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Abstract 
In this paper, aiming to provide accurate protocols for management of sus-
tainable ecosystems, a design methodology of ∞ -controller for hunter-prey 
model under exposure to exogenous disturbance and stochastic noise is pre-
sented. Along the development, solution procedure of the stochastic Hamil-
ton-Jacobi-Isaacs equation via Successive Galerkin’s Approximation is de-
scribed. Utilizing the proposed solution methodology of Hamilton-Jacobi- 
Isaacs equation, ∞ -controller of hunter-prey model was successfully de-
signed. Robustness and performance against exogenous disturbance of the de-
signed ∞ -controller is validated and confirmed by numerical simulations 
including Monte-Carlo simulation by Simulink software on MATLAB. 
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1. Introduction 

Over the past several decades, the management of sustainable ecosystems has 
been an arising interest in both academia and industry Ait El Mokhtar et al. 
(2021), Cinner et al. (2022), Maulu et al. (2021), Mohanty et al. (2010), Rahman 
et al. (2022). Typical topics include the impacts of climate change on various 
ecosystems including aquaculture. Management of sustainable ecosystems that 
can withstand such disturbances including climate change and pollution had 
been intensively studied in Chapin III et al. (1996). Interactions of positive and 
negative feedbacks between resources and species that constrain the effects of 
exogenous disturbances were discussed. More researches regarding feedback of 
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ecosystems against disturbance to environmental changes include Garnier et al. 
(2020), Lafuite (2017), Ortiz & Levins (2017). Before the development of such 
approaches in environmental sciences, generating appropriate feedback into sys-
tems to achieve particular objectives was studied intensively on the other side of 
academia, the control theory. 

Control theory adopts mathematical and quantitative approaches for feedback 
systems. Moreover, control theory had solid mathematical foundations since the 
past century. Hence it was validated in numerous different fields including ro-
botics, aerospace engineering, etc. Typical objectives of control theories are the 
achievement of robust stability and performance against exogenous and intrinsic 
disturbances and noises. Although there are advantages and disadvantages among 
the existing control methods, optimal control theory, especially ∞ -control theory 
provides a certain amount of margin in performance and stability of the con-
troller. By estimating such a margin, we can predict how much modeling error 
and disturbance the system can withstand and maintain sustainability. It was 
deeply studied in van der Schaft (1992), the ∞ -control of general control-affine 
systems to minimize the effect of disturbances on system output. It was proved 
that by obtaining the smooth nonnegative solution of a certain partial differen-
tial equation (PDE), the Hamilton-Jacobi-Isaacs (HJI) equation, we can formu-
laically design a ∞  controller of any system of the specified form. 

Exploiting such advantages, there had been numerous approaches to adopt 
control theories outside of mechanical and aerospace engineering Del Vecchio 
(2016), Fiore et al. (2016), Modi et al. (2021), Shannon et al. (2020). However, 
the unresolved caveat was that the systems considered were typically involved 
with nonlinear terms, which made HJI not solvable analytically. Such issues 
happened in applications in environmental engineering too. 

The authors in Shastri & Diwekar (2006a, 2006b) attempted to employ optim-
al control theory for sustainable ecosystem management. Robustness against dis-
turbances was the objective as other researches, but the authors explicitly derived 
the Pontryagin maximum principle to deduce the optimality conditions. Such 
approach involves numerical optimization stage of maximization of Hamilto-
nian, which is not tractable in general cases. 

A typical method to avoid such difficulties due to nonlinearity was to find an 
appropriate trim point and linearize the dynamics around it. However, depend-
ing on the extent of nonlinearity, there were multiple systems that such an ap-
proach was not applicable. Moreover, whenever linearization takes place, there is 
no longer any guarantee available regarding the stability and performance of the 
controller whenever a transition between trim points occurs. 

Under such background, it was proposed an iterative algorithm in Bea (1998) 
to solve nonlinear, deterministic Hamilton-Jacobi-Bellman (HJB) and HJI equa-
tions numerically. The methodology developed in Bea (1998) was named Suc-
cessive Galerkin’s Approximation (SGA). Galerkin’s method is a method to solve a 
first-order PDE numerically. However, since the HJB and HJI equations were 

https://doi.org/10.4236/gep.2023.112001


M. Park 
 

 

DOI: 10.4236/gep.2023.112001 3 Journal of Geoscience and Environment Protection 
 

not of the first order, it was unable to adopt Galerkin’s method here. The authors 
in Bea (1998) applied Galerkin’s method iteratively to solve both HJB and HJI 
equations numerically. Moreover, the pointwise convergence property of the 
proposed algorithm was also proved. However since the considered equations 
were deterministic systems not involving any stochastic terms, the range of ap-
plication was limited, especially in fields such as synthetic biology and environ-
mental sciences. 

