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Abstract 
Taking the Dapingzhang copper-polymetallic deposit in Yunnan Province, 
China as the research object, the maximum entropy model was used to ex-
tract the mining information, and the mineral resource prediction model was 
established by using the exploration data of the deposit and related regions in 
this area, so as to determine the prospecting prospect area in the study area. 
In this paper, the Jacknife analysis module of maximum entropy model is 
used to quantitatively rank the importance of 39 geochemical element va-
riables, and finally obtain the prospecting prospect map of the study area. The 
research results show that the Dapingzhang mining area has the potential to 
find hidden ore in the deep and surrounding areas, and the northern and 
southern ends and western sides of the rock ore control structural belt in the 
eastern region of the mining area have good prospecting prospects. The re-
search results provide an important basis for the deployment of follow-up ex-
ploration work in the study area, and the maximum entropy model has a 
good application effect in mineral resources exploration. 
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1. Introduction 

Metallogenic prediction should apply geological theories and scientific methods, 
synthesize geological, geophysical, geochemical and other basic data to obtain 
metallogenic information, summarize metallogenic conditions and rules, estab-
lish deposit models, and delineate ore-forming exploration areas of different le-
vels (Xiao, Zhang, & Chen, 1999). 
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The era of big data (Mayer-Schonberger & Cukier, 2013) has opened up pos-
sibilities for mineral prediction and deep ore exploration theories and methods. 
The significance of mineral prediction based on big data lies not only in master-
ing massive data information, but also in the professional processing of these 
geological data in various geological disciplines or even across disciplines, so as 
to make it more targeted (Wang, Liu, & Liu, 2015). (Zhou, Zhang, Zhang, & 
Wang, 2018) published a monograph entitled Earth Science and Machine 
Learning Big Data Mining. (Luo, Zhang, Song, Wang, Yang, Zhao, & Liu, 2017) 
studied the correlation between 41 geophysical and geochemical variables and 
Pb-Zn-Fe deposits in Beishan area of Gansu Province based on big data think-
ing, delimit the prospecting target area for gold polymetallic deposits, and 
achieved good results. At present, the mineral prediction based on big data has 
achieved better prospecting results, and will have great potential and application 
value in prospecting prediction. 

The prospecting prediction map is generated by identifying and deducing 
various geological representative evidence variables, so it is necessary to fully 
understand the geological conditions of the relevant metallogenic system. The 
ore exploration prediction map illustrates the spatial correlation between each 
evidential variable and deposit occurrence, as well as a new understanding of 
the metallogenic system (Porwal & Carranza, 2015). Techniques widely used in 
this field include fractal and multifractal analysis (Cheng, 1999; Cheng, 2007; 
Agterberg, 2007), principal component analysis, and factor analysis (Carranza, 
2010; Wang, Zhao, Cheng, & Carranza, 2015), all of which can deepen our 
understanding of spatial correlations between various geological evidence va-
riables. 

There are usually two approaches to exploration prediction mapping, namely 
data-driven and knowledge-driven. Data-driven features are extracted from 
training data sets and weights are assigned to the features of evidence variables, 
while knowledge-driven research and judgment of the features of each geological 
evidence variable are based on expert experience (Bonham-Carter, 1994). Both 
data-driven and knowledge-driven approaches have their own advantages and 
disadvantages. In contrast, knowledge-driven approaches are subjective and re-
quire a deep understanding of the mineralization process and the relationship 
between mineral sites and various geological evidence variables. The data-driven 
method is to study the prospecting rule according to the characteristics of ma-
thematical statistics. Despite their respective shortcomings in assigning weights 
to evidence variables (Yousefi & Nykanen, 2017), data and knowledge-driven 
approaches are still widely used. In recent years, many machine learning and 
deep learning methods have been developed for data-driven modeling (Lew-
kowski, Porwal, & Gonza’lez-A’lvarez, 2010). Decision tree (Breiman, 2017; 
Elith, Leathwick, & Hastie, 2008), artificial neural network (ANN) (Brown, 
Gedeon, Groves, & Barnes, 2000; Porwal, Carranza, & Hale, 2003), support vec-
tor machine (SVM) (Zuo & Carranza, 2011; Abedi, Norouzi, & Bahroudi, 2012), 

https://doi.org/10.4236/gep.2023.1111002


Z. Chen, L. W. Shi 
 

 

DOI: 10.4236/gep.2023.1111002 29 Journal of Geoscience and Environment Protection 
 

random forest (RF) (Breiman, 2001; Rodriguez-Galiano, Chica-Olmo, & Chica- 
Rivas, 2014), etc., are widely used in these methods. 

