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Abstract 
The susceptibility evaluation of landslides has become one of the key envi-
ronmental issues that people are concerned about. This study took the land- 
slides in Xishuangbanna, Yunnan Province as the study object, and selected 
10 evaluation factors such as digital elevation model (DEM), slope aspect, pre-
cipitation, land use, water system, roads, population density, lithology, faults, 
and NDVI. Different machine learning methods were compared and studied, 
and the ROC (receiver operating characteristics) curve verification revealed 
that the accuracy of the random forest evaluation model was high. In the pre-
diction and evaluation of the susceptibility of landslides, five risk levels were 
divided. After the superimposed analysis, 87.26% of the disaster points fell in 
the first and second susceptibility areas. The spot analysis found that the dis-
tribution of hot spots is consistent with the distribution of disaster spots. In a 
word, the results of this study can provide better technical support for the 
evaluation and early warning of landslides in Southwest China. 
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1. Introduction 

Landslides are geological phenomena, and landslides may cause the geological 
environment to be damaged to varying degrees under the action of internal and 
external geological forces or human activities, and brings serious harm to human 
life and property. Therefore, it is very important to carry out in-depth study on 
landslides. 

How to cite this paper: Chen, Z., & Zheng, 
Y. Y. (2023). Remote Sensing Landslide Mo- 
nitoring Based on Machine Learning Me-
thod. Journal of Geoscience and Environ-
ment Protection, 11, 87-105. 
https://doi.org/10.4236/gep.2023.1110008  
 
Received: September 1, 2023 
Accepted: October 17, 2023 
Published: October 20, 2023 
 
Copyright © 2023 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/

  Open Access

https://www.scirp.org/journal/gep
https://doi.org/10.4236/gep.2023.1110008
https://www.scirp.org/
https://doi.org/10.4236/gep.2023.1110008
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Z. Chen, Y. Y. Zheng 
 

 

DOI: 10.4236/gep.2023.1110008 88 Journal of Geoscience and Environment Protection 
 

A landslide is an important type of geological disaster, and investigating 
landslides is an important content. Susceptibility evaluation of landslide disas-
ters is a quantitative prediction and evaluation of the possibility of landslide dis-
asters in a spatial scale, which can provide substantive technical support for land 
and spacial planning (Balteanu, Micu, Jurchescu et al., 2020). In terms of evalua-
tion models, the evaluation models with geological hazard susceptibility of land- 
slides widely used by scholars mainly include deterministic models, mathemati-
cal statistical models and heuristic models (Salciarini, Godt, Savage et al., 2006; 
Liu, Wang, Zhou et al., 2020; Liu, Li, & Chen, 2018; Zhou, Yin, Xiang et al., 
2015). The deterministic model is based on the geomechanical process of land- 
slides. Generally, the susceptibility of geological landslides is evaluated by calcu-
lating the stability coefficient of the geological hazard body. The infinite slope 
model is a relatively typical model, but the application is difficult in hazard stu-
dies of large scale landslide geology, because of the need to determine the soil 
strength parameters of slide zones and accurate groundwater levels (Wang, Li, & 
Wang, 2012). Mathematical statistical models are based on the engineering geo-
logical analogy method, and primarily include models such as the volume of in-
formation and the weights of evidence. The heuristic model, also known as the 
expert experience model, mainly relies on the technical experience and profes-
sional knowledge of experts to establish an evaluation model, which has a large 
human subjectivity. At present, with the continuous development of machine 
learning and deep learning algorithms, more and more attention has been paid 
to the study of landslide disaster susceptibility evaluation models based on ma-
chine learning and deep learning algorithms, e.g., various neural network mod-
els, decision tree models and support vector machine model, etc. (Pradhan, 2013; 
Su, Wang, Wang et al., 2015; Dou, Yamagishi, Pourghasemi et al., 2015). Most of 
the above evaluation models can better reflect the complex nonlinear characteris-
tics of landslides, but some still have problems such as the difficult interpretation 
of prediction results and overfitting. 

