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Abstract 
Satellite image classification has been used for long time in the field of remote 
sensing since classification results are used in environmental research, agri-
culture, climate change and natural resource management. The cocoa land-
scape of Ghana is complex and diverse in nature, composing of mixture of 
closed forest, open forest, settlements, croplands and cocoa farms which 
make mapping the landscape difficult. The purpose of this research is to as-
sess and compare the classification performances of three machine learning 
classifiers: Support Vector Machine (SVM), Random Forest (RF), Artificial 
Neural Network (ANN) and a statistical classification algorithm: Maximum 
Likelihood (ML) to know which classifier is best suited for mapping the cocoa 
landscape of Ghana using Juaboso and Bia West districts of Ghana as study 
area. A representative sampling approach was adopted to collect 1246 sample 
points for the various Land Use/Land Cover (LULC) types. These sample 
points were divided at random into 869 which form 70% for classification 
and 377 which constitute 30% of the total sample points for validation. The 
Stacked sentinel-2 image, classification data and validation data storing the 
identities of the LULC classes were imported in R to run supervised classifi-
cation for each classifier. The classification results show that the highest over-
all accuracy and kappa statistics were produced by the support vector ma-
chine (86.47%, 0.7902); next is the artificial neural network (85.15%, 0.7700), 
followed by the random forest (84.08%, 0.7559) and finally the maximum li-
kelihood (78.51%, 0.6668). The final LULC map produced under this study 
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can be used to monitor cocoa driven deforestation especially in the gazetted 
forest and game reserves. This map will also be very useful in the national 
forest monitoring framework for the REDD + cocoa landscape project.  
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1. Introduction 

Remote sensing has been an important source of land cover data during the last 
three decades (Foody et al., 2004). Improvement in satellite technology has made 
it possible to acquire land cover information over wide areas at varying spatial, 
spectral and radiometric resolutions (Hopkins et al., 1988).  

The maximum likelihood, minimum distance to mean, parallelepiped, Maha-
lanobis distance and the box classifier are some of the traditional statistics-based 
classifiers used in remote sensing (Yu et al., 2014). 

Machine learning methods, such as Support Vector Machine (SVM), Random 
Forest (RF), Decision Trees (DTs), Artificial Neural Network (ANN) and K-nearest 
neighbours (K-NN), have become common image classifiers as technology has 
evolved. Some research works have been done to compare the machine learning 
algorithms with traditional statistical classifiers, and they have been found to 
improve classification accuracy (Rogan et al., 2002). Traditional statistical clas-
sifiers are parametric algorithms. The major limitation of parametric classifiers 
is their reliance on the data statistical distribution. Also, they have low accuracy 
for image classification, whereas non parametric classifiers which are machine 
learning methods do not depend on data assigned to any specific statistical dis-
tribution (Caetano, 2009; Mountrakis et al., 2011). 

Maximum likelihood (ML), Random forest (RF), Support vector machine (SVM) 
and Artificial neural network (ANN) classifiers have been chosen for this study, 
because they are extensively used in image classification (Zagajewski et al., 2021; 
Saeed et al., 2015). 

Maximum likelihood (ML) is one of the simplest but commonly used statis-
tical classification algorithm, in which a pixel with the maximum likelihood is 
classified into the corresponding class (Saeed et al., 2015). There are several rea-
sons why the maximum likelihood classifier is so popular; first, the maximum 
likelihood decision rule is naturally appealing, because the most likely outcome 
among candidates is chosen (Bolstad & Lillesand, 1991). Additionally, covarying 
data, this frequently occurrence with satellite image data, can be easily accom-
modated by maximum likelihood classification. Finally, it has been demonstrat-
ed that maximum likelihood classifier, which takes variability into account, per-
forms well across a variety of cover types (Lillesand & Kiefer, 1987). A study was 
conducted by comparing maximum likelihood, support vector machines and 
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random forest techniques using RapidEye image for land cover mapping in the 
municipality of San Pelayo of Colombian Caribbean. It was found that, support 
vector machines produced the highest classification accuracy of 81.32%, followed 
by random forest 78.92% and finally maximum likelihood 68.95%. Though max-
imum likelihood produced the least classification accuracy, it was able to cor-
rectly classified infrastructure which was one of the classification classes better 
than the other two techniques (Valero et al., 2019) and this could be the ability 
of maximum likelihood to consider variability. 

