
Journal of Geoscience and Environment Protection, 2023, 11, 85-113 
https://www.scirp.org/journal/gep 

ISSN Online: 2327-4344 
ISSN Print: 2327-4336 

 

DOI: 10.4236/gep.2023.118006  Aug. 25, 2023 85 Journal of Geoscience and Environment Protection 
 

 
 
 

Impact and Health Risk Assessment of 
Groundwater in the Vicinity of Dumpsites in 
Keffi Metropolis, Nigeria 

Kyari Umar Donuma1, Limin Ma1,2*, Chengcheng Bu1, Lartey-Young George1 

1College of Environmental Science and Engineering, Tongji University, Shanghai, China 
2Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, China 

 
 
 

Abstract 
This study investigated the hydrogeochemical characteristics of groundwater 
impacted by waste dumps through computation of different hydrogeologi-
cal/chemical indices and related health risk assessment of major heavy metals 
(HVM) in relation to different population groups in Keffi Metropolis. Sam-
ples from ten (10) groundwater sources were collected for analysis. Results 
revealed that the concentration of major cations from the samples was in the 
order: Ca2+ > Na+ + K+ > Mg2+, while major anionic constituents were in the 
order: 3HCO−  > 2

3CO −  > 2
4SO −  > Cl− > F− respectively. Water quality in-

dex (WQI) computed indicated that the groundwater of the study area is not 
suitable for domestic purposes particularly drinking as some of the parame-
ters exceed the WHO guidelines. Generally, the HVM hazard quotients (HQ) 
of non-carcinogenic (NC) and carcinogenic toxicity (TC) for both population 
groups were lower (HQ < 1) indicating that the groundwater within the study 
areas did not pose current significant risk. Non-carcinogenic risk uncertainty 
analysis by Monte Carlo simulations (MCS) further indicated that risk levels 
of HVM in GW were lower (HQ < 1). Despite the findings in this study, it is 
important that regular monitoring of GW quality is done in order to ensure 
that water is potable and prevent human health risks. 
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1. Introduction 

Given the shortcomings of municipal water delivery systems in developing 
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countries, groundwater has become a reliable option for obtaining safe drinking 
water (Akinbile & Yusoff, 2011). In sub-Saharan Africa (SSA), dependence on 
groundwater resources is rapidly increasing among city dwellers due to rampant 
contamination of surface waterbodies (Masindi & Foteinis, 2021). Meanwhile, 
investigation on the status of groundwater quality has gained relatively little at-
tention compared to global groundwater research (Munagala et al., 2020). Our 
search through the Web of Science (WoS) database using the advanced search 
tool and search string “Groundwater contamination AND Nigeria” retrieved a 
total of (N = 134) journal articles over the last 22 years (2000-2022) with most 
studies being undertaken in 2022. This revealed the recent attention given to the 
subject in Nigeria (Figure 1).  

 

 
Figure 1. Publication, citation records and author keyword co-occurrence on groundwa-
ter assessment in Nigeria. 
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Nigeria is the most populous country in Africa with high industrial activities, 
which has resulted in contamination and pollution of most water resources (Po-
na et al., 2021). Indiscriminate disposal of municipal solid waste (MSW) in wa-
terbodies remains a prevalent practice (Duru et al., 2019). Majority of landfills 
and dumpsites in Nigeria are constructed without proper engineered liners, 
pipes, tanks, collection equipment, or monitoring facilities which lead to leach-
ing of leachates into groundwater (Ifeoluwa, 2019). Because leachate from the 
local dumpsites could be a source of pollution, areas close to such dumpsites are 
more likely to have contaminated groundwater (Siddiqua et al., 2022). Users of 
the local groundwater supply and the environment tend to be at significant dan-
ger as a result (Sanga et al., 2023). Groundwater contamination can be observed 
within a radius of 1000 m of an MSW site while in severe cases, this can be ob-
served within a radius of 200 m (Aromolaran et al., 2019). Nyirenda and Mwan-
sa (2022) observed that SO4, NO3, Fe, Mn and Cr concentrations in leachate 
samples were high near MSW sites reaching approximately 900 m from the 
groundwater source. Hydrogeological factors comprising rainfall, bedrock min-
eral weathering, the topography of dumping area and subsurface biological 
processes contribute towards the leaching of MSW (Kshetrimayum & Laishram, 
2020). During wet seasons, the infiltration of leachate into groundwater can be 
very high (Mangimbulude et al., 2009). 

Studies on the pollution of groundwater by leachates from MSW sites in Ni-
geria have been conducted to some extent. Leaching of potential toxic elements 
from the MSW sites often depends on the processes that fix the pollutants in soil 
and the seepage of contaminants into groundwater (Singh et al., 2016). (Kayode 
et al., 2018) evaluated the effects of MSW dumpsites on groundwater around 
Oke-Afa, Oshodi/Isolo areas of Lagos State, Nigeria and found high levels of 
heavy metals (HVMs). Aboyeji and Eigbokhan (2016), reported the effects of 
leachates from MSW dumpsites on the water quality of fifteen (15) boreholes 
and five (5) wells along the downslopes of the dumpsite around Olusosun in Lagos 
metropolis and found that, based on heavy metal pollution indices, the water qual-
ity was not potable compared to (WHO, 2022) guidelines. Since groundwater has 
become a dependable source of water supply to supplement the needs of city 
dwellers, the presence of traces of heavy metals (HVMs) can pose significant 
threats to its quality, making it unfit for use (Bolujoko et al., 2022).  

Health risks associated with the consumption of contaminated water are too 
numerous and diverse to be glossed over, especially in developing countries where 
the anthropogenic impact on groundwater quality is more drastic (Sheng et al., 
2022). Risk assessment processes help to determine uncertainties related to the 
extent and association of human health risks from exposure to HVM becomes 
very important. The pathways for human exposure to heavy metals in ground-
water are ingestion and dermal contact (U.S. EPA., 2003) and Ghaderpoori et al. 
(2020) highlighted the significance of paying attention to substances that have an 
influence on human health through dermal pathways. Omeka and Egbueri (2023) 
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studied the hydrogeochemical characteristics of groundwater in Nnewi and 
Awka and reported that HVMs including Cd, Pb, Cu largely contributed to 
groundwater quality risk. In another study, Pejman et al. (2017) ranked risk fac-
tors associated to different HVMs in order of Cd > N > Pb > Ni > Cr > Zn > Cu 
based on their toxicities in groundwater. For the sake of human health, it is cru-
cial to protect the quality of groundwater resources from MSW dumpsites (Mi-
shra, et al. 2018). 