The innovation of this paper lies in the improvement of the entropy model, 
which takes the maximum entropy and achieves an equilibrium state, reflecting 
the essence of things. The equilibrium state has the highest entropy because it is 
a measure of irreversible events, and entropy only decreases and does not in-
crease. Equilibrium state means that events do not change and are in the same 
state, so entropy does not decrease to the maximum! Once an event changes, en-
tropy decreases, and the event cannot be reversed. 

The Dapingzhang polymetallic deposit in Puer City, Yunnan Province is a 
massive sulfide deposit (VHMS) located in the “Sanjiang” area. The discovery of 
the deposit provides evidence for searching for VHMS in the volcanic belt of 
Lancang River. The deposit contains medium level of metal resources. Through 
the study of “ore-forming geologic body, ore-forming structure, ore-forming 
structural plane and ore-forming trinity”, this paper adopts maximum entropy 
model to study the prospecting prospect of the study area, analyzes the ore- 
forming process and the relationship between the deposit and various geological 
evidence variables, draws the prospecting prediction map of the mining area, and 
finally makes a comprehensive evaluation of the mining area. 

2. Geological Background 
2.1. Geological Overview 

The Dapingzhang copper polymetallic deposit in Puer City, Yunnan Province is 
a volcanic massive sulfide (VHMS) deposit found in the “Sanjiang” area. The 
discovery of this deposit provides a basis for searching for the same type of de-
posit in the Lancangjiang volcanic belt. In this paper, the ore-forming geological 
body, ore-forming structure, ore-forming structural plane and ore-forming cha-
racteristics of the trinity “are studied, and the prospecting prospect of the study 
area is studied by weight of evidence method. 

There are Proterozoic, Devonian, Carboniferous, Permian, Triassic, Jurassic, 
Cretaceous, Tertiary and Quaternary strata in the Dapingzhu copper mine in 
Puer City, Yunnan Province. The Lower Paleozoic is mainly missing. The total 
thickness of the strata is about 20,000 meters. The Damenglong Group of Pa-
laeoproterozoic distributed in the east of Menghai-Lincang granite base, is a set 
of migmatite and regional metamorphic rock association. The Upper Devo-
nian-Lower Carboniferous Dawazi Formation (DCd), covering an area of about 
55 square kilometers, is distributed in the Dpingzhang mining area and the Yin-
shan area. The Carboniferous Permian system is composed of carbonate rocks, 
clastic rocks and argillaceous rocks, and locally contains basic and medium acid 
volcanic rocks and pyroclastic rocks. Regional metamorphism has occurred in 
the western Daxinshan Formation. 

The mining area is located in the Paleozoic island arc volcanic belt on the west 
margin of Lanping-Simao microplate and adjacent to Lancang River junction 
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zone in the west. From the analysis of regional tectonic environment, the deposit 
is located in the area of interaction between the South Lancang River oceanic 
crust and Lanping-Simao microplate, and is the product of volcano-jet deposit 
mineralization in the backarc rift zone during the eastward subduction of the 
oceanic crust. The metallogenic belt belongs to the W, Cu polymetallic belt of 
Yunxian Jinghong volcanic Arc in the middle and south section of Lanping-Puer 
Block Cu-Pb-Zn-Ag-Fe-Hg-SB-As-Au gypsum-siderite-salt metallogenic belt in 
the Sanjiang Orogenic Belt of the Tethyan metallogenic domain. The study area 
is a marginal active zone between the Yangtze landmass and the Indian plate. 
From late Paleozoic to Early Tertiary, it has experienced many tectonic changes, 
intersected faults and joined each other, accompanied by magmatic intrusion 
and volcanic eruption activities, making this area show complex tectonic fea-
tures. The main structural lines are mainly north-south, and the main faults in-
clude Lancang River fault and Jiufang fault. 