Random forest (RF) is one of the most widely used machine learning algo-
rithms (Breiman, 2001). This algorithm is appealing since it is used for both 
classification and regression tasks (Woznicki et al., 2019). It is easy to use, effi-
cient and accurate (Meltzer, 2021). Due to its versatility, RF has been applied in 
a variety of Earth scientific applications, such as modeling land-use (Araki & 
Yamamoto, 2018), land-cover (Nitze & Cawkwell, 2015) and modeling forest 
cover (Betts et al., 2017). Rodriguez-Galiano et al. (2012) examined RF to deci-
sion trees and found that RF provided a high accuracy of 92%, outperforming 
decision trees of accuracy of 83%. The ensemble architecture of RF, which trains 
multiple decision trees on different subsets of the training data, is thought to 
account for its improved accuracy. 

Support vector machine (SVM) has been shown to outperform other classifi-
ers due to its overall high capacity to simplify complex features (Shao & Lunetta, 
2012). Support vector machine was able to achieve high overall accuracy of 88% 
in a land cover classification utilizing Landsat-8 and using six land-cover classes 
(Goodin et al., 2015). In order to map paddy rice in China in 2015, Mansaray et 
al. (2019) examined the effect of training sample size on the overall accuracies of 
SVM and RF. It was discovered that SVM and RF achieved overall accuracies of 
91.8% and 89.2%, respectively. 

Artificial neural network (ANN) has become a popular tool in the analysis of 
remotely sensed data (Mas & Flores, 2008). The ability of ANN to learn on its 
own and handle complicated issues is one of the reasons it has grown so popular 
(Di Franco & Santurro, 2021). Artificial neural network has been used in several 
land cover classification studies including using ANN, SVM and ML with IKONOS 
image for land cover mapping in Shahriar city of Iran. The classification results 
showed that, the overall accuracy and kappa coefficient of ANN (87.75%, 0.820) 
was better than that of SVM (85.57%, 0.819) and ML (78.36%, 0.729) (Saeed et 
al., 2015). Also comparing classification results of neural network called back 
propagation neural (BPN) and extended delta bar delta (EDBD) network with 
parallelepiped, minimum distance and maximum likelihood using Landsat 8 to 
classify land cover types in Minnesota of United States of America. The classifi-
cation results revealed that the neural network performed best among the clas-
sifiers with overall accuracy and kappa of 95.07%, 0.935 respectively, followed by 
maximum likelihood (90.77%, 0.882), minimum distance (84.24%, 0.803), paral-
lelepiped (69.23%, 0.612) (Zhang & Chang, 2015). 

Maximum Likelihood (ML) is a supervised classification algorithm which is 
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based on the Bayes theorem, assumes the reflectance values for each class in each 
band is normally distributed. During the ML classification, a given pixel has a 
probability that belongs to a particular class. As a result, the discriminant func-
tion is used to calculate each pixel’s probability, and each pixel is then allotted to 
the class with the highest probability (Kulkarni, 2016). ML classifier has shown 
to perform effectively across a variety of land cover types as it takes variability 
into accounts (Lillesand & Kiefer, 1987). 

Random Forest (RF) is an ensemble classifier, which means “union of parts”. 
Random Forest uses more decision trees and makes prediction from each deci-
sion tree and selects the best outcome by means of voting (Breiman, 2001). One- 
third of the samples, known as the out-of-bag (OOB) samples, are excluded at 
random from each new training set that is created to help the tree grow. The tree 
is constructed using the remaining samples in the bag. The model performance 
can be evaluated using the OOB samples (Nguyen et al., 2015). Random forest is 
very flexible, has very high accuracy and also works better than a single decision 
tree. It does not suffer from the over fitting problem (Breiman, 2001). 

Support Vector Machine (SVM) idea was developed by Cortes and Vapnik in 
1995, which is a supervised learning method usually utilized in remote sensing 
applications. The main aim of SVM is to find the best hyperplane that divides 
the training data into several groups (Mountrakis et al., 2011). 

