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Abstract 
Protecting groups often play an essential role in organic synthesis, particularly 
for multi-step synthesis or natural product total synthesis. Various protecting 
groups areavailable to mask the vulnerable functionality; phenolic hydroxy 
groups are noteworthy examples, but their stability differs when protected. 
Herein, the compatibility of protective phenolic functionality was investigated 
with the implementation of indium (III) triflate-catalyzed oxidative esterifica-
tion using Oxone in methanol. A wide range of protective moieties was se-
lected and subjected to Oxone-mediated oxidative esterification. For example, 
sulfonates were found to be sufficiently stable and inert whereas acetals were 
susceptible to reaction conditions. The details of this investigation are pro-
vided. 
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1. Introduction 

Chemoselective reactions occurring at the intended reactive sites are vital for the 
success of chemical transformations in a sequence. Protecting groups often play 
an essential role in organic synthesis, particularly for multi-step synthesis or for 
natural product total synthesis. Various protective agents are available to mask 
vulnerable functionality such as those for phenolic hydroxy groups. Indeed, a 
number of protective agents for phenolic hydroxy groups have been introduced 
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over the past decades [1]. Among them, versatile groups include ethers, silyl 
ethers, esters, carbonates, and sulfonates. Previously, we reported a couple of 
chemoselective deprotection transformations from hydroxy moieties, in which 
trichloroethoxycarbonyl groups and trichloroacetyl groups were removed from 
aliphatic hydroxy groups and from phenolic hydroxy groups in the presence of 
indium powder [2]. Also, we reported a fast and practical approach to tetrahy-
dropyranylation and depyranylation of alcohols using indium (III) triflate as the 
catalyst [3], which consequently was followed by a one-step transformation of 
tetrahydropyranyl ethers using catalytic indium (III) triflate [4]. Meanwhile, we 
recently demonstrated a practical method for the oxidative esterification of al-
dehydes using Oxone® monopersulfate compound (Oxone) as an oxidant with a 
catalytic amount of indium (III) triflate. Oxone is a versatile triple salt of potas-
sium composed of potassium peroxymonosulfate. As for the starting materials, 
benzaldehyde derivatives were examined initially [5], and then application was 
expanded to heterocyclic aldehydes such as pyridinecarboxaldehydes [6]. In 
many cases, not only methanol but also longer chain alcohols could efficiently 
function as both the solvent and the substrate [7]. However, we soon realized 
that a tert-butyldimethylsilyl (TBDMS) group [8] [9] that was intended to pro-
tect the phenolic hydroxy unit was removed during the reaction course of 
Oxone-mediated oxidative esterification. The para-toluenesulfonyl (Tosyl (Ts)) 
group [10], however, was maintained under the reaction conditions [5]. Based 
on these observations, we further investigated the compatibility of the protected 
phenolic functionality upon implementation of indium (III) triflate-catalyzed 
oxidative esterification using Oxone in methanol. A wide range of protecting 
moieties was selected and subjected to Oxone-mediated oxidative esterification. 
The details of this study are provided.  

2. Results and Discussion 
2.1. Preliminary Investigation 

In our previous study, the TBDMS group that was intended to protect the phenolic 
hydroxy unit of meta-hydroxybenzaldehyde was removed by Oxone-mediated 
oxidative esterification [5]. Therefore, our first goal was to determine if silyl 
protection is always susceptible to reaction conditions such as these. While ortho 
and para substitution could feasibly display both inductive and resonance ef-
fects, meta substitution mainly shows only the inductive version. Thus, in order 
to eliminate the possibility of untoward resonance effects, derivatives contain- 
ing a bulky tert-butyldiphenylsilyl (TBDPS) group for the protection of meta- 
hydroxybenzaldehyde, in addition to a TBDMS group, were envisioned and 
subjected to this type of Oxone-mediated oxidative esterification (Table 1, en-
tries 1 and 2). Although Oxone, as the form of white granules, did not dissolve in 
the solution completely, the reactions flawlessly proceeded to the end. Fortu-
nately, the TBDPS group showed stability against the reaction conditions, and 
the corresponding methyl ester was obtained in an 89% yield with the TBDPS 
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group remaining intact. The TBDMS group, however, was removed during this 
reaction, as we previously reported. Since the acidity of the reaction mixtures 
could be the reason for deprotection, either acidic Oxone as the oxidant or in-
dium (III) triflate as the Lewis acid could have been directly responsible for the 
deprotection. We then planned a further investigation, and reactions were car-
ried out without either Oxone or indium (III) triflate (Table 1, entries 3 and 4). 
Unexpectedly, both reactions without Oxone and without indium (III) triflate 
disconnected the protecting TBDMS group, leaving meta-hydroxybenzaldehyde 
in a 95% yield and meta-hydroxybenzoic acid methyl ester in a 79% yield, re-
spectively. Apparently, Oxone and indium (III) triflate are equally responsible 
for removing the protection for phenolic hydroxy groups.  

