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Abstract 
The present study was designed to assess lead levels in playground soil and 
accumulated dust on playground equipment and then correlate those envi-
ronmental lead measurements with children’s blood lead in the surrounding 
neighborhoods. Soil lead and surface dust were collected from 14 playgrounds 
in Muncie, Indiana, and blood lead levels were calculated for nearby children. 
Correlation analyses revealed a moderate positive association between dust 
Pb and soil Pb with a correlation coefficient r = 0.46 (p = 0.099). The rela-
tionship between settled dust on playground equipment and composite blood 
lead level also showed a medium positive correlation, indicated by r = 0.36 (p 
= 0.202). A positive correlation was also observed between soil Pb and com-
posite blood lead values, as evidenced by r = 0.51 (p = 0.061). Furthermore, 
the assessment of spatial autocorrelation using Moran’s I index indicated no 
significant spatial clustering for the variables studied (dust Pb, soil Pb, and 
blood Pb). Correlation analysis showed a connection between lead levels in 
soil and dust, but no significant links were found between soil lead and blood 
lead and between dust lead and blood lead. These results suggest that envi-
ronmental lead in parks has a limited impact on children’s blood lead levels 
nearby. Spatial autocorrelation analysis also revealed no significant spatial 
patterns among variables—dust, soil, and blood lead. Given these findings, it 
is recommended to seek expertise from qualified professionals and further 
perform comprehensive testing and analysis to investigate potential lead sources 
in children’s blood. The outcomes of this study offer valuable insights into 
assessing playground environmental lead contamination, contributing to fu-
ture research priorities in this area. Specifically, future studies could focus on 
collecting larger sample sizes and characterizing blood lead in children who 
frequently use playgrounds rather than those who live nearby but may or may 
not use the playgrounds. 
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1. Introduction 

The problem of lead contamination in urban playgrounds and parks is becoming 
increasingly recognized as a significant public health concern (Penteado et al., 
2021), with studies continuously reporting on its prevalence and impact. A re-
cent study by Azar (2021) noted the connection between lead in the blood and the 
increased concentration of soil lead in Muncie, Indiana, highlighting a lack of 
attention given to Pb contamination in areas where children play. 

In recent years, investigations have revealed links between lead concentrations 
in dust and elevated blood lead levels (BLLs) in children. Taylor (2015) focused 
on the hazardous metals in environmental dust associated with bulk mineral 
transport in public playgrounds, revealing consistent contamination. A similar 
study by Peng et al. (2019) showed that the risk of elevated BLLs was six times 
higher due to dust exposure than playground soil exposure in Beijing. 

Further back, studies such as Taylor et al. (2013) detailed the risks associated 
with lead smelter emissions, revealing a high rate of childhood lead poisoning 
linked to playground dust exposure. The focus on playgrounds as a significant 
source of exposure was also underlined by Gredilla et al. (2017), emphasizing the 
ingestion of dust particles through hand-to-mouth activity by children in pub-
licly accessible playgrounds. 

Earlier works by Bi et al. (2015), Caravanos et al. (2006), Papanikolaou et al. 
(2005) and Sánchez-Nazario et al. (2011) highlighted the dynamic nature of 
lead-contaminated dust in indoor and outdoor environments, suggesting a criti-
cal role in children’s Pb exposure. The significance of dust as a lead source was 
also emphasized by studies from the early 2000s and late 1990s, including those 
by Charlesworth et al. (2011), Ng et al. (2003) and Wong and Mak (1997), re-
spectively, which focused on urban dust and its inevitable contact with humans. 

This evolving understanding of lead exposure builds on foundational research 
from the late 20th century, with scholars like Duggan et al. (1985) and Duggan 
(1980) revealing correlations between environmental Pb measurements and blood 
Pb in children in proximity to Pb smelting plants and earlier investigations by 
Thornton et al. (1994) and Rice (1992) detailing the heightened sensitivity of 
children to adverse health effects due to lead exposures. 

Given the development of research in this field, this study aims to build upon 
these findings, focusing on the lead levels in playground soil and accumulated 
dust and their correlation to children’s blood lead levels in the parks’ vicinity, 
particularly in urban areas like Muncie, where there has been limited attention 
to Pb contamination. This study aims to 1) assess lead levels in playground soil 
and accumulated dust on playground equipment, 2) identify the correlation be-
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tween environmental lead in soil and lead in dust, and 3) ascertain the relation-
ship between environmental lead loadings and blood lead levels in children re-
siding near parks. We hypothesize a tangible relationship between soil lead and 
dust lead, positing that lead-contaminated dust on playground equipment will 
result in elevated blood lead levels in children living near the parks. 