Originally, Support Vector Machine (SVM) was to identify a linear class boun-
dary. In order to overcome this restriction, the feature space was projected to a 
higher dimension on the grounds that a linear boundary might be present in a 
higher dimensional feature space. This projection to a higher dimensionality is 
known as the kernel trick. Kernel increases the number of dimensions in non- 
separable issues to make them separable. As a result of this, SVM becomes more 
powerful, adaptable and precise (Maxwell et al., 2018).  

Artificial Neural Network works like the human brain and the building blocks 
are neurons. Each neuron has synaptic weights, which are specific coefficients 
that link it to other neurons. During training, information is sent to these join-
ing points (Mijwil, 2018). Artificial Neural Network can learn complex configu-
rations, taking into consideration any nonlinear complex relationship between 
the independent and the dependent variables (Jamali, 2021).  

The High Forest Zone (HFZ) of Ghana, which contains the cocoa landscape, 
comprises 8.2 million hectares amounting to 34% of the country’s total land 
area, with vegetation varying from wet evergreen to dry semi-deciduous (Fore-
stry Commission, 2016; Indufor, 2015). Ghana’s HFZ is made up of a complex 
web of forest, cocoa farms, croplands and human settlements (National REDD+ 
Secretariat, Forestry Commission, 2017). Implementing forest monitoring sys-
tems at the landscape level forms part of the HFZ’s climate-smart and sustaina-
ble landscape activities. As prescribed by the Intergovernmental Panel on Cli-
mate Change, wall-to-wall mapping is essential for the proper execution of these 
forest monitoring systems (Mitchell et al., 2017). 

Land cover maps that are precise and current are essential for environmental 
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research, climate change monitoring and natural resource management (Pelleti-
er et al., 2019). The cocoa landscape of Ghana is complex and diverse in nature, 
composing of mixture of closed forest, open forest settlements, croplands and 
cocoa farms making the mapping of the landscape very difficult. Some studies 
have been carried out in mapping the cocoa landscape of Ghana using one clas-
sification algorithm for each study (Benefoh et al., 2018; Ashiagbor et al., 2020). 
However, other classification algorithms for mapping the cocoa landscape of 
Ghana have not been fully explored. Hence there is the need to explore the per-
formances of other image classifiers to know which algorithm is best suited for 
the classification of the cocoa landscape of Ghana as well as other countries with 
similar cocoa landscapes like Ghana. Benefoh et al. (2018) used Landsat 8 optical 
dataset applying image-fusion on vegetation indices (VIs) and digital elevation 
model (DEM) using maximum likelihood algorithm to detect and distinguish 
cocoa plantation from forest and other land use classes in the Krokosua Hills 
Forest Reserve catchment of Ghana. Also, in the Juaboso-Bia cocoa landscape of 
Ghana, Ashiagbor et al. (2020) used Sentinel-1 and Sentinel-2 satellite images to 
map mono cocoa, cocoa agroforestry, forest lands and other land use classes us-
ing random forest classifier. 

The aim of this research is to assess and compare the performances of SVM, 
ANN, RF and ML classifiers to know which classifier is best suited for mapping 
the cocoa landscape of Ghana using the Juaboso and Bia West districts of Ghana 
as the study area.  

2. Materials and Methods 
2.1. Study Area 

The study was carried out in Juaboso and Bia West districts in the Western 
North region of Ghana. The Western North region is the leading cocoa produc-
ing region in Ghana. Juaboso and Bia West districts are among the highest cocoa 
producing districts in the Western North region of Ghana. The study area is si-
tuated between latitude 6˚13'N to 6˚50'N and longitude 2˚40'W to 3˚16'W, cov-
ering an area of 2571.26 square kilometres or 257,126 hectares (Figure 1). 