Keffi metropolis of Nigeria is known to have a high dependency on ground-
water resources. Thus far, an investigation into the hydrogeochemical processes 
of groundwater sources in the metropolis and the potential impact of MSW lea-
chates has not been reported. Hence, this study was aimed at using various hy-
drogeological indices to characterize the underground water system in the area, 
evaluate the current and domestic agricultural potential of the water and assess 
the human health risks associated with the consumption of the water. The results 
will potentially guide further scientific investigation on groundwater sources in the 
study area and aid policy making on the management of solid waste and ground-
water sources.  

2. Materials and Methods 
2.1. Study Area 
2.1.1. Geology and Hydrology 
According to (Yau et al., 2013), the study area is characterized by the Basement 
Complex, which consists of pelitic schist-amphibolites rocks and granitoids of 
Pan-African age. The granitoids that intrude the schists comprise granodiorite 
gneiss, augen granodiorite gneiss, granites and pegmatites. The grade of meta-
morphism in the metasedimentary rocks of the area varies from greenschists to 
lower amphibolite-grade facies. The orthogneisses, especially the granodiorite 
gneisses and augen granodiorite gneisses dominates the central and northeastern 
parts of the study area. The predominant geologic structural characteristics in 
the region consist of tectonic foliations oriented in different directions. These 
features, including metamorphism, folding, faults, fractures, and joints, are 
commonly associated with the reactivation or formation during the Pan African 
tectonic events. The study area is characterized by undulating terrain with the 
highest elevation (401 m) around the Emir’s palace to the west of the metropolis. 
The study area is drained by Rivers Apo and Antau in addition to numerous 
seasonal streams within the study area. 

2.1.2. Climate 
Keffi metropolis experiences two major climatic conditions; a wet and a dry sea-
son. The former is experienced from April and ends in early November (cover-
ing 8 months), with its peak in July and August. Annual rainfall figures ranged 
from 1250 mm to 1500 mm (Olufemi et al., 2021). About 90% of the rain falls 
between May and September. The beginning of the dry season is marked by the 
southward withdrawal of the Intertropical Discontinuity (ITD) and begins in 
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late October and ends in March, with the months of December and January 
characterized by harmattan, noticeable by thin dust (Sufiyan et al., 2020). The 
average temperature of the area ranges from 28˚C to 29˚C in the months of July 
to August and 34˚C to 36˚C in the months of March and April (Sufiyan et al., 
2020). The high temperature and rainfall enhance leachate formation. The rela-
tive humidity is highest (73% - 85%) in the months of July through August and 
lowest (52% - 60%) between January and March, which corresponds to the pe-
riods of high and low rainfalls, respectively. The rainy season (April to October) 
experiences Northwest trade winds, and the dry season (November to March) is 
characterized by the Northeast trade winds, which bring harmattan (Sufiyan et 
al., 2020). 

2.2. Analytical Measurements 

The study involved both field and laboratory activities. The field activity in-
volved the collection of water samples from ten (10) groundwater points, (9 
from hand-dug wells and 1 from a motorized borehole to serve as a control) 
(Figure 2), In-situ measurement of physical parameters was conducted onsite,  
 

 
Figure 2. Present map of Keffi showing the study location as well as the dumpsites (the blue circle with black dot are the 
sampled Wells while the red triangles are the waste dumpsites). Ground water samples from Well 1 - 3 were obtained at 
Makera Fari, Samples from Well 4 - 6 were obtained at Mayanka, Samples from Well 7 - 9 were obtained at Sabon Layi 
Dan Jaki while the Sample 10 (control) was collected from a motorized borehole at a distance of 500 m away from the 
sites. 
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while the laboratory work involved chemical analyses of samples to determine 
the ion concentrations. These hand-dug wells are the primary source of domestic 
water supply in the study area. Water samples were collected directly from the 
wells into cleaned, labeled 100-ml plastic bottles that had been earlier rinsed with 
the particular water to be sampled. The samples were then stored in an ice-packed 
cooler before being taken to the laboratory. Physical parameters such as temper-
ature, hydrogen ion (pH) concentration, electrical conductivity, and Total Dis-
solved Solids were determined onsite using the BLE-9909 multifunction meter. 
At the point of sample collection, concentrated nitric acid (HNO3) was added to 
preserve the samples for metal analyses at the rate of 2 ml/L. In the laboratory, 
parameters including sulfate ( 2

4SO − ), alkalinity, Phosphate ( 3
4PO − ), fluoride (F−), 

nitrate ( 3NO− ), chloride (Cl−) and metals including calcium (Ca), magnesium 
(Mg), sodium (Na), potassium (K) were analyzed following the method previously 
described by APHA (2012). Lead (Pb), iron (Fe), cadmium, manganese, chro-
mium (Cr), zinc (Zn) were determined with the use of a Unicam 969 AA Atomic 
Absorption Spectrophotometer. 

2.3. Data Analysis  

Statistical summaries; mean, standard deviation, cumulative variation, kurtosis, 
skewness, and geometric mean were performed with Origin (OriginLab 2023, 
Northampton, USA) Table (S1). The Hydrogeological facies of the study area 
were determined using the Piper, Durov and Gibbs plots of the collected samples 
with the aid of Aquachem 4.0 (Waterloo Technologies, Canada). Various plots 
were intensively discussed, figures were presented to describe the quality of wa-
ter contained in the different groundwater sources, the distribution and domin-
ance of cations and anions in the samples and to understanding geological 
processes leading to the water chemistry of the study area. 