In order to improve the prediction accuracy of the landslide disaster suscepti-
bility evaluation model and avoid problems such as overfitting, the random for-
est model has received more and more attention. This model is an improved in-
tegrated learning method for decision tree, which has been widely used in many 
fields (Pourghasemi & Kerle, 2016; Liu, Di, Zhan et al., 2018). At present, the 
random forest model also has some application cases in the field of landslide eval-
uation. For example, Merghadi (Merghadi, Abderrahmane, & Tien Bui, 2018) 

took the Mira Basin in North Africa as the study area and compared the predic-
tion capability of 5 geological landslide susceptibility evaluation models such as 
logistic regression, random forest, neural network, gradient boosting machine, 
and support vector machine. It was concluded after verification that the predic-
tion performance of the random forest model was better. Goetz et al. (Goetz, 
Brenning, Petschko et al., 2015) compared and analyzed the prediction and evalu-
ation effects of traditional geostatistical methods and various machine learning 
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methods on the evaluation of landslide geological hazard susceptibility. Through 
experiments, it was concluded that among many machine learning methods, the 
random forest model has better prediction performance. Sun et al. (2020) carried 
out the landslide susceptibility evaluation in Fengjie County and established a 
Bayesian optimization algorithm for the random forest evaluation model for 
landslide susceptibility. The results show that the model has high prediction ac-
curacy. 

At present, the commonly used landslide evaluation models include spatial 
model, landscape ecological model and mathematical model. Most of these evalu-
ation models are based on landscape ecology theory and comprehensively con-
sidering the overall situation of regional geological disasters (Wang, Cheng, & 
Qian, 2003). 

The reason why this paper chose the random forest algorithm for landslide 
prediction and evaluation was that the random forest algorithm is an integrated 
learning algorithm based on decision trees, and its core idea is to collect several 
decision trees to obtain the optimal solution. The principle of random forest is 
to randomly select features and eigenvalues in each decision tree to divide the 
data, then each decision tree gives the prediction result, and it finally determine 
the final prediction result through the voting result. The advantages of the algo-
rithm are stable, accurate prediction, and they can deal with missing values, and 
the calculation results are interpretable. The main parameters include decision 
tree number, feature selection strategy, minimum sample number of internal node 
subdivision, minimum sample number of leaf node, etc. 

In this study, the Random Forest (RF) model and support vector machine (SVM) 
model in machine learning are selected to evaluate the susceptibility of landslides 
in the Xishuangbanna area. Through ROC curve verification, it was proved that 
the Random Forest model has high prediction accuracy. The evaluation of land- 
slide susceptibility carried out in this study can provide a basis for the relevant 
authorities to establish landslide prevention and mitigation measures, and mi-
nimize various losses caused by landslides. 

2. Geological Background and Data Sources 
2.1. Geological Background 

Xishuangbanna is located at 21˚10'-22˚40' north latitude and 99˚55'-101˚50' east 
longitude. It is located at the northern edge of the tropics south of the Tropic of 
Cancer, covering an area of 19, 124.5 square kilometers. 

The strata in the Xishuangbanna area is distributed from the Paleoproterozoic 
to the Cenozoic, and the sequence and contact relationship of the strata is rela-
tively clear. Among them, the Damenglongyan Formation is the oldest stratum, 
which is widely distributed on the west side of the Lancangjiang fault, and the 
lithology is a set of deeper metamorphic schist, gneiss, and granulite. The Lan-
cang Formation is the most widely distributed in the study area, and the litholo-
gy is sericite-dolomitic quartz schist, sericite micromorphite, phyllite, and slate 
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with certain metamorphism. The study area also possess a small amount of Me-
so-Cenozoic strata distributed in the basin and on the edge of the basin, and the 
lithology is mainly clastic rocks intercalated with volcanic rocks (Hu, 2019). 