Magmatic rocks are developed in the area, accounting for one third of the 
whole area, and the magmatic activity period is from Varissian to Alpine. The 
intrusive rocks are mainly distributed in the west of Jiufang fault, and the rock 
types are mainly medium-acid rocks, with a small amount of ultrabasic and 
basic rocks. The Varissian intrusive rock is the Lincang-Menghai granite base, 
and the lithology is the medium coarse-grained biotite monzonitic granite and 
porphyritic monzonitic granite. The Indosinian intermediate acid and neutral 
intrusive rocks are represented by Jiujie (quartz) diorite and Mengxiang gra-
nodiorite. The Yanshanian intrusive rocks are represented by Banpo ultrabasic 
and basic rock complex. The alpine intrusive rocks are mainly distributed in 
the Yakou area, including granite porphyry, quartz porphyry, monzonite gra-
nite porphyry, granodiorite porphyry, plagioclase granite porphyry, felsite 
porphyry, etc., which is a favorable area for searching porphyry deposits. Vol-
canic rocks are distributed between Lancang River fault zone and Jiufang fault, 
and only a small amount of volcanic rocks are exposed to the east of Jiufang 
fault. The volcanic-bearing beds include Devonian, Carboniferous, Permian and 
Triassic. It is mainly medium-acid rocks with less basic properties, including 
volcanic rocks and pyroclastic rocks. Dawazi Formation (DCd) and its related 
subvolcanic rocks are the production horizon of the Daping palm-type volcanic 
copper-polymetallic deposit. The geological map of the study area is shown in 
Figure 1. 

The predicted area is located in the western part of Lanping-Simao biaxial 
backarc-continental basin. The ore-bearing strata are volcano-sedimentary rocks 
and related subvolcanic rocks of the Upper Devonian-Lower Carboniferous Da-
wazi Formation (DCd), and the tectonic environment for mineralization is the 
Late Devonian-Early Carboniferous Marine eruption-sedimentary basin and 
volcanic eruption center. The orebodies occur in specific submarine volcanic 
eruption-sedimentary cycles and related subvolcanic rocks, belonging to a more 
typical micropyritic and keratophyre formation. The ore-forming age is 306 - 
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Figure 1. Geological map of Dapingzhang mining area in Yunnan Province. 

 
358 Ma. The submarine volcanic eruption-sedimentary cycle and related sub-
volcanic rocks controlled the formation and production of volcanic copper po-
lymetallic deposits, including the famous large copper polymetallic deposit in 
Puer, Yunnan. 

At present, only two copper polymetallic deposit areas have been found in the 
area, except the Dpingzhang large copper polymetallic deposit in Puer City, and 
only one copper polymetallic deposit in Yindenshan, which has low geological 
exploration and research work, and its metallogenic geological background, 
prospecting conditions and mineralization characteristics. It is basically the same 
as Dpingzhang mining area and has strong comparability, so the study area has 
certain copper polymetal prospecting prospect and resource potential. 

The deposit in this area was controlled to form in the stage of acid-basic vol-
canic effusion-deposition, and the genesis of the deposit is directly related to 
volcanic activity. In the Late Devonian to Early Carboniferous (D3-C1) Lanp-
ing-Simao biaxial backarc-continental basin, a volcanic basin was formed by the 
eruption of acid-basic volcanic rocks due to crustal stretching, and four erup-
tion-sedimentary cycles developed from bottom to bottom in the basin. Cu, Pb, 
Zn, Ag, Au, S, P, CO2, etc. brought by volcanic activities enter the sea basin in 
the form of air and hot springs, forming dense massive copper polymetallic ore 
(black ore) in favorable locations. In the late period of volcanic activity, the sec-
ondary volcanic rocks were filled in the volcanic mechanism (channel), and the 
hidden waterfall on the top of it formed the late fine vein disseminated copper 
ore (yellow ore). 

2.2. Geophysical Characteristics 

In the aeromagnetic ΔT contour plan, the positive anomaly is dominant, while 
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the negative anomaly appears in the northwest corner, which is north-northwest, 
with high intensity and steep slope. The positive anomalies are divided into three 
high-value zones with a strength of 20 nT traps, and the extreme value is above 
90 nT. The anomalies are generally caused by alkaline volcanic rocks, in which 
iron ore may appear locally, and are located in the eastern part of the deep fault 
of the Lancang River. In the north-northwest direction of the aeromagnetic 
anomaly zone, the intensity is 30γ, the gradient is very low and gentle, almost 
symmetrical. According to regional survey data, rhyolite and Triassic clastic rock 
outcrops, they are caused by volcanic rocks. The eastern region is located on a 
low relaxation elliptic anomaly with an intensity of less than 20γ. The surface is 
non-magnetic Permian limestone and clastic rocks, and the anomaly is caused 
by volcanic rocks. The Dapingzhang mining area is located in the low and slow 
area of normal aeromagnetic anomaly. The geophysical analysis diagram is 
shown in Figure 2. 

2.3. Geochemical Characteristics 

In the 1:200,000 drainage sediment survey mining area of the study area, there 
were abnormal combinations of Cu, Zn, Ag, Au, Mo and Hg, and the abnormal 
concentration center was obvious, with three-level concentration zoning. The 
1:50,000 drainage sediment survey has formed Cu, Pb, Zn, Ag, Au, Sb and other 
element combination anomalies in the mining area, with high intensity, large 
range and strong correspondence with the ore body. When the depth of the ore 
body is large, the anomaly weakens. 