2. Materials and Methods 
2.1. Data Collection and Preparation 

The study collected data components from three sources: dust, soil, and blood. 
Dust samples were obtained from 14 public playgrounds in Muncie (40.19˚N, 
85.39˚W) during the Summer of 2021 using the wipe sampling method (Figure 
1). This method commonly measures dust lead loading and indicates lead dust 
contamination. Dust loading, expressed in grams per unit area (g/m2 or g/ft2), 
represents the amount of dust on a surface. Multiplying the Pb concentration by 
the dust loading gives a Pb loading value, expressed in micrograms of Pb per 
unit area (μg/m2 or μg/ft2). 

The dust samples were collected by sweeping the surfaces of playground 
equipment using surface wipes. The selected surfaces were exposed to the sur-
roundings and not disturbed by playground users. Surface areas were marked 
with masking tape, and their dimensions were measured before sampling. Mul-
tiple points on the playground equipment were sampled, with at least five  

 

 
Figure 1. Sampling sites in Muncie parks. 
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subsamples combined to create one sample. Criterion Laboratories, Inc. ana-
lyzed the dust samples using Method CLI 442, adapted from EPA Method 3050 
A and NIOSH 9100. Lead surface wipes were analyzed using Inductively Coupled 
Plasma-Atomic Emission Spectroscopy (ICP-AES). 

For soil analysis, samples were obtained from accessible locations without 
hard standing or vegetation cover using a soil sampler probe. The probe was 
rinsed with deionized water before and after use. Five subsamples were collected 
from each site and combined to create a ~150 g aggregate soil sample for each 
playground. The soil samples were air-dried, sieved (2 mm), and homogenized. 
They were then sent to a Geochemical Testing lab in Pennsylvania. The samples 
were microwave digested following EPA 3050B, and the concentrations of Pb in 
the digestion solutions were quantified using EPA 6010D Inductively Coupled 
Plasma-Optical Emission Spectrometry (ICP-OES). 

This study utilized blood data from the Regenstrief Institute in Indiana, cov-
ering a period from 2014 to 2018 for children aged 0 to 5. A total of 1060 blood 
samples were collected and analyzed. For children aged 6 to 17, the study uti-
lized data from 1992 to 2017, consisting of 87 samples. The study adhered to the 
protocols outlined in BSU’s IRB Protocol #1181099-2 to ensure patient protec-
tion. The collected data included date, age, race, location, and blood test results. 

2.2. Inverse Distance Weighting (IDW) 

This study implemented Geographic Information System (GIS) techniques to 
assess each site’s composite blood lead levels. The focus was to glean insights in-
to the spatial variability of blood lead levels and discern patterns that may be re-
levant for public health interventions. Blood lead levels were interpolated using 
Inverse Distance Weighting (IDW) with a 10-meter output cell size. IDW was 
selected for its capacity to generate a smooth surface over the entire study area 
based on the known values from blood test sample points. It is particularly apt 
for this study as it assumes that the influence of blood lead levels decreases with 
distance, allowing for a nuanced interpolation between sample points. 

We set the IDW power to 2 to emphasize the influence of nearer points more 
than the distant ones, reflecting the assumption that closer locations will have 
more similar blood lead levels due to the localized nature of lead contamination 
and its effects. To account for varying sample densities across the study area, a 
variable search radius was applied to incorporate the twelve nearest sample 
points. Subsequently, the interpolated value at each playground location was ex-
tracted to serve as that park’s composite blood lead level. This approach aligns 
cohesively with the study’s objective to effectively assess and portray the spatial 
distribution of blood lead levels, offering insights into potential areas of concern 
and aiding in developing targeted intervention strategies. 

2.3. Global Spatial Autocorrelation Analysis 

Global spatial autocorrelation analysis was implemented using the Moran’s I in-
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dex (Griffith, 1987) to quantify the extent of spatial clustering in attribute va-
riables across the study area. Moran’s I was calculated separately for soil Pb, dust 
Pb, and blood Pb. We used inverse distance weighting with no distance thre-
shold to implement the analysis. This analysis indicates whether values at sample 
points exhibit a clustered vs random spatial pattern. Moran’s I value ranges from 
approximately 1 to −1. A positive index indicates spatial clustering of similar 
sample values, index values near zero indicate a random pattern and negative in-
dex values indicate spatial dispersion of similar sample values. 