The structural trends are mainly NNE and NE. On this basis, NWW and NW 
faults are superimposed and developed in multiple circles. The main faults are 
large-scale NEE-trending Jinghong-Daluo fault and the NE-trending Lancangjiang 
fault (Yu, Li, Liu et al., 2013). There are two fold systems, namely the Gongshan- 
Tengchong and Tanggula-Chamdo-Lanping-Simao fold systems, and the boun-
dary is the Lancangjiang fault (Bai, Meng, Lv, & Zhang, 2015). The Dehua com-
plex syncline has a large area of Mesozoic red formations, and locally-distributed 
carbonate formations, coal-bearing clastic formations and molasse formations. 
The southeastern end of the Lincang-Menghai fold has the Damenglong meta-
morphic rock and the Proterozoic Lancang Formation outcropping, and the Va-
rioxi-Indosinian Menghai granite base is widely distributed (Yunnan Provincial 
Bureau of Geology and Mineral Resources, 1990). The magmatic rocks in the 
study area can be roughly divided into two categories. The first is the Lincang 
granite, which is dominated by biotite monzogranite. The second is the complex 
distributed along the Lancang River fault. Medium acid, neutral and basic are 
distributed (Figure 1). 

 

 
Figure 1. The map of Xishuangbanna area. 
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2.2. Data Sources 

The study used data from: Geospatial Data Cloud website, Landsat8 remote 
sensing image. Source of geological disasters and landslide data: China Geologi-
cal Survey Dataset of Detailed Survey of Geological Hazards. Source of rainfall 
data: Interpolation of point observation data from China Meteorological Data 
Website, http://data.cma.cn/site/index.html. Source of geological data: National 
Geological Archives, http://www.ngac.org.cn/. Land use data source: Resource 
and Environment Cloud Platform, Institute of Geography, Chinese Academy of 
Sciences, https://www.resdc.cn/. DEM data source: https://search.asf.alaska.edu/ 
(Table 1). 

2.3. Selection of Evaluation Factors 

In this study, 10 evaluation factors including a DEM, slope aspect, precipitation, 
land use, water system, road, population density, lithology, fault, and NDVI are 
selected (as shown in Table 2). These evaluation factors are directly related to 
landslide. Through correlation analysis, the information overlap of these evalua-
tion factors, which meets the selection criteria of evaluation factors. 

3. Method 

The application of machine learning mainly includes four fields: classification, 
clustering, regression and data dimensionality reduction. In this study, the ideas of 
clustering idea and regression are combined to evaluate the landslide susceptibility  

 
Table 1. Data source table. 

Data name 
Data 
type 

Source of Data Resolution 
acquisition 

year 

Landsat8 tif http://www.gscloud.cn/ 30 m 2021 

landslide data shp 
China Geological Survey Dataset of 

Detailed Survey of Geological Hazards 
 2021 

rainfall data shp http://data.cma.cn/site/index.html  2021 

geological data shp http://www.ngac.org.cn/  2012 

Land use data shp https://www.resdc.cn/  2020 

DEM tif https://search.asf.alaska.edu/ 12.5 m 2015 

 
Table 2. Evaluation factors. 

factor code factor name factor code factor name 

B1 DEM B6 road 

B2 slope B7 Population density 

B3 precipitation B8 lithology 

B4 landuse B9 fault 

B5 river B10 NDVI 
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in the Xishuangbanna area. Algorithms and data analysis are implemented 
through the Python programming platform, and spatial analysis and mapping 
are completed by ArcGIS 10.2 software of ESRI company. 

3.1. Random Forest Model 

In the process of RF model documented in this study, the model was trained first 
and used to predict and classify the basalt tectonic backgrounds of the test sam-
ples. The importance of different elements was also calculated using this model. 
Random forest (Athey, Tibshirani, Wager et al., 2019) belonged to an ensemble 
learning (Choi, Gu, Chin et al., 2020) algorithm. The basic idea of this algorithm 
is to use the Bootstrap sampling method to perform a sampling operation with 
replacement from the original data set, then build a decision tree from the sam-
pled original data subset, and finally combine multiple decision trees into one. 
The mean value of the built decision tree is finally used as the result of the ran-
dom forest regression prediction. The specific steps of the algorithm include that 
each decision tree in the random forest algorithm model (Figure 2) contains a 
tree-like sequence of decision nodes. Based on this sequence, the tree is split into 
various branches until it reaches the end (leaf) of the tree. The prediction results 
of each decision tree are output through leaf nodes, and finally, the outputs of 
multiple decision trees are combined for prediction. The random forest algo-
rithm has the advantages of fast training speed and avoiding overfitting. Py-
thon3.6 language, Sklearn and other function libraries are used in this study to 
program the random forest model (Figure 2). 