2.4. Computation Using WQI and Agricultural Indices  

The groundwater quality for domestic purposes was determined by computing 
the water quality index (WQI) and comparing the computed mean values of wa-
ter quality parameters with World Health Organization (WHO) standard values. 
The weighted arithmetic WQI model (Tyagi et al. (2013) method was utilized to 
examine the impact of individual quality parameters. The water quality score, 
comparative weight, and the general WQI were computed using the model equ-
ations that follow:  

100i
i

i

CQ
S

= ×                              (1) 

1
i

i

w
S

=                                (2)  

where qi is the quality rating of the ith parameter within the given number of 
samples, n; Ci is the measured concentration of respective ions; Si is the standard 
value of the ith parameter within the given number of samples, n, and wi represents 
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the relative weight of the ith parameter within the given number of samples, n. 
The overall WQI was computed using the following: 

WQI i ii

ii

n

n

QW

W
= ∑
∑

                           (3) 

The WQI values computed in this study were compared with the classification 
according to (Akter et al., 2016) (Table 1). Other indices were employed to 
measure the suitability of the water from the study area for agricultural purposes. 
The indices were; total hardness (TH), percent sodium (%Na), sodium absorp-
tion ratio (SAR), permeability index (PI), and magnesium hazard (MH). The 
units of TH are expressed in mg/L, while %Na, SAR, RSC, PI, and MH are all 
expressed in meq/L Empirical equations (Equations (4)-(6)) employed in the 
computation of these indices are as follows: 

Percent sodium, %Na, the amount of sodium expressed in percentage, that is 
capable of replacing Mg2+, Ca2+ and K+ existing in water samples were computed 
using the equation after (Todd & Mays, 2004) as follows: 

Na K%Na 100
Ca Mg Na K

+
= ×

+ + +
                   (4) 

Sodium absorption ratio (SAR) is employed as a means to assess alkali hazards 
in irrigation water, as it is linked to the absorption of Na+ by soil. The SAR was 
computed using the equation (McGeorge, 1954) as follows: 

Na
Ca Mg

SAR
2
+

=                          (5) 

Magnesium hazard (MH), is the excess Mg2+ and Ca2+ that will adversely im-
pact the soil by making it more alkaline, thus decreasing crop output (Raviku-
mar et al., 2010). This was calculated with the equation: 

Mg 100
Ca

M
Mg

H ×
+

=                         (6) 

2.5. Risk Assessment 

Assessing the risk of HVMs in water typically considers direct human intake and 
dermal contact. The adverse consequences of being exposed to heavy metals in  
 
Table 1. Water quality index criteria. 

WQI Value Description 

<50 Excellent 

50 - 100 Good water 

101 - 200 Poor water 

201 - 300 Very poor water 

>300 Water unsuitable for drinking 

(Akter et al. 2016). 
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adults and children were calculated according to the hazard index (HI) and car-
cinogenic risks (CR) approach offered by the USEPA (2003) following Equations 
(7)-(10).  

Oral dose (Ming-w): ing-w
IngR EF ED CF

BW AT
sCM × × × ×

=
×

             (7) 

Dermal contact (Mderm-w): der-w
IngR SA SL ABS EF ED CF

BW AT
sCM × × × × × × ×

=
×

(8) 

ADI
HI HQ

RfD
ij

i
ij

= =∑ ∑                       (9) 

TCR CR ADI SFi ij ij×= =∑ ∑                (10) 

where Cs is the concentration of pollutants in soil (mg·kg−1), EF is the exposure 
frequency (days year−1), ED is the exposure duration (years), IngR is the receptor 
water ingestion rate (mg·d−1), BW is the time-averaged body weight (kg), and 
AT is the average time of non-carcinogenic and carcinogenic risks (days). ADI is 
average daily intake, SA is skin area, ABS is skin absorption factor. Specific pa-
rameters for the estimation of non-carcinogenic and carcinogenic risk are pro-
vided in (Table 2). 

For non-carcinogenic risk (NCR), HI refers to all sum of HQ (Hazard Quo-
tients) in heavy metals. HI > 1 represents the potential adverse effect on human 
health. For Total Carcinogenic Risk (TCR) and Carcinogenic Risk (CR), the val-
ues TCR & CR < 10−6, 10−6 < TCR & CR < 10−4, and TCR > 10−4 represent no 
health risk, no significant health risk and high health risk, respectively. The spe-
cific reference doses (RfD, L·kg−1·d−1) and slope factors (SF, L·kg−1·d−1) values are 
presented in (Table 3). 

Risk assessment studies are mostly undertaken over a large population group, 
hence the potential occurrence of several uncertainties in the process. Monte 
Carlo simulation (MCS) is an important mathematical state-of-the-art approach 
for performing “what if” analyses to estimate the probabilistic risk to different  
 
Table 2. Reference dose and cancer slope factors of heavy metals. 

ID HVM 

RfD (L·d−1) SF ((L·d−1)−1) 

Reference 
Ingestion 

Dermal  
contact 

Ingestion 
Dermal  
contact 

1 Fe 7.00E−03 3.00E−01 2.00E+01 - Thongyuan et al., 2021 

2 Cu 4.00E+01 1.20E+01 - - Tian and Wu 2019 

3 Cd 1.00E−03 1.00E−05 6.10E+00 - Tian and Wu 2019 

4 Pb 1.40E−03 4.20E−01 8.50E−03 - Tian and Wu 2019 

5 Zn 3.00E+02 6.00E+01 - - 
 

6 Cr 3.00E−03 1.50E−03 8.50E−03 - Tian and Wu 2019 

7 Mn 1.40E−01 6.00E−04 - - 
 

HVM—Heavy metal; RfD—Reference dose; SF—Slope factor. 
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Table 3. Human health risk exposure parameters. 

Parameters Description Units 
Values 

Reference 
Adult Children 

IRs Ingestion rate of water L·d−1 2.2 1.2 (Custodio et al. 2020) 

EF Exposure frequency d·a−1 350 320  

ED Exposure duration a 70 6  

BW Average body weight kg 70 15.9 (Custodio et al. 2020) 

AT Average exposure time d 
365 × ED (non-carcinogenic) 

(Meng et al. 2021) 

365 × 70 (carcinogenic) 

SA Surface area of skin cm2 18,000 6600 (Custodio et al. 2020) 

AF Skin adherence factor mg·(cm2·d)−1 0.58 1 (Custodio et al. 2020) 

ABS Dermal absorption factor unitless 

0.001 (non-carcinogenic) 
(Custodio et al. 2020) 

0.004-(non-carcinogenic for Pb) 

0.01 (carcinogenic) 
 

 
population groups (Qiu et al., 2023). It enables evaluation of the considerable 
variation and lack of certainty surrounding several parameters used for different 
procedures and has been applied in human health risk assessment for decades. 
For this study, MCS was applied to predict uncertainties related to the calculated 
non-carcinogenic risk of metalloids in adults and children. Oracle Crystal Ball® 
(version 11.1.2.3419.0), which is an add-in tool, was run in Microsoft Office Ex-
cel 2016 and used to estimate the MCS over 10,000 iterations, which are antic-
ipated to estimate more stable outputs.  