2.4. Correlation Analysis 

The data was analyzed statistically utilizing SPSS Statistics software (IBM, USA). 
This involved conducting Pearson product-moment correlation analysis and cal-
culating the linear relationship between three variables, namely soil Pb, dust Pb, 
and blood Pb. 

3. Results and Discussion 
3.1. Lead Concentrations in Soil, Dust, and Blood 

Table 1 summarizes the results of the lead analysis of soil and dust samples in 
the Muncie parks. Lead concentrations are between 19 and 205 mg/kg-dry of soil 
and between 1.78 and 7.36 μ/ft2 of dust samples. The spatial distributions of 
dust, soil, and blood lead levels across Muncie are shown in Figures 2-4, respec-
tively. 

 
Table 1. Summary of blood lead levels (BLLs), dust lead, and soil lead results. 

No. Park Names 
Composite BLL 

(mg/dL) 
Dust Pb  
(μ/ft2) 

Soil Pb 
(mg/kg-dry) 

1 Rose Park 3.01 5.7 78.16 

2 Tuhey Park 2.25 3.2 100.16 

3 Thomas Park 2.82 7.3 61.5 

4 Cowing Park 2.95 1.5 35.72 

5 McCulloch Park 3.26 1.9 78.9 

6 Washington Park 4.6 4.1 37.1 

7 Chambers Park 1.78 2.1 19.6 

8 Cooley Park 3.25 1.1 29.5 

9 Heekin Park 7.36 2.8 77.7 

10 Clif Walla Park 4.14 6.5 190.63 

11 Westside Park 5 2.8 174.22 

12 Aultshire Park 3.2 1.6 31.88 

13 Jerry Me Park 4.44 3.3 36.4 

14 GilbHis Park 2.28 4.8 205 
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Figure 2. The spatial distributions of soil lead concentration across Muncie parks. 
 

 
Figure 3. The spatial distributions of dust lead concentration across Muncie parks. 
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Figure 4. The spatial distributions of blood lead concentrations for children living near Muncie parks. 

3.2. The Correlation Results 

We calculated the correlation coefficient between soil lead, dust lead, and blood 
lead data for children ages 0 to 17 who live near the parks. The results revealed 
modest, positive correlations among dust, soil, and blood lead levels suggesting 
that the soil of the park and the settled dust on playground equipment may in-
fluence the blood lead levels of neighborhood children (Table 2). In detail, we 
observed a moderate, positive correlation between the variables dust Pb and 
soil Pb (r = 0.46, p = 0.099). There was a positive correlation coefficient be-
tween dust on playground equipment and composite blood lead level (r = 0.36). 
Still, the p-value (0.202) indicated this correlation was insignificant, presuma-
bly due to the small sample size. Furthermore, there is a positive correlation 
between the variables soil Pb and composite blood lead values with (r = 0.51, p 
= 0.061). 

3.3. Spatial Autocorrelation (Global Moran’s I) Results 

The Moran’s I index of dust Pb, soil Pb, and blood lead were 0.12, −0.048, and 
0.046, respectively. The corresponding p-values were 0.84, 0.15, and 0.35 indi-
cating that none of the variables exhibit statistically significant spatial clustering. 
Therefore, we cannot conclude with certainty that there are significant spatial 
clustering or dispersion patterns in the distribution of these variables. It is un-
clear whether patterns would be observed if larger sample sizes could be ob-
tained to increase statistical power. 
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Table 2. Pearson correlation coefficients (r) between environmental lead measures and 
blood lead Levels. 

  
Dust Pb Soil Pb Composite BLL value 

Dust Pb Correlation 1 0.46 0.36 

 
p (2-tailed) 

 
0.099 0.202 

Soil Pb Correlation 0.46 1 0.51 

 
p (2-tailed) 0.099 

 
0.061 

Composite BLL value Correlation 0.36 0.51 1 

 
p (2-tailed) 0.202 0.061 

 

3.4. Discussion 

In this study, there were associations between environmental lead and blood 
lead, but there was no clear evidence that Pb in playground dust or soil were 
contributors to blood levels for children living near the parks. This conclusion 
challenges the hypothesis that dust lead concentrations directly contribute to 
blood lead levels in children. There are several possible reasons why lead dust 
did not contribute significantly to blood lead levels in this study. 