2.2. Stable Protecting Groups under the Reaction Conditions 

We then shifted our attention to scrutinizing a wide range of protecting groups. 
Various protective derivatives were prepared by known methods. Table 2 shows 
the results of the Oxone-mediated oxidative esterification of protecting groups 
that were sufficiently stable to resist cleavage under the reaction conditions. A 
triisopropylsilyl (TIPS) group, another bulky silyl group, was stable and fur-
nished the desired methyl ester in an 81% yield (Table 2, entry 1). When phe-
nolic hydroxy groups were protected by benzoyl (Bz) and benzyl (Bn) groups 
[11] [12], the reaction also proceeded smoothly and gave corresponding methyl 
esters in high yields (Table 2, entries 2 and 3) [13]. Similar to our previous ob-
servation of the inertness of a Tosyl (Ts) group under these reaction conditions 
[5], we sought to confirm the constant stability of sulfonates by further examin-
ing 2-nitorobenzenesulfonyl (Ns) and benzylsulfonyl groups. All experiments 
started with sulfonates and proceeded smoothly giving methyl esters with the 
sulfonate units intact, although the yields varied from 69% to 86% (Table 2, en-
tries 4-6). Moreover, the Oxone-mediated oxidative esterification reaction did 
not disturb the 2,2,2-trichloroethoxycarbonyl (Troc)-protected carbonate [2] 
and gave methyl ester in a reasonable 78% yield (Table 2, entry 8).  

 
Table 1. Reactions starting with silyl ethers as the starting materials. 

 
 

Entrya R 
Oxone 
(eq.) 

In(OTf)3 

(mol%) 
R’ X 

Time 
(h) 

Yieldb 
(%) 

1 TBDPS 1.0 10 TBDPS OCH3 4 89 

2 TBDMS 1.0 10 H OCH3 7 99 

3 TBDMS - 10 H H 7 95 

4 TBDMS 1.0 - H OCH3 5 79 

a: All reactions were carried out at reflux in CH3OH. b: Isolated yields.  

H
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CH3OH
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Table 2. Esterification reactions using the starting materials with stable protecting 
groups. 

 
 

Entrya Starting Material Product Time (h) Yieldb (%) 

1 

  

3 81 

2 

  

3 94 

3 

  

5 80 

4 

  

5 86 

5 

  

7 72 

6 

  

5 69 

7 

  

5 78 

a: All reactions were carried out at reflux in CH3OH. b: Isolated yields.  
 

Table 3. Esterification reactions using starting materials with unstable protecting groups. 

 
 

Entrya R Time (h) Yieldb (%) 
1 Boc 3 98 
2 THP 3 96 
3 Ac 5 98 
4 MEM 3 99 
5 BOM 3 76 
6 EOM 3 65 
7 MOM 3 49 

a: All reactions were carried out at reflux in CH3OH. b: Isolated yields. 
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2.3. Unstable Protecting Groups under the Reaction Conditions 