3. Results and Discussion  
3.1. Physicochemical Factors  

Statistical summary of the physicochemical factors for water samples is pre-
sented in (Table 4). The electric conductivity (Udiba et al.) of the groundwater 
samples ranged from 116 - 3850 µS/cm, with an average of 1914.40 µS/cm. The 
pH values were in the range of 6.31 - 7.38 with an average of 6.92, Ca2+ in the 
range of 35.8 - 135.7 with an average value of 90.94 mg/l, Mg2+ ranges between 
3.7 - 40.92 mg/l with an average value of 18.88 mg/l, Na+ ranges between 9.5 - 
103.9 mg/l with an average value of 58.05 mg/l, K ranges from 2.8 - 17.9 mg/l 
with an average value of 12.58 mg/l, Cl ranges from 1.9 - 54.9 mg/l with an av-
erage value of 13.69 mg/l, CaCO3 ranges from 49.5 - 208 mg/l with an average 
value of 107.85 mg/l, SO4 ranges from 5.2 - 23.26 mg/l with an average value of 
13.37 mg/l, and PO4 ranges from 2.4 - 36.6 mg/l with an average value of 3.66 
mg/l. It can be observed that parameters such as EC of GW1-GW5 and GW8 
exceeded the standard limits, Ca2+ of GW 1, GW4, GW, and GW7-GW8 ex-
ceeded the limits; and the value of K+ of GW5, GW8, and GW9 exceeded the 
standard limits of (WHO, 2022). It can be concluded that this occurred as a result  
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Table 4. Statistical analysis of water quality data. 

Samples Mean 
Standard 
Deviation 

Skewness Kurtosis 
Coefficient of 

Variation 

Ec (µS/cm) 1914.40 990.15 0.21 1.37 0.52 

pH 6.92 0.40 0.27 −0.60 0.06 

Ca2+ 90.94 31.28 −0.27 −0.58 0.34 

Mg2+ 18.88 11.68 0.61 −0.42 0.62 

Na+ 58.05 29.54 −0.10 −0.76 0.51 

K+ 12.58 5.46 −0.43 −0.72 0.43 

Cl− 13.87 15.24 2.56 7.29 1.10 

SO4 13.37 5.65 0.46 −0.68 0.42 

N 13.69 11.00 1.25 0.59 0.80 

F− 121.95 48.14 0.46 −0.34 0.39 
2
4PO −  3.66 1.51 −1.16 2.60 0.41 

3CaCO  107.85 47.35 1.17 0.76 0.44 

Fe 3.13 2.47 −0.34 −2.02 0.79 

Cu2+ 0.18 0.11 0.18 −1.48 0.62 

Cd 0.00 0.00 1.04 −1.22 1.61 

Pb 0.00 0.00 0.57 −1.00 0.96 

Zn 0.24 0.10 −0.25 −1.38 0.41 

Cr 0.02 0.02 0.87 −0.17 1.02 

Al 0.01 0.01 −0.33 −1.20 0.68 

Ba 0.00 0.00 2.89 8.67 2.21 

Mn2+ 0.08 0.08 0.56 −0.90 0.97 

 
of the closeness of the wells to the open dumpsites (GW1 = 15 m, GW5 = 18.25 
m, GW8 = 22.38 m & GW9 = 45 m). Surface run-off plays an important role in 
contaminating the water by depositing contaminants into the wells (Gurmessa et 
al., 2022; Huang et al., 1994).  

Therefore, it can be concluded that the relatively weak acid to alkaline pH 
values recorded in the groundwater could be a result of the higher chloride, car-
bonate, and bicarbonate ions. The anion dominance was in the order of 3HCO−  
+ CO3 > 2

4SO −  > Cl− + F, while the cations were in the order Ca2+ > Na+ + K > 
Mg2+. (Abugu et al., 2021; Ojekunle et al., 2020) observed the trend; Ca2+ > Na+ + 
K > Mg2+ for the cations, while the anions were 3HCO−  > 2

4SO −  > Cl− > 3NO−  > 
2
3CO −  > 3

4PO − . These showed a slightly different order of major ions abundance 
within similar geological settings. 

3.2. Water Quality for Domestic Use  

The water quality index (WQI) was calculated by analyzing data collected from 
groundwater samples, applying a weighted approach arithmetic index method 
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for about eleven physicochemical parameters (EC, pH, TDS, Ca2+, Mg2+, Na+, K+, 
2
4SO − , 3NO− , Cl−, 3

4PO − , and 3HCO− ). The WQI model adopted was precise in 
revealing the quality status of all the samples. The order of dominance for the 
ion concentration and the computed WQI with their classification are presented 
(Table 5). The results from the analysis of physicochemical factors showed that 
the groundwater sampled from GW1 and GW5 5 are not fit for consumption or 
other domestic uses due to the level of concentration above the permissible limit 
according to (WHO, 2022). However, the rest of the samples fell below the per-
missible limit, which demonstrated their suitability for consumption and other 
usage. The values obtained from the computed WQI showed that 70% of the 
samples were of good water quality, 10% were of excellent quality, and 20% were 
of poor quality (Table 5). 

3.3. Hydrogeochemical Facies of the Groundwater of the Study  
Area 

Hydrogeochemical facies are regions that have clearly defined boundaries and 
are distinguished by their unique combinations of cation and anion concentra-
tions. These facies are categorized into distinct zones based on their specific 
chemical compositions (Appelo, & Postma 2005). The hydrogeochemical data can 
be interpreted using different graphical methods, such as Piper diagrams and Du-
rov diagrams. Durov’s plot enhances the understanding of hydrogeochemical fa-
cies by aiding in the identification of different water types and providing addi-
tional information about their characteristics (Durov, 1948). Additionally, it can 
demonstrate certain potential geochemical processes that aid in understanding and 
evaluating groundwater quality (Mukherjee et al., 2020). The Durov plot of the 
study area indicated that the groundwater in the region belongs to the 
Ca2+-Mg2+-CO3-HCO3-facies field (Figure 3(a)). This indicates that alkaline earth 
elements have a higher concentration and prevalence compared to alkali  
 
Table 5. Water quality indices. 