First, while public parks were sampled broadly across Muncie (Figure 1), rel-
atively small sample sizes likely inhibited the ability to detect significant patterns 
in the data. 

Second, we observed relatively low lead levels in dust and soil. EPA has re-
duced the standard for lead in dust from 40 (μg/ft2) to 10 μg/ft2 for floors and 
from 250 μg/ft2 to 100 μg/ft2 for windowsills (EPA, 2021). The EPA’s reduction 
of the lead standard in dust has important implications. It reflects an increased 
awareness of the health risks associated with lead exposure, particularly for 
children. Lowering the acceptable levels aims to protect the public from deve-
lopmental delays and other adverse effects. The revised standards also improve 
indoor environmental quality by minimizing lead hazards on floors and win-
dowsills. Establishing stricter limits makes identifying and addressing areas with 
elevated lead levels easier, promoting safer living conditions and demonstrating 
a commitment to reducing lead exposure (EPA, 2021). 

Third, soil lead can contaminate a larger surface area compared to dust lead. 
As noted by Laidlaw et al. (2012), lead contamination in soil can extend beyond 
the immediate vicinity of the park or playground, spreading into surrounding 
areas. This broader contamination increases the likelihood of exposure to lead 
through multiple pathways, such as direct soil ingestion, inhalation of soil par-
ticles, or transfer of soil to hands and subsequent hand-to-mouth contact (Laidlaw 
et al., 2012). 

Although the lead levels in the dust and soil of playground parks may be rela-
tively low, they still present a significant risk to children. This is because there is 
no safe level of lead in the environment where kids play and can be exposed to 
lead (Vorvolakos et al., 2016). It is important to note that the low lead levels ob-
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served in these parks may be attributed to various factors, such as practical re-
mediation efforts, regular maintenance, or low lead levels in the surrounding 
environment. Second, children may have limited exposure to these pollutants, 
even if lead-containing dust and soil are present in park playground. For exam-
ple, if dust and soil are not easily accessible to children or if children do not fre-
quently swallow or inhale dust or soil while playing, lead exposure may be mi-
nimal. Also, the age and behavior of children can affect their exposure to lead. 
Younger children who are more likely to engage in hand-to-mouth conduct and 
spend more time crawling or playing on the ground may have more exposure to 
lead than older children who are less likely to engage in these behaviors. Fur-
thermore, lead ingestion can be reduced when children and guardians exercise 
good hygiene habits, such as regular hand washing before eating, drinking, and 
playing (Rhoads et al., 1999). 

Other environmental sources of lead could influence blood lead levels in child-
ren. Our study focused on outdoor dust and soil lead concentrations, but indoor 
dust lead concentrations could also significantly contribute to blood lead levels 
in children (Lanphear & Roghmann, 1997). These could include lead-based paint 
in nearby buildings, lead-contaminated water from old plumbing systems, or 
consumer products that contain lead. Other environmental factors can impact 
the bioavailability and mobility of lead in dust and soil, such as soil characteris-
tics, climate, weather conditions, and geographical location, which can, in turn, 
influence the potential for lead exposure in children. 

However, we must know that the absence of a significant contribution of dust 
lead from park playgrounds to blood lead levels in children may not imply that 
these sources are completely safe. It is still important to regularly monitor and 
control possible lead exposure risks in playgrounds and other environments 
where children play to ensure their health and safety. 

4. Conclusion 

Lead was sampled in soil and dust from 14 parks in Muncie to understand 
whether environmental lead exposure is correlated with blood lead levels from 
children living near parks. Correlation analysis showed an association between 
the soil and dust lead concentrations, and we observed no statistical relationship 
between soil lead and blood lead or between dust lead and blood lead. The cor-
relation results suggest that environmental lead in parks did not contribute sig-
nificantly to blood lead levels for children living nearby. Also, based on the spa-
tial autocorrelation analysis, none of the variables (dust Pb, soil Pb, and blood 
Pb) show statistically significant spatial clustering or dispersion patterns. While 
this study did not show clear connections between environmental lead and blood 
lead levels, local regulations and guidelines should be followed to minimize health 
risks. If there are concerns about lead exposure, consulting with qualified experts 
and conducting thorough testing and analysis is recommended for additional 
investigation to explore possible lead sources in children’s blood. 
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