With a mean annual temperature between 25.5˚C and 26.5˚C, the area has a 
tropical climate marked by warm temperatures. The annual rainfall levels are 
between the ranges of 1250 - 2000 mm with June and October as its peak months 
(Ghana Statistical Service, 2014). The rainy and dry seasons are experienced 
within the study area; the wet season is from April to October, while the dry 
season lasts from November to March. Numerous food and commercial crops, 
particularly cocoa, are favoured by the comparatively long rainy season (Ghana 
Statistical Service, 2014). The elevation ranges between 137 - 594 m above sea 
level with Krokosua Hills in North West - South West part with the rest of the 
area on relatively lower elevation. The soils are primarily Oxysols and Ochrosols 
with Birimian and Hornblende as the parent rocks (Ghana Statistical Service, 
2014). 
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Figure 1. Map of the study area showing the cocoa mosaic landscape of Juaboso and Bia 
West districts of Ghana. (Image source: Landsat and Copernicus from goggle earth en-
gine). 
 

The study area falls within Moist Evergreen (ME), Moist Semideciduous 
North West (MSNW) and Moist Semideciduous South East (MSSE) subtypes 
ecological zones (Hall & Swaine, 1981). There are two forest reserves and one 
game reserve (protected area) in the study area. The forest reserves are Krokosua 
Hills and a portion of Bia Tributaries North and Bia National Park (protected 
area) all are under the administration of the Ghana Forestry Commission (Fore-
stry Commission, 2016). The rest of the area is covered by farmlands mostly co-
coa and communities in relatively low lying areas (Ghana Statistical Service, 
2014). 
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2.2. Data Acquisition 

Sentinel-2 images for 2020 with cloud cover of less than 10% were downloaded 
from the Copernicus Open Access Hub (https://scihub.copernicus.eu/). Senti-
nel-2 images are delivered in tiles, with each tile bearing a distinct name and the 
study area falls within tiles S2A-MSIL1C-20200105T103421-T30NVM, S2A- 
MSIL1C-20200204T103221-T30NWN and S2A-MSIL1C-20201210T103429- 
T30NVN. These images were downloaded as zip files and extracted into their 
various bands with each image having 13 bands.  

Field data for the classification of the image were collected using representa-
tive sampling method, where points were collected based on the dominance of 
the land use/land cover types. At each location, the coordinates were picked us-
ing handheld GPS, the land use description at that point and the adjoining land 
use were recorded on the field sheet. 

Data were collected from the following land use/land cover classes; closed 
forest, open forest, cocoa, settlement/bare surface and other vegetation (Table 
1). In all, one thousand, two hundred and forty-six (1246) points were collected. 
These were made up of; 133 for closed forest, 152 in open forest, 728 for cocoa, 
121 in settlement/bare surface and 112 for other vegetation. These sample points 
were divided at random into 869 which form 70% for classification and 377 
which constitute 30% of the total sample points for validation.  

2.3. Sentinel-2 Image Pre-Processing 

The sentinel-2 images that were downloaded were in Level-1C processing format 
had only undergone geometric and radiometric corrections but were not at-
mospherically corrected. The images were converted into Level-2A product and 
atmospheric correction done using Sen2C or processor (Drusch et al., 2012; 
Müller-Wilm, 2018). Ten (10) bands; 2, 3, 4, 5, 6, 7, 8, 8A, 11 and 12 were  
 
Table 1. Description of LULC types for the image classification. 

LULC Type Definition 

Closed forest 

Woody vegetation with a minimum mapping unit of 1 hectare 
and a canopy cover greater than 60% at a height of 5 m. 
Closed forest is mostly found in gazetted forest reserves and 
national Park with a small portion in off reserve sacred groves. 

Open forest 
Open forest areas are those that have a canopy cover within 
15% to 60%. The low canopy cover may be due to excessive timber 
logging, mining and other environmental factor like bush fires. 

Cocoa 
Farmlands cultivated with cocoa. It includes cocoa farms without 
trees (mono cocoa) and those with trees (cocoa agroforestry). 

Other Vegetation 
Include annual food crop farm, fallowland and other tree crops 
like oil palm, citrus and rubber. 

Settlement/Bare 
surface 

These include areas with no vegetation such as human settlements, 
barren lands and mined-out areas. 
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stacked for each tile to produce composite image. The stacked images were mo-
saicked to form one composite image. The study area shapefile was used to sub-
set the area of interest from the composite image and haze correction applied.  