Code 
Oder of dominance for major ions 

WQI Class 
Cation Anion 

GW1 Ca2+ > Na+ + K > Mg2+ 3HCO−  + CO3 > 2
4SO  > Cl− + F 110.6 Poor 

GW2 Ca2+ > Na+ + K > Mg2+ 3HCO−  + CO3 > Cl− + F > 2
4SO  41.2 Good 

GW3 Ca2+ > Na+ + K > Mg2+ 3HCO−  + CO3 > 2
4SO  > Cl− + F 61.1 Good 

GW4 Ca2+ > Na+ + K > Mg2+ 3HCO−  + CO3 > 2
4SO  > Cl− + F 77.2 Good 

GW5 Ca2+ > Na+ + K > Mg2+ 3HCO−  + CO3 > 2
4SO  > Cl− + F 110.6 Poor 

GW6 Ca2+ > Na+ + K > Mg2+ 3HCO−  + CO3 > 2
4SO  > Cl− + F 56.2 Good 

GW7 Ca2+ > Na+ + K > Mg2+ 3HCO−  + CO3 > 2
4SO  > Cl− + F 62.3 Good 

GW8 Ca2+ > Na+ + K > Mg2+ 3HCO−  + CO3 > Cl− + F > 2
4SO  73.3 Good 

GW9 Ca2+ > Na+ + K > Mg2+ 3HCO−  + CO3 > 2
4SO  > Cl− + F 50.3 Good 

GW10 Ca2+ > Na+ + K > Mg2+ 3HCO−  + CO3 > 2
4SO  > Cl− + F 38.5 Excellent 
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(a) 

 
(b) 

Figure 3. (a) Durov plot of groundwater values and (b) Piper plot of groundwater para-
meters. 
 
elements in the region, while some of the samples shown were affected by the 
reverse ion exchange process. 

 

                

https://doi.org/10.4236/gep.2023.118006


K. U. Donuma et al. 
 

 

DOI: 10.4236/gep.2023.118006 97 Journal of Geoscience and Environment Protection 
 

The hydrogeochemical facies observed in natural water sources may be as a 
result of anthropogenic activities and geologic processes of the study area. The 
Piper diagram and the stiff plots of the dominant ions (measured in percentage 
milliequivalent per liter) of the water samples are presented Figure 3(b) and 
Figure 4 respectively. The total ionic concentrations and water compositions of 
groundwater taken from various sources are described and compared using stiff 
plots based on the width and shape pattern on the stiff chart (Figure 4). On the 
other hand, the Piper diagram (Figure 3(b)) for the study area shows Ca2+-Mg- 
HCO3 Mg-HCO3 as dominant water types from the samples analyzed. This in-
dicates that water mineralization is a result of the probable dissolution of halite 
(Appelo, & Postma 2005). Other potential factors that may contribute to these 
phenomena include weathering, leaching, and cation exchange processes (Farid 
et al., 2015; Gurmessa et al., 2022). The dominance of Ca2+ over Na+ resulting 
from ion exchange could be linked to the weathering of ferromagnesian minerals 
in intrusive rocks (Akanbi, 2016), similar to those found in the area. These min-
erals, particularly the feldspars, are rich in calcium, sodium, and potassium.  

The Gibbs diagram (Figure 5(a)) showed that the dominant factor responsi-
ble for the ions present in the water from the study area is weathering (Edet & 
Okereke, 2022; Xu et al., 2019) due to rock-water interaction. The majority of 
the analyzed samples were situated within the rock dominance region, indicating  
 

 
Figure 4. Stiff plots of groundwater ionic distribution. 
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(a) 

 
(b) 

Figure 5. (a) Gibbs plot of groundwater controlling mechanisms and (b) Wilcox diagram 
depicting the suitability of the groundwater in the study area for agriculture. 
 
that the enrichment of ion constituents in the groundwater is primarily attri-
buted to the process of rock weathering and dissolution processes in soils or 
aquiferous materials along the groundwater flow path. Some of the samples were 
plotted towards the evaporation field, while one sample was plotted towards the 
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precipitation or rainfall dominance field, respectively. Generally, 3HCO−  and 
2
3CO −  were from carbonate rocks and dolomite of atmospheric origin (Egbueri, 

2021). It can be concluded that the chemistry of groundwater is greatly influ-
enced by weathering and cation exchange processes.  

3.4. Water Suitability for Irrigation 

Physical and chemical factors have the potential to interfere with plant metabol-
ism and reduce soil permeability (Kumar et al., 2017). Hence, indices such as %Na, 
SAR, PI, and MH were employed to assess the suitability of the groundwater for 
agricultural purposes within the area of study (Table 6). (Sawyer & McCarthy, 
1967) have defined classes for TH based on their range of values. The results 
shows that majority of the water samples in this study are relatively soft which 
means that they do not contain much chloride and sulphate salts of the alkaline 
earth metals (Gopinath et al., 2019), making it more suitable for agricultural 
purposes. Another important parameter used in evaluating water for irrigation is 
the percentage of sodium. About 60% of the samples fell within the “Good” field, 
30% fell within the permissible field, and 10% fell within the “Excellent” for irri-
gation purposes (Table 6). EC is an important parameter for classifying irriga-
tion water quality (Nematollahi et al., 2015). Thus, the Wilcox diagram (Figure 
5(b)) was employed to classify the water samples analyzed for agricultural pur-
poses. The diagram revealed that nearly all the samples appeared under a “good 
to permissible” field except for one sample that is classified as “doubtful to un-
suitable” for irrigation purposes. The values of EC show a medium presence of 
sodium salts in the water, which, when in excess, limit air and water movement 
in the soil in the wet season (Ogunlaja et al., 2019; Ravikumar et al., 2010; Saleh 
et al., 1999). This indicates that water from Keffi Metropolis and its environs is 
suitable for agricultural purposes. SAR is also important in the evaluation of ir-
rigation water as it plays a crucial role in determining soil permeability. Elevated  
 
Table 6. Computed values of Na%, SAR, PI and MH in the study area. 