For classification tasks, the most commonly used combination strategy is the 
voting method. Suppose the set of categories is { }1 2, , , NC C C� , For the con-
venience of discussion, the predicted output of HI on sample x is expressed as an 
n-dimensional vector ( ) ( ) ( )( )T1 2, , , N

i i ih x h x H x� , where ( )j
ih x  represents the 

output of Hi on class Cj. Majority voting formula is as follows. 

( ) ( ) ( )1 1 1,   0.5

reject,   other situations

T N Tj k
j i ii k iC h x h x

H x = = =
 >= 


∑ ∑ ∑            (1) 

If a mark receives a majority of votes, it is predicted to be in that category; 
otherwise, the prediction is rejected. Relative majority vote (plurality voting), 

 

 
Figure 2. Random forest algorithm model (Choi, Gu, & Chin, 2020). 
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prediction for categories with the most votes, if there are multiple categories to 
get the highest votes at the same time, is to a randomly selected from it. 

In this paper, the steps to implement the random forest algorithm are as fol-
lows: 1) Training random forest model by non-landslide samples obtained through 
remote sensing visual interpretation and landslide point. 2) The trained random 
forest model was used to input the feature vector (forecast data), and the voting 
results of each decision tree were counted to obtain the votes of each object be-
longing to landslide and non-landslide. 3) According to the number of votes of 
each object belonging to landslide and non-landslide, the landslide probability can 
be obtained. 

3.2. Support Vector Machine (SVM) 

Support Vector Machine (SVM for short) is a typical classification model, which 
is a typical classification model built on mathematical statistics. Unlike tradi-
tional mathematical statistics methods, support vector machines (SVMs) are an 
improvement of structural risk minimization methods (Wen, 2008). This algo-
rithm was proposed by Vapnik in 1963. For linear problems, the algorithm has 
great advantages, but for nonlinear problems, there are still some difficulties. Lat-
er, with the introduction of the concept of kernel skills by Boser and Cuyon, the 
computational challenges of nonlinear support vector machines were resolved, 
allowing SVMs to be referenced in various application areas. The idea of the al-
gorithm is to build an optimal classification hyperplane in high dimensions, and 
the hyperplane keeps the distance from the sample points on both sides to max-
imize, so as to realize sample classification (Huang, 2001). For the linearly se-
parable support vector model, we first find a hyperplane that completely sepa-
rates sample points of different types and maximizes the geometric interval. Con-
verting this algorithm principle to a two-dimensional space can be represented 
as shown in Figure 3. In Figure 3, the cross and the solid circle represent two 
different categories (Tuo, 2014). 

The maximum geometric interval classification hyperplane and constraints 
are shown in formulas (1)-(2): 

 

 
Figure 3. Two dimensional classification figure (Tuo, 2014). 
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,
max  

w b
γ                             (2) 

s.t.  ,   1, 2, ,i i
w by x i N
w w

 
⋅ + ≥ γ =  

 
�               (3) 

Solve the maximum geometric interval γ value (unique solution), establish 
the Lagrangian function, and solve it based on the dual problem (w, b),  

* * 0w x b⋅ + = , and obtain the maximum geometric interval hyperplane: The 
separation decision function is shown in Equation (3): 

( ) ( )* *signf x w x b= ⋅ +                      (4) 

3.3. Hot Spot Analysis Method 

Hot spot analysis is to calculates the *
iG d  value for each evaluation unit in the 

evaluation model data set, that is, to calculate the locally extremely high cluster 
value of the evaluation factor (such as formula 4), and to determine the location 
where the high-value elements are clustered in space (Wang, Zhu, & Ze, 2021). 
The hot spot analysis function is to reflect the aggregation degree of high values 
of evaluation factors. 