To this end, we propose a design method of ∞ -controllers of stochastic sys-
tems through modification of the SGA algorithm. The main purpose of this re-
search can be summarized as development of formulaic design procedure of 

∞  controller under exogenous stochastic disturbances. However, we typically 
aim to apply our results to predator-prey system for the management of sus-
tainable ecosystems due to foregoing reasons along the introduction. A modified 
SGA algorithm is developed and validity is confirmed through numerical simu-
lation results on MATLAB software. This paper is organized as follows: in Sec-
tion 2, ∞  control problem is introduced. By modification of the iterative al-
gorithms from Bea (1998), the modified SGA algorithm is developed throughout 
Sections 3 and 4. Along Sections 5 and 6, the considered model in this paper is 
introduced and numerical demonstration results are depicted. Section 7 con-
cludes the works in this paper. 

2. The ∞ -Control Problem 

In this work, mean reverting Itô process is considered to model the predator- 
prey system dynamics. Let us consider a nonlinear control system as below.  

( ) ( ) ( ) ( ) ( ) ( ) ( ) 0, 0t f g t W= + + + σ =�� �x x x u x x v x x x         (1) 

where n∈x , m∈u , q∈v , W ∈  for each t, and : n nf �  ,  
: n n m×� �  , : n n qg ×�   which are Lipschitz. σ  is the constant variance 

parameter and ( )u x  denotes the state feedback. Exogenous disturbance is de-
noted by ( )tv  and W is the 1-dimensional standard Wiener process. It is as-
sumed that the system is observable through the output function ( ) ( )t C t=y x  
where n pC ×∈ . Under the existence of an unknown finite-energy external dis-
turbance v  and stochastic noise W�  entering the system, we aim to achieve 
robust stability and performance by a state feedback ( )u x . In this paper, it is 
assumed that ( )f =0 0 . If the system does not satisfy such assumption, state 
variables can be perturbed for appropriate amount as long as an equilibrium 
point of Equation (1) exists. (i.e. e= −�x x x ) Now we introduce the ∞ -feedback 
design problem throughout the remaining part of this section.  

∞ -Feedback Control Problem 

Through ∞ -feedback control, it is aimed to maintain asymptotic stability and 
disturbance-to-output 2 -gain under certain level 0γ > . It can be represented 
as below with consideration of stochastic noise.  
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where ( )2
+∈ v . ⋅  is the conventional Euclidean norm, and weighted  

norms are defined as ( )( ) ( )( ) ( )( )2 T 1

Q
t t Q t−=u x u x u x  and  

( ) ( ) ( )2 T 1
Q

t t Q t−=v v v  for , 0P Q � . In previous the studies of systems with  

stochastic noise Zhang & Chen (2006), the theorem below was proved.  
Theorem 1. Consider the Hamilton-Jacobi-Isaacs (HJI) Equation below,  

( ) ( ) ( )

( ) ( ) ( )

T T
TT T 1
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2
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1 1
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1 0, 0
2
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∂ ∂
+ + ∂ ∂ γ
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          (3) 

Suppose there exists a smooth solution ( ) 0V ≥x  satisfying the boundary 
condition ( ) 0V =0 . Then the state feedback  

( ) ( )T11
2

VP− ∂
= −

∂
�u x x

x
                      (4) 

satisfies the Ineq. (2). Moreover, the worst case disturbance is represented by  

( ) ( )T1
2

1
2

Vt Q g− ∂
=

∂γ
v x

x
                      (5) 

The proof of the theorem above without consideration of stochastic noise was 
proposed and proved in Chen et al. (2008), while it was considered here the 
general case with stochastic noise entering through the system dynamics.     □ 

Remark 1. By substituting Equation (4) and Equation (5) to Equation (3), the 
HJI equation can be modified as  

( ) ( ) ( ) ( )( )

( ) ( )

T
T T

2
2 22 T

2

1 0, 0
2QP

V f g C C

V V

∂
+ + +

∂
∂

+ − γ + σ σ = =
∂

0

�x x u x x v x x
x

u x v x x
x

           (6) 

Dependency on time is omitted for sake of simplicity.  
It is notable that the HJI equation above is not tractable for general nonlinear 

systems.  