Code Na% SAR PI MH 

GW1 39.2 11.1 41.4 23.2 

GW2 40.5 7.2 43.4 12.6 

GW3 35.0 5.4 39.9 17.0 

GW4 42.5 10.3 44.2 16.4 

GW5 32.6 6.5 33.5 18.4 

GW6 49.2 10.7 52.5 14.1 

GW7 46.8 11.1 47.6 17.0 

GW8 37.1 7.8 38.1 23.7 

GW9 30.8 3.9 28.8 7.9 

GW10 19.7 2.1 33.7 9.4 

Na% = Percentage sodium value; SAR = Sodium Adsorption Ration; PI = Pollution index. 
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levels of sodium can lead to a reduction in the permeability of soil structure. Ta-
ble 6 showed that SAR is less than 18 for all the groundwater sampled; 60% of 
the samples fell into the excellent category, while the remaining 40% fell under 
the Good category, respectively, indicating that the water of the study area is suita-
ble for irrigation based on this index. Salinity is an expression of EC, and, in turn, 
a measure of the leaching of dissolved salts in water (Nematollahi et al., 2015).  

The PI (Permeability Index) was also utilized to assess the suitability of water 
sources for irrigation. According to the analysis, all the examined samples were 
categorized as having a moderate suitability for irrigation purposes. Additionally, 
the MH (Magnesium to Calcium and Magnesium in water) ratio was employed 
to evaluate the potential impact on soil quality, as it can have implications for 
overall agricultural productivity. According to (Ravikumar et al., 2010), MH > 
50% would negatively impact crop output as the soil becomes alkaline. In this 
study, the MH values obtained showed that all the water sampled was suitable 
for irrigation. 

The correlation coefficient (r) between two variables shows how one variable 
predicts the other. The correlation coefficients of the tested parameters are listed 
in Table 7 and Figure 6(d). The main contributing ions in groundwater samples  
 

Table 7. Pearson matrix for the groundwater. 

 
Ec 

(µS/cm) 
pH Ca2+ Mg2+ Na+ K+ Cl− SO4 N F PO4 CaCO3 Fe Cu++ Cd Pb Zn 

Ec 
(µS/cm) 

1 
                

pH −0.40615 1 
               

Ca2+ 0.59141 −0.68836 1 
              

Mg2+ 0.72252 −0.43146 0.87141 1 
             

Na+ 0.3773 −0.34924 0.76139 0.78005 1 
            

K+ 0.41568 −0.53748 0.89542 0.82103 0.84548 1 
           

Cl− −0.36387 0.2 −0.3968 −0.41541 0.12761 −0.3122 1 
          

SO4 0.74674 −0.34755 0.78207 0.87572 0.85552 0.81459 −0.14658 1 
         

N 0.52505 −0.17761 0.71796 0.83008 0.94584 0.81557 −0.00852 0.94215 1 
        

F 0.08285 −0.44053 0.12317 −0.14012 0.18971 0.10789 0.48529 0.09412 0.04487 1 
       

PO4 0.61317 −0.41028 0.86326 0.90786 0.86217 0.91344 −0.28332 0.94854 0.91327 −0.06588 1 
      

CaCO3 0.42078 −0.05819 0.64317 0.69477 0.75951 0.72523 −0.1025 0.73917 0.81726 0.21101 0.6887 1 
     

Fe 0.75223 0.21676 0.28114 0.50423 0.33282 0.22092 −0.13063 0.6744 0.58228 −0.05429 0.49371 0.58104 1 
    

Cu++ 0.56058 −0.59935 0.85499 0.85206 0.70811 0.68241 −0.20495 0.69292 0.64082 −0.07763 0.77672 0.43957 0.25526 1 
   

Cd −0.0199 0.11658 −0.01664 0.13533 −0.02969 0.10906 −0.16647 0.07528 0.03371 −0.5923 0.22934 −0.14356 0.02517 0.21759 1 
  

Pb 0.32926 −0.4284 0.73039 0.55159 0.61203 0.7558 −0.1437 0.59063 0.57049 0.45119 0.61235 0.80737 0.29183 0.49089 −0.08022 1 
 

Zn −0.35736 0.20635 0.11272 0.05896 0.38052 0.10393 0.43376 0.01341 0.25133 −0.12164 0.09885 0.24002 −0.09795 0.29118 0.177 0.10508 1 

Cr 0.72575 −0.5337 0.31496 0.24968 −0.08371 0.11419 −0.28364 0.32121 −0.00418 0.22382 0.2423 −0.05972 0.38978 0.31494 0.19113 0.22766 −0.5053 

Al 0.6113 −0.54938 0.64582 0.60478 0.39581 0.51972 −0.30114 0.59141 0.41804 −0.17783 0.66854 0.11305 0.296 0.7232 0.52255 0.22784 0.08662 

Ba 0.71767 −0.41398 0.35407 0.34119 −0.04404 −0.05293 −0.28024 0.24386 0.01132 0.04868 0.15231 −0.0484 0.41904 0.48667 −0.16333 0.05003 −0.25901 

Mn2+ 0.27549 −0.60551 0.85885 0.60867 0.69347 0.79917 −0.1211 0.60293 0.58356 0.26675 0.71879 0.58324 0.11789 0.75441 0.0904 0.84889 0.31482 
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Figure 6. PCA scree plot (a), PCA biplot (b) and Hierarchical cluster plot (c), (d) Pearson correlation matrix.  

 
that have a strong positive correlation with EC were Mg2+ (+0.72), 2

4SO −  (+0.75), 
Fe (+0.75), Cr (0.73), and Ba2+ (0.71); those with a positive correlation with EC 
were Ca2+ (+0.59), N (+0.53), K+ (+0.41), Cu2+ (+0.56), Al (+0.61), CaCO3(+0.42); 
while it has a moderate positive correlation with EC are Na+ (+0.38), F (+0.08), 
Pb (+0.33), Mn2+ (+0.28) respectively, However, pH exhibits a negative correla-
tion with most of the heavy metals except for Fe (+0.22), Zn (0.21) and Cd 
(+0.11) exhibiting a positive correlation. This suggests that the groundwater of 
the study area is alkaline in nature and might be influenced by the chemical dis-
solution of the aquifer host rock or anthropogenic activities, as suggested by 
(Tahmasebi et al., 2018); (Abugu et al., 2021); (Edet & Okereke, 2022).  

