-scale feature and the preprocessing result are fused, and then the 
Relu activation function is used to obtain the fused feature FC, the expression is 
as follows: 

( ) { }i
C ACRB en AD preF H I F F  = =  +δ                 (12) 

3) Atrous Spatial Pyramid Pooling Block 
Atrous Spatial Pyramid Pooling Block (ASPP) contains four parallel branch 

structures, as shown in Figure 11. The ASPP module can increase the receptive 
field without downsampling and enhance the network's ability to recognize mul-
ti-scale contexts. The input image is sampled in parallel by dilated convolutions 
with different sampling rates, and the associated features of the larger neighbor-
hood range between pixels are extracted. Finally, the feature maps are added to 
compensate for the grid effect caused by dilated convolutions. For the task of 
this paper, the sampling rate is too large to produce meaningless weights. The 
selected sampling rates are 6, 12, 18 and a 1 × 1 convolution to obtain the mul-
ti-scale feature of the preprocessing feature, see Equation (13). 

( ) ( ) ( ) ( )1 1 6 12 18A pre pre pre preF C F C F C F C F×= + + +           (13) 

4) Model Training Strategy 
According to the characteristics of pyramid structure storage of digital patho-

logical images, two data sets of high and low resolution were produced using one 
pathological slice. The idea of transfer learning is applied in the training process, 
where 1levelI  is a low-resolution pathological image and 1levelI  is a high-resolu- 
tion pathological image. First use to train all layers of the network, then freeze 
the deep parameters of the encoder and decoder, and use to fine-tuning the 
shallow codec. 

The training process is shown in Figure 12. Green represents the codecs in-
volved in training during fine-tuning, and blue represents the frozen part during 
fine-tuning. Among them, the deep convolution is responsible for extracting ab-
stract features, including the overall shape of the lung cancer metastasis area; the 
shallow convolution is responsible for extracting basic features, including the 
outline and edge of a single cancer cell. 
 

 

Figure 11. ASPP module structure. 
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Figure 12. Model training process. 
 

The trained network fuses high- and low-resolution features to ensure that the 
model can detect not only large areas of cancer metastases, but also single-cell 
metastases. 

6. Experimental Results and Analysis 
6.1. Experimental Environment and Evaluation Indicators 

The experiment uses Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20 GHz processor, 
memory size is 16 G, independent graphics card uses two GeForce RTX 2080ti, 
system type is Ubuntu 18.04, uses Python3.6.9, Tensorflow framework to model 
Build and train. 

In order to preserve the details of pathological images as much as possible and 
reduce the calculation amount of the model, the cropping size of the images in 
the dataset is 256 × 256. The network uses the Adam optimizer to optimize the 
parameters, the loss function uses the binary cross entropy loss function (Binary 
Crossentropy), the batch size (batch size) is 30, and the number of iterations is 
500 and 1000 for different training strategies. The data set is divided into a 
training set, verification set, and test set according to 6:2:2. 

In the two-stage detection network framework, the classifier part uses preci-
sion (Precision), recall (Recall), accuracy (Accuracy), F1-score to evaluate the 
performance of the model, and the formulas correspond to Equations (14)-(17). 

TPPrecicion
TP FP

=
+

                      (14) 

TPRecall
TP FN

=
+

                       (15) 

TP TNAccuracy
TP FN FP TN

+
=

+ + +
                 (16) 
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2Recall PrecisionF1-score
Recall Precision

∗
=

+
                 (17) 

where (True Positive) denotes true positive, (False Negative) indicates false neg-
ative, (False Positive) is false positive, (True Negative) denotes true negative. 
False Positive Rate refers to the proportion of all negative cases identified as pos-
itive after detection. The equation is as follows: 

FPFPR
FP TN

=
+

                       (18) 

In the stage of tumor metastasis segmentation, the pixel classification accuracy 
(Pixel Accuracy, PA), image segmentation intersection over Union (mIoU), and 
Dice similarity coefficient (Dice Similarity Coefficient, DSC) were used to eva-
luate the performance of the model, and the calculation formulas corresponded 
to Equations (19)-(21). 