Table 3 lists the entries from the Oxone-mediated oxidative esterification that 
were revealed to have started with compounds comprised of unstable protecting 
groups. In all cases during esterification, the protective moieties were cleaved, 
which furnished 3-hydroxybenzoic acid methyl ester. The tert-butoxycarbonyl 
(Boc) group is one of the most popular protecting groups and is known to be 
unstable particularly under acidic conditions [14]. Indeed, although methyl este-
rification was implemented smoothly, deprotection simultaneously proceeded, and 
the reaction gave the deprotected methyl ester in a 98% yield (Table 3, entry 1). 
We examined other protecting groups with ambiguous stability against acidic en- 
vironments, such as tetrahydropyranyl (THP) [3] and acetyl (Ac) groups. In both 
cases, the reactions did not sustain the protective agents, and 3-hydroxybenzoic 
acid methyl ester was generated in high yields (Table 3, entries 2, 3). Conse-
quently, it occurred to us that the bulkiness of acid-sensitive acetals might im-
prove the stability of the protective elements. Thus, we added heavy and long 
methoxyethoxymethyl (MEM) and benzyloxymethyl (BOM) protective agents 
[15], as well as smaller ones such as ethoxymethyl (EOM) and methoxymethyl 
(MOM) agents [16] [17] [18]. Despite our blurred predictions, the resultant 
products that started with these four acetals were identical, and 3 hours of reac-
tion time at reflux produced a deprotected methyl ester (Table 3, entries 4-7). A 
minor difference was noted when the heavy and long acetals gave higher yields 
(Table 3, entries 4, 5) than the smaller ones (Table 3, entries 6, 7).  

3. Conclusion 

We investigated various groups that could provide protection for phenolic hy-
droxy groups when Oxone-mediated oxidative esterification was implemented. 
The reactions employed Oxone and a catalytic amount of indium (III) triflate in 
methanol. Under these reaction conditions, stable protecting groups remained 
intact during esterification as a part of the starting materials and the products, 
whereas unstable protecting groups were cleaved during esterification. Sulfo-
nates were stable and compatible during the reaction courses. On the other 
hand, acetals were unstable and incompatible. These findings should help guide 
the choice of proper protection for phenolic hydroxy groups.  

4. Experimental 
4.1. Materials and Instruments 

All reagents were of analytical grade, were purchased commercially, and were 
used without further purification. All reactions were performed under argon us-
ing magnetic stirring unless otherwise stated. 1H NMR and 13C NMR spectral 
data were recorded on a JEOL JMTC-500 spectrometer (500 MHz for 1H NMR 
and 125 MHz for 13C NMR) using tetramethylsilane (TMS) as the internal stan-
dard.  
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4.2. General Experimental Procedure 

When used as the starting materials, benzaldehyde derivatives such as meta-tert- 
butyldiphenylsilyloxy benzaldehyde (360 mg, 1.0 mmol) were combined with 
Oxone (615 mg, 1.0 mmol) and indium (III) triflate (56 mg, 10 mol%) in me-
thanol (50 mL). The reaction mixtures were heated at reflux and monitored for 
completion via TLC. The reaction mixtures were filtered, and the filtrate was 
condensed by rotary evaporation. The resultant residue was purified by silica gel 
flash column chromatography to obtain the desired methyl ester products, which 
were confirmed by spectroscopy.  

3-tert-Butyldimethylsilyloxybenzoic acid methyl ester (Table 1, Entry 1): 
1H NMR (500 MHz, Chloroform-d) δ 7.78 (dd, 4H, J = 8.1, 1.8 Hz), 7.61 - 7.59 
(m, 2H), 7.46 (t, 2H, J = 7.5 Hz), 7.41 (t, 4H, J = 7.5 Hz), 7.12 (t, 1H, J = 8.1 Hz), 
6.91 (dt, 1H, J = 8.1, 1.8 Hz), 3.87 (s, 3H), 1.18 (s, 9H); 13C NMR (125 MHz, 
Chloroform-d) δ 166.7, 155.5, 135.4, 132.4, 131.3, 130.0, 129.0, 127.8, 124.1, 
122.2, 120.8, 51.9, 26.4, 19.4.  

3-Triisopropylsilyloxybenzoic acid methyl ester (Table 2, Entry 1): 1H 
NMR (500 MHz, Chloroform-d) δ 7.61 (dt, 1H, J = 7.8, 1.2 Hz), 7.54 (dd, 1H, J = 
2.6, 1.4 Hz), 7.27 (t, 1H, J = 8.0 Hz), 7.06 (ddd, 1H, J = 8.1, 2.6, 1.2 Hz), 3.89 (s, 
3H) 1.27 (sept, 3H, J = 7.7 Hz), 1.11 (d, 18H, J = 7.7 Hz); 13C NMR (125 MHz, 
Chloroform-d) δ 166.9, 156.0, 131.3, 129.2, 124.5, 122.2, 120.7, 52.0, 17.8, 12.5.  