As and Sb are highly enriched elements in this study area with enrichment 
coefficients greater than 2.5, which may be related to the thick red layer in this  
 

 
Figure 2. Schematic diagram of geology, mineral resources and geophysical exploration. 
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area. Pb, Ag and Zn are moderately or relatively enriched elements with enrich-
ment coefficients of 1.61, 1.04 and 1.02, respectively. The relatively depleted 
elements are Cu, Hg, Mo and Au with enrichment coefficients of 0.85, 0.59, 0.53 
and 0.43, respectively, suggesting that the main ore-forming elements Cu and 
Au may come from deeper sources. The statistical table of geochemical characte-
ristics is shown in Table 1. 

According to the distribution of main metallogenic elements and associated 
elements, the general anomaly trend is consistent with the stratigraphic trend in 
the predicted working area. The abnormal internal fault structure is developed 
and overlaps with the known Dapingzhang copper-polymetallic deposit. They 
have obvious concentration centers and tertiary concentration zones, and the 
concentration centers are well coordinated with each other. The geochemical 
association anomaly diagram is shown in Figure 3. 

 

 
Figure 3. Anomaly map of Cu, Pb, Zinc-AG and Au geochemical combination in the prediction 
area of the Great Plain palm of Pu’er City. 
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Table 1. Drainage sediment geochemical characteristics in Daping Palm prediction area, Yunnan Province. 

element 
Record 
number 

Elimination 
number 

Maximum 
value 

Minimum 
value 

median 
Background 

value 
Lower limit 
of anomaly 

Continental 
crust element 

content 

Enrichment 
coefficient 

Ag 945 78 1300.0 20.0 80.00 73.12 120.00 70.00 1.04 

As 945 150 329.7 1.6 10.80 9.18 27.80 1.70 5.40 

Au 945 24 33.0 0.3 1.18 1.09 1.80 2.50 0.43 

Cu 945 59 574.9 4.8 21.90 21.31 34.90 25.00 0.85 

Hg 945 145 482.0 2.0 26.00 23.64 64.00 40.00 0.59 

Mo 945 123 16.1 0.1 0.60 0.58 1.30 1.10 0.53 

Pb 945 54 278.7 5.4 24.80 23.76 39.10 14.80 1.61 

Sb 936 20 30.0 0.1 0.90 0.83 1.80 0.30 2.78 

Zn 945 90 656.7 19.7 70.10 65.98 104.10 65.00 1.02 

Note: Au, Ag, Hg units are 10−9, others are 10−6; the content values of continental crust elements are cited from K. H. Wedepohl, 
1995. The background value is the statistical average after removing the 2 times logarithmic standard deviation. The lower limit of 
the anomaly is the value corresponding to 85% of the repeated frequency. 

3. Research Methods 
3.1. Maximum Entropy 

Information entropy is used to represent the uncertainty of information. Ac-
cording to the maximum entropy principle, the probability distribution with the 
maximum information entropy is the most objective when the origin moment 
constraint is satisfied (Wang, Sun, & Xie, 2015). Under the improved mul-
ti-point estimation framework, the maximum entropy can be expressed as: 

( ) ( ){ }
( )

( )( ),
1 1

max ln d

. .   d    0,1, ,

,

c
c
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c i k

i k

y y y
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                 (1) 

In the above formula: represents the probability density function of the ran-
dom variable y, and C is the order that should satisfy the origin moment con-
straint. By introducing the Lagrange multiplier method, the following analytical 
solutions can be obtained. 

( )
0

exp
c

c
c

c
y y

=

 ω = − λ 
 
∑                        (2) 

In the above formula: is the Lagrange multiplier corresponding to the origin 
moment of order C (when C is 0, the origin moment is 1). The unknown para-
meters are obtained by Newton-Raphson method, and the probability distribu-
tion which best conforms to the objective reality is obtained. Compared with the 
traditional method of fitting the probability density function with finite term se-
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ries expansion, the maximum entropy probability fitting makes use of the li-
mited information, makes the least assumptions about the unknown informa-
tion, and obtains the most objective probability distribution based on the limited 
information. The method also ensures that the value of the probability density 
function to be solved based on the negative exponential form is not less than 0. 

If you want to apply the maximum model, you need to build a series of fea-
tures based on the information of the current prediction point (a, b), and then 
train the parameters of the model with the information provided by the training 
sample. 