It was observed that Na+ had a strong positive correlation with 3CaCO  (+0.76), 
3
4PO −  (+0.86) and K+ (+0.85) and a moderate correlation with Cl− (+0.23). The 

correlation expressed between Na+ and Cl− in the groundwater is an indication 
of salinization processes from geogenic and anthropogenic processes (Udiba. et 
al., 2016). K+ concentration is very strongly correlated with 3CaCO  (+0.73), 
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2
4SO −  (+0.81), and 3

4PO −  (+0.91); moderately negatively correlated with Cl− 
(−0.31). Cl− showed a negative low correlation with CaCO3 (−0.10) and 3

4PO −  
(−0.28). This is a potential sign that anthropogenic inputs have contributed 
temporary and permanent hardness to the groundwater of the study area (Wali 
et al., 2019). Furthermore, a significant to moderate correlation between phos-
phate ( 3

4PO − ) and all the major ions examined further indicates the presence of 
anthropogenic contamination (Eldaw et al., 2021). This may arise from indi-
scriminate open waste dumps within the study area which is a common practice 
in most rural areas indicating anthropogenic influences (Edet & Okereke, 2022). 
Calcium carbonate (CaCO3) positively correlated with sulphate ( 2

4SO − ) (+0.74) 
and phosphate ( 3

4PO − ) (+0.69), indicating the involvement of mineral dissolu-
tion processes of the host rock of the aquifer. 

3.5. Source Discrimination 

From the screen plot it can be determine that the first Principal Components 
(PC) covers most of the variance of the groundwater sampled analyses of the 
study area. This is followed by PC2 point which has moderately covered some 
variance while PC 3 capture the list as presented in Figure 6(a) respectively. 

PCA was used to identify the different contamination sources influencing the 
heavy metal concentrations in the groundwater sampled in the study area. The 
first component (PC1) is explained by CaCO3, Na+, K+ Ca2+, and 2

4SO −  accounts 
for 45.6% of the total variance of the analysis Figure 6(b). This indicated that 
these metals could have contaminated the groundwater by anthropogenic activi-
ties as a result of seepage of leachates from open waste dumpsites into the wells 
(Shams et al., 2022). PC2 comprises of Ba2+, Cd2+, Cl−, Mn2+ and Al3+ account for 
18.3% of the total variance of the analysis. This indicates these metals originate 
from the same sources and could have been released through geogenic processes 
such as weathering at the aquifer.  

HCA plot of the groundwater samples of the study area is presented in Figure 
6(c). A horizontal reference line is drawn at a distance of 0 - 2500 while the ver-
tical line showed the classification of groups 1 to 4. Six (6) samples (60%) of the 
groundwater samples of the study area was categorized in group 1 (GW 3, 5, 6, 7, 
8 & 9), while two (2) samples (20%) fell in group 2 (GW 2 and 4), One sample 
each was in groups 3 (BH1) and 4 (GW1) respectively. Each group exhibited 
different groundwater qualities, the Group 1 groundwater samples showed sig-
nificant pollution compared to the Group 2 samples with moderate pollution 
while groups 3 & 4 depict insignificant pollution of the samples. 

From the scatter plots (Figure 7), it is clearly shown that most of the tested 
parameters were strongly correlated with 3HCO− . Moderate to positive correla-
tion were found between Ca2+ and HCO3 (r = 0.64), Mg2+ and 3HCO−  (r = 0.48) 
and K and HCO3 (r = 0.46) The positive correlation between Ca2+, Mg2+, K+, and 

3HCO−  implies that as the concentration of 3HCO−  increases, there is a ten-
dency for the concentrations of Ca2+, Mg2+, and K+ increase, and vice versa. This  
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Figure 7. Scatter plots showing relationship between hydrochemical parameters. 

 
indicates that there may be shared sources or processes influencing the mobility 
and availability of these ions in the hydrochemical system, which might be an 
indication that the aquifer may have experienced various processes such as wa-
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ter–rock interaction, Carbonate Equilibrium and weathering of the aquifer’s 
original rocks, therefore making 3HCO−  as a dominant ion in the water chemi-
stry (Ogarekpe et al., 2023). There is positive correlation between Ca2+ and Mg2+ 
since the correlation coefficient (r) between two variables shows how one varia-
ble predicts the other. The correlation coefficients of the tested parameters are 
listed in Figure 8. It clearly depicts that most of the tested parameters were 
strongly correlated with HCO3. Moderate to positive correlation existed between 
Ca and HCO3 (r = 0.64), Mg and HCO3 (r = 0.48) and K and HCO3 (r = 0.46) 
The positive correlation between Ca, Mg, K, and HCO3 implies that as the con-
centration of HCO3 increases, there is a tendency for the concentrations of Ca,  
 

 
Figure 8. Cumulative probability distribution-NCR of heavy metals. 
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Mg, and K increase, and vice versa. This indicates that there may be shared 
sources or processes influencing the mobility and availability of these ions in the 
hydrochemical system, which might be an indication that the aquifer may have 
experienced various processes such as water-rock interaction, Carbonate Equili-
brium and weathering of the aquifer’s original rocks, therefore making HCO3 as 
a dominant ion in the water chemistry (Ogarekpe et al., 2023). The positive cor-
relation between Ca and Mg (r = 0.73) implies that as the concentration of Ca 
increases, there is a tendency for the concentration of Mg to increase, and vice 
versa. This suggests that there may be similar sources or processes influencing 
the mobility and availability of both Ca and Mg in the hydrochemical system 
such the local geology, water-rock interactions within the aquifer as well as 
anthropogenic Influences of the study area (Abdelshafy et al., 2019). The results 
show a low positive correlation between EC and Na+ (r = 0.03), EC and Cl− (r = 
0.02). Based on these results, it suggests that there is little to no linear relation-
ship between EC and the concentrations of Na+ or Cl−. The small positive corre-
lation coefficients imply that as EC increases, there is a slight tendency for Na+ 
and Cl− concentrations to also increase, but the relationship is not strong or sig-
nificant.  