3. Iterative Solution Procedure 

Throughout this section, an iterative solution procedure of the HJI equation, 
Equation (3), by solving sequence first order partial differential equations is de-
picted. Up to our knowledge, it was first proposed in Bea (1998) the numerical 
solution of the HJI equation in iterative form. But unlike the algorithm proposed 
in Bea (1998), consideration of stochastic noise urges to modify the iteration al-
gorithm. Let introduce the below notation for representation of partial differen-
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tial equations.  

Definition 1. 
( ) ( ) ( ) ( ) ( )( )

( )

T
T T

2
2 22 T

2

, ,

1
2QP

VV f g C C

V

∂
≡ + + +
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∂
+ − γ + σ σ

∂

� u v x x u x x v x x
x

u x v x x
x

  

The partial differential equation ( ), , 0V = u v  with boundary condition 
( ) 0V =0  is equivalent to HJI Equation (3) when ( )u x  and ( )tv  are given 

as Equations (4) and (5). As IterMax →∞ , ( ) ( )IterMaxu x  converges pointwise to 
the solution of Equation (6). 
 

 

4. Modified Successive Galerkin Approximation 

In this section, the overall implementation of Algorithm 1 is described. For the 
solution of ( ) ( ) ( )( ), ,, , 0i i j i jV = u v  with boundary constraint ( ) ( ), 0i jV =0  
required at every iteration of Algorithm 1 is obtained by Galerkin’s Method. Ga-
lerkin’s method approximates the solution of a first order PDE with boundary 
constraint ( ) 0V =0  with linear combination finite number of basis functions 
{ } 1:n n N=
φ  that satisfy ( ) 0nφ =0 . The approximation is in least-square manner 

in Banach-space sense. Due to well founded theoretical backgrounds, Galerkin’s 
method is employed in various situations where numerical solutions of partial 
differential equations are needed Fletcher (1984). 

Exploiting Galerkin’s method to solve the inner-loop PDE in Algorithm 1 in 
no stochastic noise situation was proposed in Bea (1998), so called the Successive 
Galerkin’s Approximation (SGA). It was also proven the pointwise convergence 
of the algorithm to the true solution for a complete set of functions of 2 -space. 
Further developing the previous conclusions, we expand the concept of SGA for 
solution of the HJI equation under consideration of stochastic noise throughout 
this section. 

For a finite set of basis functions { } 1:n n N=
φ , let [ ]T1 2 N= φ φ φ�Φ . Now 

suppose that the solution is approximated by ( ) 1 1 N NV c c≈ φ + + φ�x . Let  
[ ]T1 2 Nc c c= �c . When the set of basis functions { } 1:n n N=

φ  is given, we 
aim to find c . Let us further denote the integration region of Galerkin method 
by Ω . The below Equation (7) are the iteration matrices for implementation of 
SGA. The detailed derivation in stochastic noise situation also follows the pro-
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cedure at Bea (1998). 
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      (7) 

The vector ( ),i jc  in Algorithm 2 denotes the solution of the first order PDE 
obtained from the previous one of ( ),i j -th iteration, or the i-th inner loop and 
j-th outer loop iteration. The tolerance for termination criterion is denoted as 
ε . 
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5. The Predator-Prey Model 

Performance of Algorithm 2 is confirmed in Predator-Prey model dynamics. 
Although this paper aims for design in specific Predator-Prey model, typical 
Predator-Prey models share analogous formulations. Hence the basis functions 
chosen from this paper can be adopted to the vast majority of Predator-Prey 
models of sustainable ecosystems. The system dynamics chosen in our research 
is based on Brown et al. (2005) and is given as below.  

1
1 1 1 1 2 1

1

2
2 2 2 1 2 2

2

1

1

xx r x x x d
q

xx r x x x d
q

 
= − + α + 

 
 

= − −β + 
 

�

�

                    (8) 

where ( )1x t  and ( )2x t  denote the populations of predator and prey respec-
tively. ( )1d t  and ( )2d t  are the external disturbance and stochastic noise term 
entering the dynamics. Dependency on time, t, is omitted for simplicity. The de-
sign parameters of the model including the initial conditions can be found in 
Table 1. 