The main purpose of the learning algorithm is to obtain the parameters of the 
maximum entropy model. However, different from other machine learning 
models, the optimization goal of the maximum entropy model is to maximize 
the entropy. Therefore, the formula used for training of the algorithm is as fol-
lows: 

( ) ( )

( )
ˆ1 1 ln ip fn n

i i
p i

E

c E n f
+  

λ = λ +   
 

                  (3) 

This paper uses the software “maxent.jar” to obtain the maximum entropy 
model, and automatically tries the best parameters to achieve the maximum en-
tropy model. 

The maximum entropy model is based on probability statistics and can be ef-
fectively predicted by simple training data. The mathematical form of the max-
imum entropy model is very flexible and can be adapted to various application 
scenarios. The maximum entropy model can provide interpretable decision 
rules, making it one of the most interpretable machine learning algorithms in 
many fields. 

3.2. Jacknife Method 

The Jackknife method, also known as the jackknife method or the large jackknife 
method, is a non-parametric estimation method in statistics. This method is a 
new method proposed by mathematician M.H. Quenouille from the point of 
view of reducing deviation. It is a kind of statistical method which can be applied 
to the estimation of complex statistics in the sample survey of mathematical sta-
tistics. Jacknife method is a data-based re-sampling method in statistical infe-
rence (Shi & Zhang, 2016). It is an improvement on the traditional return me-
thod. Similar to bootstrap method, both of them are misjudgment probability 
estimation methods independent of data distribution characteristics. 

4. Results and Discussion 
4.1. Results 

The formation of mineral deposits is formed by the interaction of various geo-
logical processes in space, that is, the effective coupling of various geological va-
riables in space can form mineral deposits. The entropy model is a black box, 
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and its predictive effect is related to the internal structure of the method. The 
key to using maximum entropy method for mineral prediction lies in how to ef-
fectively identify these coupling factors and how to use data to express these 
coupling factors. In addition, the formation of the deposit occurs in a specific 
region, which is obviously controlled by regional metallogenic conditions and 
laws. 

The Jackknife analysis of the results of the maximum entropy model reveals  
 

 
Figure 4. Schematic diagram of Jackknife analysis results. 
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the relative importance of each evidence variable in the model, which has guid-
ing significance for the exploration work in the study area. Jackknife analysis in 
turn excludes evidence mapping from the analysis and then traverses the maxi-
mum entropy model using other evidence variables to determine the relative 
importance of each layer of evidence variable based on the final probability de-
termined by the model. 

The Jackknife analysis results of MaxEnt (maximum entropy) model reveal 
the relative importance of each variable in the model, which has guiding signi-
ficance for the exploration of Cu, Zn, Sn and Cr in the study area. First, through 
Jackknife analysis, we screened the evidence variables in turn. Second, we rerun 
the MaxEnt model with other evidence variables. Running a separate model that 
contains only the excluded evidence variables allows us to determine the relative 
importance of each evidence variable relative to the prospecting probability de-
termined by the model (Figure 4). 

By studying the evidence variables related to the type of deposit, and using 
principal component analysis and other methods to comprehensively analyze the 
mining area, the information for exploration modeling is obtained. Finally, the 
results of the maximum entropy model are used to generate a prospecting pros-
pect map (Figure 5). 

Figure 6 shows the receiver operating characteristic (ROC) curve of the 
training data. ROC curve refers to a line drawn under specific stimulus condi-
tions with the probability P (y/N) obtained by the subject under different judg-
ment criteria as the horizontal coordinate and the hit probability P (y/SN) as the 
vertical coordinate. The AUC area of the training data is 0.83 (Figure 6), which 
proves that the maximum entropy model has high accuracy in prospecting pre-
diction. 

 

 
Figure 5. Prospecting prospect. 
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Figure 6. ROC accuracy verification curve of maximum entropy model. 

4.2. Discussion 

The AUC values of MaxEnt model were 0.83 respectively (Figure 6), indicating a 
high accuracy of prospecting prediction. The results show that MaxEnt model 
has reasonable probability distribution results. This model is a good prospecting 
prediction algorithm model, which can analyze the spatial relationship of pros-
pecting prospect area and provide more reliable results for further exploration. 

5. Conclusion 

In this paper, the application effect of maximum entropy model in prospecting 
prediction is evaluated, and the metallogenic variables are input into the maxi-
mum entropy model to obtain the prospecting prediction model. The results 
show that this method can effectively identify geochemical element combination 
and improve the accuracy of prospecting prediction. The maximum entropy 
model is used to comprehensively evaluate the mineral resource potential of the 
study area, which can provide technical support for future prospecting work. 
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