( )*

1 1

n n

i ij j j
j j

G d d x x
= =

= ω∑ ∑                     (5) 

4. Data Processing 
4.1. Data Preprocessing 

Taking into consideration the general circumstances in the study area as well as 
the expert advice, 10 evaluation factors including DEM, slope aspect, precipita-
tion, land use, water system, road, population density, lithology, fault and NDVI 
were selected. The fishnet tool in ArcGIS is used in this study to build a fishnet 
and establish an evaluation model, with a total of 4544 evaluation units. Evalua-
tion models are built in preparation for implementing machine learning algo-
rithms. The fishnet layer, the landslide point map, and the evaluation factor lay-
ers are shown in the following figures (Figure 4(a), Figure 4(b)). 

4.2. Sample Making 

In this study, the geological disasters and landslide data obtained from the de-
tailed survey data about landslides of the China Geological Survey are taken as 
the landslide point data, and the non-landslide points selected by remote sensing 
visual interpretation are taken as the non-landslide point data. The point data 
are made into training samples. All evaluation units in the study area were used 
as prediction samples. Furthermore, 214 landslide points were obtained from the 
detailed survey data set of geological hazards of the China Geological Survey, 
and 214 non-landslide points were obtained by visual interpretation. 

After many attempts, make buffers of 500 m, 1000 m, 1500 m, and 2000 m for 
the rivers, roads, and faults obtained in Section 4.1, and then assign the attribute 
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values of each evaluation factor layer to the fishnet layer, that is, the fishnet point 
file. Perform multi-attribute assignment, and finally export the multi-attribute 
table of the fishnet into an Excel table, and finally make training samples (Table 
3) and prediction samples according to the above principles. Because this paper 
uses the classification algorithm of machine learning to evaluate the susceptibil-
ity of landslides, the data processing of the attribute values of each evaluation 
factor, such as normalization processing, principal component analysis, etc., is 
implemented in Python 3.6 using the corresponding functions. 
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Figure 4. (a) (1) Model map of fishing net evaluation (The fishing net size is kilometer grid net); (2) Distribution map of landslide 
points; (3) DEM map (4) Fault distribution map; (5) Lithology distribution map; (6) NDVI index distribution map; (b) (7) Road 
distribution map; (8) Slope distribution map; (9) Landuse distribution map; (10) Population distribution map; (11) Precipitation 
distribution map; (12) River distribution map. 

4.3. Model Accuracy Verification and Model Selection 

In this study, the model comparison test is implemented through SPSS22 soft-
ware, and the accuracy of the random forest (RF) model and the support vector 
machine (SVM) model are compared. The two corresponding formations of ROC 
accuracy verification curves are shown in Figure 5. 

https://doi.org/10.4236/gep.2023.1110008


Z. Chen, Y. Y. Zheng 
 

 

DOI: 10.4236/gep.2023.1110008 97 Journal of Geoscience and Environment Protection 
 

Table 3. Training samples (intercepted part). 

FID longtitude altitude Label river NDVI fault road landuse rain dem popden slope lithology 

86 101.64 21.21 1 0 6 2000 1000 24 7 3 3 6 1 

119 101.66 21.22 1 0 7 0 500 31 7 4 4 8 1 

460 101.31 21.29 0 0 7 0 500 12 4 1 1 5 1 

487 101.58 21.29 1 0 5 0 500 24 6 4 4 8 1 

567 101.32 21.31 0 0 4 0 500 52 4 1 1 2 1 

618 101.30 21.32 0 0 6 0 500 31 4 1 1 5 1 

622 101.34 21.32 0 0 4 0 1000 12 4 1 1 1 1 

1133 101.32 21.41 0 0 5 0 500 12 4 1 1 4 1 

1134 101.33 21.41 0 0 4 0 500 52 4 1 1 5 1 

 

 
Figure 5. ROC curves of Random Forest (RF) and support vector machine (SVM) models. 