3-Benzoyloxybenzoic acid methyl ester (Table 2, Entry 2): 1H NMR (500 
MHz, Chloroform-d) δ 8.20 (dd, 2H, J = 8.3, 1.4 Hz), 7.96 (dt, 1H, J = 7.8, 1.4 
Hz), 7.91 (t, 1H, J = 1.7 Hz), 7.62 (tt, 1H, J = 7.5, 1.4 Hz), 7.51 - 7.47 (m, 3H), 
7.42 (ddd, 1H, J = 8.0, 2.3, 1.2 Hz), 3.90 (s,3H); 13C NMR (125 MHz, Chloro-
form-d) δ 165.9, 164.7, 150.7, 133.6, 131.5, 130.0, 129.3, 128.9, 128.5, 126.9, 
126.3, 122.8, 52.1.  

3-(para-toluenesulfonyloxy)benzoic acid methyl ester (Table 2, Entry 4): 
1H NMR (500 MHz, Chloroform-d) δ 7.89 (d, 1H, J = 7.8 Hz), 7.67 (d, 2H, J = 
8.1 Hz), 7.63 (s, 1H), 7.34 (t, 1H, J = 8.0 Hz), 7.29 (d, 2H, J = 8.0 Hz), 7.15 (dd, 
1H, J = 8.0, 1.4 Hz), 3.85 (s, 3H), 2.41 (s, 3H); 13C NMR (125 MHz, Chloro-
form-d) δ 165.5, 149.4, 145.6, 131.9, 137.8, 129.8, 129.6, 128.3, 128.1, 126.7, 
123.4, 52.3, 21.6.  

3-(ortho-Nitrophenylsulfonyloxy)benzoic acid methyl ester (Table 2, En-
try 5): 1H NMR (500 MHz, Chloroform-d) δ 7.97 (dt, 1H, J = 7.5, 1.7 Hz), 7.94 
(d, 1H, J = 8.1 Hz), 7.86 - 7.82 (m, 3H), 7.72 - 7.67 (m, 1H), 7.43 (d, 1H, J = 8.1 
Hz), 7.40 (ddd, 1H, J = 8.0, 2.3, 1.2 Hz), 3.89 (s, 3H); 13C NMR (125 MHz, Chlo-
roform-d) δ 165.4, 148.9, 148.6, 135.7, 132.2, 132.1, 132.0, 130.0, 128.7, 127.9, 
126.7, 125.0, 123.2, 52.5.  

3-Benzylsulfonyloxybenzoic acid methyl ester (Table 2, Entry 6): 1H NMR 
(500 MHz, Chloroform-d) δ 7.94 (dt, 1H, J = 7.8, 1.2 Hz), 7.74 (t, 1H, J = 2.0 
Hz), 7.47 - 7.45 (m, 2H), 7.42 - 7.39 (m, 4H), 7.29 (ddd, 1H, J = 8.3, 2.3, 1.2 Hz), 
4.55 (s, 2H), 3.89 (s, 3H); 13C NMR (125 MHz, Chloroform-d) δ 165.5, 148.9, 
131.9, 130.7, 129.8, 129.2, 128.9, 128.1, 126.8, 126.5, 122.9, 56.9, 52.3.  
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3-(2’,2’,2’-Trichloroethoxycarbonyloxy)benzoic acid methyl ester (Table 
2, Entry 7): 1H NMR (500 MHz, Chloroform-d) δ 7.96 (dt, 1H, J = 8.0, 1.7 Hz), 
7.89 (t, 1H, J = 1.7 Hz), 7.48 (t, 1H, J = 8.0 Hz), 7.41 (ddd, 1H, J = 8.0, 2.3, 1.2 
Hz), 4.87 (s, 2H), 3.91 (s, 3H); 13C NMR (125 MHz, Chloroform-d) δ 165.6, 
152.1, 150.5, 131.7, 129.5, 127.5, 125.2, 121.9, 93.8, 76.6, 52.2.  
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