0

0 0

PA iii

i

k

k
i

k
jj

P

P
=

= =

= ∑
∑ ∑

                      (19) 

0

TPmIoU
1 TP FP FNi

kI
k =

=
+ + +∑                 (20) 

2TPDice
FP 2TP FN

=
+ +

                    (21) 

6.2. Ablation Experiment 

1) Effect of Classification Model on Experimental Results 
This paper evaluates the performance of four well-known deep learning net-

works in this classification task, including: ResNet34, VGG16, CNN and Alex-
Net, and the classification results are shown in Table 1. Due to the single feature 
of pathological images, it has better performance in classification models with 
fewer layers. CNN has the highest classification accuracy, fast speed and stable 
performance, so CNN is used as the classifier. 

In order to verify the improvement of the performance of the model by the 
classifier, two sets of experiments were set up. The first group directly input the 
unclassified test set into the segmentation model, and the second group input 
the images classified as abnormal tissues into the segmentation model, the re-
sults are shown in Table 2. It can be seen that the two-stage segmentation re-
duces the false positive rate by 13.3%, and the prediction completion time of the  
 
Table 1. Comparison of classifier performance. 

Model Precision Recall Accuracy F1-score 

ResNet34 0.925 0.898 0.907 0.911 

VGG16 0.897 0.899 0.896 0.898 

CNN 0.965 0.847 0.957 0.902 

AlexNet 0.896 0.855 0.889 0.875 
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Table 2. The effect of classifier on model performance. 

Experiment FPR predicted time/s 

Group 1 0.320 1249 

Group 2 0.187 364 

 
entire test set is increased by 70.8%, and the performance of the two-stage model 
is better. 

2) The effect of the dilated convolution residual module on the experi-
mental results 

In order to verify the effect of the dilated convolution residual module on the 
experimental results, three sets of comparative experiments were set up. The first 
group only used the trained U-Net, the second group used the trained Res UNet, 
and the third group used the proposed ACRU-Net. In order to maintain the 
principle of controlling variables, the training strategy is the same as the third 
group in (3) of this section. Figure 13 shows the prediction results of the three 
experiments for the same pathological image, where the black area represents the 
normal tissue area, and the white area represents the cancerous tissue area. The 
results show that U-Net is greatly affected by the background information and 
has a large boundary error when segmenting the lesion area. When using Res 
UNet with a deeper network layer, the interference of background information is 
weakened to a certain extent. The former two have the problem of mis-seg- 
menting the background area into lesions. Using the ACRU-Net proposed in 
this paper, both large-area lesions and small-area lesions can be accurately lo-
cated, which greatly reduces the influence of background information on the 
prediction results. 

3) Effects of Different Training Strategies on Experimental Results 
In order to explore the influence of the number of fine-tuning model layers on 

the experimental results, four groups of experiments shown in Table 3 were set 
up under the premise of controlling variables, where √ indicates that the module 
is fine-tuned, × indicates that the module only uses training, and other condi-
tions remain unchanged. Figure 14 shows the change of the loss function during 
the training process of the 4 groups of experiments. The change of the loss func-
tion of the first and second groups is consistent. The decline speed is faster in the 
first 100 rounds of training, and it tends to be stable after 100 rounds, and the 
gradient update is smaller. The difference is that the fluctuation range of Group 
2 is larger than that of Group 1. The loss function of Group 4 has only small 
fluctuations in the first 100 rounds of training, and then it tends to remain al-
most unchanged. In contrast, the loss function of the third group decreased 
gradually, fluctuated greatly within the first 500 iterations, and the loss function 
reached stability after 700 iterations, and its mIoU value combined with Table 3 
was better than the other three groups of experiments. This shows that the third 
group of experimental training has the best effect and can be used as the final 
training strategy. 
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Figure 13. The effect of ACRB module on model performance. (a) Original, (b) Ground 
truth, (c) U-Net, (d) Res Unet, (e) ACRU-Net. 
 

 

Figure 14. Convergence process of loss function for models with different fine-tuning 
layers. 
 
Table 3. Different fine-tuning layers training process and results. 

Network Group 1 Group 2 Group 3 Group 4 

Encoding 1 Decoding 1 × √ √ √ 

Encoding 2 Decoding 2 × × √ √ 

Encoding 3 Decoding 3 × × × √ 

Encoding 4 Decoding 4 × × × × 

Encoding 5 Decoding 5 × × × × 

mIoU 0.801 0.875 0.913 0.904 
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4) Model generalization verification 
To verify whether the model is applicable to other datasets, the method is ap-

plied to the Camelyon17 public dataset. For the first stage, high-resolution data 
set training is used, and the training strategy for the segmentation model is the 
same as the third group in (3) in this section. The parameter settings are the 
same as in Section 5.1, where the number of iterations is 1000. The test set was 
input into the model, the accuracy rate in the classification stage was 97.7%, and 
the mIoU in the segmentation stage was 93.5%. As shown in Figure 15, the 
model performed well in locating the lesion area, which further proved the effec-
tiveness of the model. 