 
Table 4. ROC curve parameters of random forest (RF) and support vector machine (SVM) 
models. 

Test 
Outcome 
Variables 

area 
standard 

error 

Asymptotic 
significance 

level b 

Asymptotic 95% confidence interval 

lower limit upper limit 

SVM 0.549 0.035 0.196 0.482 0.617 

RF 0.872 0.031 0.000 0.701 0.822 

 
Both Figure 5 and Table 4 shows that the AUC (area under the ROC curve) 

of the random forest (RF) is 0.872, and the AUC area under the ROC curve of 
the support vector machine (SVM) model is 0.549 (Figure 5). It can be seen that 
the random forest (RF) model has higher precision, and it is more suitable for 
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application and promotion of landslide susceptibility evaluation. 

4.4. Application of Random Forest Model 

The Python 3.6 Programming language is used to implement the random forest 
(RF) model and the support vector machine (SVM) model. By repeatedly com-
paring the ROC curve characteristics of the random forest (RF) and support 
vector machine (SVM) models (Table 2), it is proved that the effect of the ran-
dom forest model is better, and the accuracy of the landslide susceptibility eval-
uation is higher. 

It can be seen from Figure 6 that the median of non-ground landslide points 
is higher than that of ground landslide points, indicating that there may be un-
known ground landslide points hidden in non-ground disaster points, and the 
distribution of ground landslide points is relatively concentrated. 

Figure 7 provides that the training of the random forest (RF) model has a 
faster convergence speed, and it avoids problems such as overfitting. 

This paper uses python programming and principal component analysis algo-
rithm to calculate the importance of each evaluation factor (Figure 8), and is 
ranked as follows, slope aspect, normalized vegetation index (NDVI), land use 
type, DEM, population density (popden), precipitation, fault, lithology, road and 
river. 

5. Results 
5.1. Evaluation Division of Landslide Susceptibility 

The susceptibility probability predicted by the random forest model is displayed 
in 5 levels by the natural interval method (Figure 9). It can be seen from Figure 
9 that the distribution area of the disaster points is consistent with the first-level 
susceptibility area. The landslide points are divided into two categories, the  

 

 
Figure 6. Box diagram (0 is the off-site disaster point, 1 is the ground disaster point). 
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Figure 7. Random forest model training figure. 

 

 
Figure 8. Ranking figure of the importance of evaluation factors. 

 
Table 5. Frequency ratio table. 

Disaster-prone area 
level 

Evaluation units Disaster points Frequency ratio 

1 321 146 9.748780344 

2 783 29 1.06759199 

 
first-level disaster-prone area (321 evaluation units) contains 146 disaster points, 
with a frequency ratio of 9.748780344. And the second-level disaster-prone area 
(783 evaluation units) contains 29 disaster points with a frequency ratio of 
1.06759199 (Table 5). Moreover, after the superposition analysis, 87.26% of the 
disaster points fall in the 1st and 2nd susceptibility areas, which proves that the 
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random forest (RF) model has a high prediction accuracy (Figure 9). 

5.2. Hot Spot Analysis of Geological Hazards in Xishuangbanna 
Area 

In this study, the probability value of landslide susceptibility predicted by the 
random forest model is used to achieve the hot spot analysis of landslide suscep-
tibility in the Xishuangbanna area by utilizing the hot spot function module in 
ArcGIS 10.2 software. As it can be seen from Figure 10, that the hot spots of 
landslides are mainly distributed in the west and southwest of the study area, 
and the distribution of hot spots and landslides is substantially the same, which 
proves that the random forest model is applied to the evaluation of the suscepti-
bility of landslides with high accuracy (Figure 10). 

The NW and NW faults in the study area are developed in multiple circles 
superposition, and granite, rhyolite and dacite are widely distributed in the south- 
west of the study area. These geological phenomena are consistent with the large  

 

 
Figure 9. Landslide susceptibility classification map of Xishuangbanna. 

 

 
Figure 10. Hot spot analysis map of landslide susceptibility in Xishuangbanna. 
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distribution area of landslide hotspots in the southwest of the study area, indi-
cating that the occurrence of landslide points is positively correlated with the 
distribution of faults and granite, rhyolite and dacite. 