As the reference inputs are not an equilibrium point of the system dynamics, 
we consider the below perturbation of state and control as in Equation (9). Let 

ref= −�x x x , ( ) ( ) ( )reff f f= −� x x x , and ( ) ( )1
ref refg f

−
= + +� �u u x x x . 

( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( )
( ) ( )

1

ref ref

ref ref ref ref

ref ref ref ref

ref ref

f g

f f f g

f g g f

f g

−

= + + +

= + − + + +

= + + + + +

= + + +

�� � �

� �

� � � �
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x x x x x u

x x x x x x u

x x x x u x x x

x x x x u

          (9) 

 
Table 1. Design parameters. 

Parameter Value 

( )1 0x  150 

( )2 0x  6000 

1,refx  250 

2,refx  5000 

1r  0.15 

2r  0.20 

1q  1500 

2q  1E4 

α  5E−7 

β  5E−5 

1d  White Noise 

2d  White Noise 
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Note that full-state controllability is assumed in the derivation above. Now 
( ) ( )lim lim 0

t t
t t

→∞ →∞
= =� �x u  guarantees the boundedness of ( )V x  as in Bea (1998). 

By such perturbation, one can easily check that [ ]T0 0=�x  is an equilibrium 
point of the system. It is noteworthy that the ∞ -controller is designed with 
respect to the perturbed system above.  

6. Numerical Demonstration & Discussion 

Throughout this section, numerical demonstration results of the proposed Algo-
rithm 2 are provided. Basis functions were chosen as { } { }2 2

1 2 3 1 2 1 2, , , ,x x x xφ φ φ = � � � � . 
Basis functions were chosen deliberately to satisfy the property ( ) 0iφ =0  while  

forming a linear approximation of ( ) ( )T11
2

VP− ∂
= −

∂
�u x x

x
 simultaneously. 

Control input function was set as ( )
1 0
0 1

g  
=  
 

x x . Though Cockburn et al.  

(2011) considered factors to model the success rate of hunters, as the control 
inputs can be scaled appropriately to compensate the failure rate, such factors 
were omitted in out modeling. Numerical simulations were implemented on 
Simulink and Matlab 2019b with Apple Macbook Pro, 2.4 GHz Intel Core i5. For 
the design of ∞ -control, obtaining the smallest feasible value of γ  in. Equa-
tion (2) is required. Up to our knowledge, analytic solution procedure of such 
minimization problem is not available in nonlinear case. For linear case, with li-
nearization of nonlinear dynamics, fuzzy interpolation approach was proposed 
in Chen et al. (2008). Hence by trial and error, minimum value of 5.3γ =  was 
set for implementation of Algorithm 2. Convergence tolerance was set as 310−ε =  
for both inner and outer loops. It took total 7 iterations for outer loop to con-
verge, while all the inner loop iterations converged in less than 4 iterations. 
Converged solution was as in Table 2. 

From the obtained solution, numerical simulation was implemented on Simu-
link software on MATLAB. State variables and control inputs are depicted in 
Figure 1. During the simulation, a random seed was fed into band-limited white 
noise to the role as an external disturbance. 1d  and 2d  were designed to be 
independent random variables. The results show rapid convergence of both state 
and control variables to 0. 

For validation of the robustness of the sustainable ecosystem designed, a 
Monte-Carlo simulation of total of 100 simulations was implemented. Results 
are shown in Figure 2, and robust stability was confirmed through the results. 
 
Table 2. Obtained solution of the HJI with 5.3γ = . 

Basis Functions Coefficients ic  

1φ  3.7888 

2φ  1.5033 

3φ  −0.1870 
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Figure 1. Time profiles of the states and controls and disturbances. 
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Figure 2. Time profiles of the states, controls, and disturbances under Monte-Carlo 
simulation. 

7. Conclusion 

Throughout this paper, a sustainable management methodology of ecosystems 
by ∞ -control theory, particularly aiming predator-prey model was developed. 
Modified Successive Galerkin Approximation to manage stochastic noise term 
was developed and employed to solve the nonlinear Hamilton-Jacobi-Isaacs eq-
uation. By numerical simulations, the robustness of the designed controller was 
validated. 

As typical interacting systems of species in an ecosystem have similar repre-
sentation, it is further expected to use the methodology presented in this paper 
to be applied to more general ecosystems. 
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