3.6. Health Risk Assessment  

The health risks associated with heavy metals (Fe, Cu, Cd, Pb, Cr, Mn & Zn) 
present in groundwater, as well as their impacts on human health through various 
pathways were assessed. The study specifically examined the non-carcinogenic 
health risks for both adults and children in the study area, considering exposure 
through drinking water and dermal contact pathways. The calculated results of 
these health risks are presented and discussed in the study in Table 8(a) & Table 
8(b) and Table 9(a) & Table 9(b) respectively. As shown in Table 8(a), the 
non-carcinogenic health risk of heavy metals ranges from 2.44E−09 - 9.42E−08 
for adults, and from 1.58E−10 - 8.52E−09 for children (ingestion), while for 
dermal, the value ranges from 1.40E−09 - 5.18E−11 for adults and from 1.16E−10 
- 6.25E−09 for children, respectively. Table 8(b) shows that the hazard index 
(HI) of heavy metal had ranges of 1.35E−5 - 9.04E−08 for adults and 1.13E−07 - 
8.55E−11 for children (ingestion), while for dermal, the value ranges were 
7.01E−11 - 1.080E−07 for adults and 1.04E−05 - 8.04E−07 for children. The 
outcomes of the health risk assessment conducted in the study area, considering 
both adults and children, fall within the acceptable limit for non-carcinogenic 
risk.  

Table 9(a) depicts the carcinogenic health risk of heavy metals for both adults 
and children in the study area. The value ranges from 1.51E−11 - 8.14E−10 for 
adults and 1.32E−11 - 7.10E−10 for children (ingestion), while for dermal, the 
value ranges from 8.63E−12 - 1.05E−09 for adults and 9.64E−12 - 1.18E−09 for 
children, respectively. Table 9(b) shows the total carcinogenic risk (TCR) of 
heavy metals for adults and children. All the values obtained were below the  
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Table 8. (a) Non-carcinogenic health risk of heavy metals to adults and children; (b) Ha-
zard index (HI) of heavy metals to adults and children. 

(a) 

Heavy Metal 
Ingestion Dermal 

Adult Child Adult Child 

Fe 9.42E−08 3.29E−07 5.39E−08 2.41E−07 

Cu 5.51E−09 1.92E−08 3.16E−09 1.41E−08 

Cd 9.04E−11 3.16E−10 5.18E−11 2.31E−10 

Pb 4.52E−11 1.58E−10 2.59E−11 1.16E−10 

Zn 7.34E−09 2.56E−08 4.21E−09 1.88E−08 

Cr 7.05E−10 2.46E−09 4.04E−10 1.81E−09 

Mn 2.44E−09 8.52E−09 1.40E−09 6.25E−09 

(b) 

Heavy Metal 
Ingestion Dermal 

Adult Child Adult Child 

Fe 1.35E−05 4.70E−05 1.80E−07 8.04E−07 

Cu 1.38E−10 4.81E−10 2.63E−10 1.18E−09 

Cd 9.04E−08 3.16E−07 5.18E−06 2.31E−05 

Pb 3.23E−08 1.13E−07 6.16E−11 2.76E−10 

Zn 2.45E−11 8.55E−11 7.01E−11 3.13E−10 

Cr 2.35E−07 8.21E−07 2.69E−07 1.20E−06 

Mn 1.74E−08 6.09E−08 2.33E−06 1.04E−05 

 
Table 9. (a) Carcinogenic health risk of heavy metals to adults and children; (b) Total 
carcinogenic risk (TCR) of heavy metals to adults and children. 

(a) 

Heavy Metal 
Ingestion Dermal 

Adult Child Adult Child 

Fe 3.14E−08 2.74E−08 1.80E−08 2.01E−08 

Cu 1.84E−09 1.60E−09 1.05E−09 1.18E−09 

Cd 3.01E−11 2.63E−11 1.73E−11 1.93E−11 

Pb 1.51E−11 1.32E−11 8.63E−12 9.64E−12 

Zn 2.45E−09 2.14E−09 1.40E−09 1.57E−09 

Cr 2.35E−10 2.05E−10 1.35E−10 1.50E−10 

Mn 8.14E−10 7.10E−10 4.66E−10 5.21E−10 

(b) 

Heavy Metal 
Ingestion 

Adult Child 

Fe 6.28E−07 5.48E−07 

Cd 1.84E−10 1.60E−10 

Pb 1.28E−13 1.12E−13 

Cr 2.00E−12 1.74E−12 
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standard permissible limit for human health risks from heavy metals (De et al., 
2023). However, it should be concluded that continuing to use the water in the 
study area may not affect the health of the community. Additionally, the results 
of the cumulative probability distribution of non-carcinogenic heavy metals in 
the study area are shown in (Figure 8). It can be seen from Figure that the total 
non-carcinogenic risks for adults and children were virtually below the permiss-
ible limits. In general, the non-carcinogenic health risk of heavy metals in the 
groundwater was found to be low in the study area. However, serious precau-
tions should be taken to curtail the risk of people becoming prone to disease in 
the future. 

4. Conclusion  

The study showed that the average values of all the parameters assessed in the 
study area were within the WHO standard for drinking water. The sequence for 
the anion dominance was 3HCO−  + CO3 > 2

4SO −  > Cl− + F, while the order for 
cations was Ca2+ > Na+ + K > Mg2+ in the groundwater. The WQI computed in-
dicates that the groundwater of the study area is suitable for domestic purposes, 
as it was classified as generally having good to excellent water quality. The hy-
dro-chemical facies for this study area is, namely; Ca-Mg-HCO3 dominant water 
type from the samples analyzed. Indices such as %Na, PI, SAR, and MH, indicate 
that water sources from Keffi Metropolis and environs are adequate for irriga-
tion. 

Health risk assessment revealed that both children and adults would not be 
affected much by the ingestion of the current heavy metal in the groundwater 
samples. However, the results of this investigation are limited to the heavy met-
als leachate from waste dumpsites, further research on Pesticides and organic 
pollutant as well as other contaminants of groundwater in the vicinity of dump-
sites has been considered and future research in the study area will consider the 
interaction of heavy metals and pesticides to human health risk in the Keffi me-
tropolis. Therefore, it is recommended that periodic assessments of these ions 
and other pollutants be carried out. There is a need for the authorities (State and 
Local Government) to provide clean, adequate pipe borne water for the commu-
nity, and appropriate, timely measures should be taken towards proper man-
agement of open waste dumpsites to prevent the contamination of groundwater. 
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