6.3. Comparative Experiment 

Compare the two-stage segmentation model with 9 end-to-end models on the 
lung cancer metastasis pathological image dataset (D1) and the Camelyon17 da-
taset (D2). The training strategy remains the original method, and only one da-
taset (made under Level0 Data set) for training, did not adopt the training strat-
egy proposed in this paper. The experimental results of each model are shown in 
Table 4. It can be seen that the evaluation indicators PA, mIoU, and Dice of the 
method in this paper are significantly better than the mainstream model, and the 
false positive rate FPN lowest.  

Figure 16 shows the segmentation results of the above model on the patho-
logical map of lung cancer metastasis. It can be seen that the classic segmenta-
tion network models include FCN [7], DeepLabv3 [8], SegNet [9], Mask RCNN 
[10], nn U-Net [11], BCDU-Net [12], Medical Transformer [13], TransUNe 
[14], CaraNet [15], which are not accurate enough for the location of the lesion 
area, and the false positive rate is high. The latter five methods are medical im-
age segmentation models proposed in recent years, and they also have the problem  
 

Table 4. Comparison of different model performance. 

Method 
PA mIoU Dice FPN 

D1 D2 D1 D2 D1 D2 D1 D2 

FCN [7] 0.899 0.875 0.905 0.869 0.812 0.844 0.311 0.315 

DeepLabv3+ [8] 0.931 0.890 0.898 0.901 0.902 0.917 0.210 0.291 

SegNet [9] 0.929 0.911 0.906 0.899 0.932 0.890 0.294 0.332 

Mask RCNN [10] 0.891 0.879 0.884 0.903 0.878 0.889 0.295 0.344 

nn U-Net [11] 0.877 0.855 0.781 0.873 0.924 0.927 0.209 0.254 

BCDU-Net [12] 0.879 0.907 0.859 0.891 0.891 0.866 0.195 0.265 

Medical Transformer [13] 0.904 0.890 0.901 0.900 0.918 0.879 0.214 0.277 

TransUNe [14] 0.925 0.917 0.863 0.895 0.894 0.905 0.203 0.253 

CaraNet [15] 0.911 0.869 0.892 0.897 0.909 0.890 0.218 0.217 

Ours 0.948 0.937 0.913 0.935 0.934 0.915 0.187 0.197 
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Figure 15. Validation results of Camelyon17 dataset. (a) Original, (b) Ground truth, (c) 
Experimental results. 
 

 

Figure 16. Lung cancer metastasis pathological image compare experimental results. 
 
of misclassifying normal cells as cancerous cells, and their marginal performance 
is not good. Compared with other networks, the method proposed in this paper 
is more accurate in locating the lesion area on the pathological image data set, 
and the edge outline is clear. That is suitable for lesion location. 

Figure 17 shows the segmentation results of the above model on the patho-
logical map of lung cancer metastasis. It can be seen that the classic segmenta-
tion network models include FCN, DeepLabv3, SegNet, and Mask RCNN, which 
are not accurate enough for the location of the lesion area, and the false positive 
rate is high. The last five methods are medical image segmentation models pro-
posed in recent years, and they also have the problem of misclassifying normal 
cells as cancerous cells, and their marginal performance is not good. Compared 
with other networks, the method proposed in this paper is more accurate in lo-
cating the lesion area on the pathological image data set, and the edge outline is 
clear. 

https://doi.org/10.4236/health.2023.155029


J. W. Zhao et al. 
 

 

DOI: 10.4236/health.2023.155029 455 Health 
 

 

Figure 17. Camelyon16 compare experimental results. 

7. Conclusion and Discussion 

This article introduces the process and principle of obtaining tissue from lung 
biopsy to making digital pathological images. Then, the pathological image da-
taset of lung cancer metastasis was made using the pathological images acquired 
by lymph node aspiration, and the block dataset was made using the Camelyon17 
public dataset for the validation of model validity. According to the comparative 
test above, the method proposed in this paper is more accurate in locating the le-
sion area on the pathological image data set, and the edge outline is clear, which is 
suitable for this task. 
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