6. Discussion 

Landslide is one of the most destructive typical geological disasters in moun-
tainous areas (Achour et al., 2017; Pham et al., 2021). Therefore, landslide sus-
ceptibility mapping is crucial for economic and social development in moun-
tainous areas (Ha et al., 2020). 

At present, a variety of machine learning methods have been applied to land- 
slide susceptibility mapping, including random forest (Chen et al., 2018), Sup-
port vector machines (Nhu et al., 2020), Decision Tree (Saito, Nakayama, & Mat- 
suyama, 2009), Neural network (Wang et al., 2020) and Extreme learning Ma-
chine (Zhou et al., 2018). In addition, these methods are effective for solving clas-
sification and regression problems and dimensionality reduction of high-dimen- 
sional data (Trinh, Wu, Huang, & Azhar, 2020). 

As can be seen from Figure 5 and Table 4 of this paper, the accuracy of ran-
dom forest (RF) is 0.872, and the accuracy of support vector machine (SVM) 
model is 0.549. It can be seen that random forest (RF) model has higher preci-
sion and is more suitable for the application and extension of landslide suscepti-
bility assessment and mapping in mountainous areas. 

The random forest algorithm has the following advantages: 1) It can process 
high-dimensional data without feature selection, because the feature subset is 
randomly selected; 2) After training, it can determine the importance of features; 
3) When creating random forests, unbiased estimation is used for generalization 
error, and the model has strong generalization ability; 4) Random forest has the 
data outside the bag), and there is no need to separate the cross-verification set: 
5) The training between the trees is independent of each other, the training 
speed is fast, easy to make parallel method; 6) It is not sensitive to the missing 
value, if a large part of the features are lost, and it can still maintain accuracy. 

In addition to the comparison between random forest algorithm and support 
vector machine algorithm, this paper also compares BP neural network, deep 
neural network. Random forest algorithm is the best for information extraction 
with strong random characteristics such as landslide geological disasters. 

7. Conclusion 

The core content of landslide susceptibility evaluation is the spatial probability 
of landslide occurrence in a certain location under certain conditions within the 
regional scope. As the basis of judging landslide hazard and risk, susceptibility 
evaluation is an indispensable work in disaster prevention and reduction. In this 
paper, the random forest model is used to predict the vulnerability probability of 
the study area, and the following results are obtained. 

1) After a full analysis of overall circumstances in the study area, a total of 10 

https://doi.org/10.4236/gep.2023.1110008


Z. Chen, Y. Y. Zheng 
 

 

DOI: 10.4236/gep.2023.1110008 102 Journal of Geoscience and Environment Protection 
 

evaluation factors such as DEM, slope aspect, precipitation, land use, water sys-
tem, road, population density, lithology, faults, and NDVI were selected to con-
duct a landslide analysis in the Xishuangbanna area. 

2) The Random forest (RF) model and support vector machine (SVM) model 
were used to evaluate the susceptibility of landslides in the Xishuangbanna area, 
and the accuracy of the model was verified using the ROC curve. The AUC area 
of the random forest (RF) ROC curve was 0.761, and the AUC area of the ROC 
curve of the support vector machine (SVM) model is 0.549, which proves that 
the random forest (RF) has high accuracy, and it is suitable for the application 
and promotion of landslide susceptibility evaluation. 

3) According to the susceptibility probability of each evaluation unit calcu-
lated by the random forest model, the study area is divided into 5 landslide risk 
levels using the natural discontinuity method in ArcGIS 10.2. It is concluded by 
using the overlay analysis function in GIS that 87.26% of the disaster points fall 
in the first- and second-level disaster-prone areas, which proves that the random 
forest (RF) model has a higher prediction accuracy. 

4) The results of hot spot analysis are substantially consistent with the distri-
bution of landslides. Hot spots and especially the hot spots of landslides are mainly 
distributed in the west and southwest of the study area, which is consistent with 
the actual situation in the study area. 
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