2.4. Supervised Image Classification and Accuracy Assessment 

Supervised image classification was carried out using sentinel-2 imagery to de-
termine the LULC types of the research area. The classification was performed 
using maximum likelihood, random forest, support vector machine and artificial 
neural network algorithms in R software. Stacked sentinel-2 image, training data 
and validation data in polygon shapefiles storing the identity for each land cover 
type were imported into R. Caret, Rstoolbox, rgdal and raster packages were 
imported into R for the classification. Sentinel-2 image was imported as raster 
brick using the brick function in raster package. 

Maximum Likelihood (ML) classification was done using “rasclass” package 
in R to train and fit ML model. Random Forest (RF) classification was executed 
by the “randomForest” package in R. Support Vector Machine (SVM) classifica-
tion was done using “e1071” package and artificial neural network classification 
using “neuralnet” package in R. 

Using the training data in combination with a classifier, the pixel values in the 
training area for every band in sentinel-2 were extracted and stored in a data 
frame with its corresponding LULC class ID (Table 2) to train and fit the model. 
The classification was carried out separately for each classifier and saved the 
output classified image file. The output classified images were filtered to remove 
the speckles from the classified images to enhance their appearance. The final 
maps were prepared and area for the landuse classes was calculated. 

Accuracy assessment was performed for each classifier by using the classified 
image and 377 validation points in R to generate the confusion matrix, the over-
all accuracy and the kappa. User’s Accuracy (UA) and Producer’s Accuracy (PA) 
were calculated from the confusion matrix. 

3. Results 
3.1. Image Classification 

Supervised classification was used to categorize the research area into five (5)  
 
Table 2. Class ID and LULC name. 

Class ID LULC Name 

1 Closed forest 

2 Open forest 

3 Cocoa 

4 Other Vegetation 

5 Settlement/Bare surface 
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LULC classes; closed forest, open forest, cocoa, other vegetation and settle-
ment/bare surface using the four classifiers with combined maps shown in Fig-
ure 2. 

Maximum likelihood classifier map shows five classes; closed forest, open for-
est, cocoa, other vegetation and settlement/bare surface. Other vegetation class 
has a small class area, hence appearing patchy on the map. Random forest, sup-
port vector machine and artificial neural network classifiers maps display all the 
five LULC classes well; this implies these classifiers separated all the classes well 
under this study. 

A summary of the LULC classes areas for the four classifiers is presented in 
(Table 3) with its bar chart (Figure 3). 

3.2. Accuracy Assessment 

The accuracy assessment based on the classified images in R generated the con-
fusion matrix, overall accuracy and kappa. 

The confusion matrix and the accuracy report for the four classifiers are pre-
sented in Table 4. 
 

 

Figure 2. LULC maps of the study area using (a) ML; (b) RF; (c) SVM; (d) ANN. 
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Table 3. LULC areas for each classifier. 

CLASSIFIER ML RF SVM ANN 

LULC Class Area (ha) Area (%) Area (ha) Area (%) Area (ha) Area (%) Area (ha) Area (%) 

Closed Forest 57057.40 22.19 47314.91 18.40 48913.36 19.02 48010.46 18.67 

Open Forest 43908.38 17.08 47958.84 18.65 43637.70 16.97 44070.35 17.14 

Cocoa 143767.99 55.91 127943.8 49.76 135329.8 52.63 145006.76 56.40 

Other Vegetation 7829.25 3.04 28645.41 11.14 24808.61 9.65 15127.17 5.88 

Settlement/Bare Surface 4562.98 1.78 5262.99 2.05 4436.46 1.73 4911.26 1.91 

TOTAL 257126 100 257126 100 257126 100 257126 100 

 
Table 4. Confusion matrix and accuracy report for the four classifiers. 

LULC 
Closed 
Forest 

Open 
Forest 

Cocoa 
Other 

Vegetation 
Settlement/Bare 

Surface 
Total 

PA 
(%) 

UA 
(%) 

 
Maximum Likelihood Classifier 

Closed Forest 36 20 6 1 0 63 81.82 57.14 

Open Forest 8 30 14 1 0 53 60 56.6 

Cocoa 0 0 184 16 9 209 89.32 88.04 

Other Vegetation 0 0 2 19 4 25 51.35 76 

Settlement/Bare Surface 0 0 0 0 27 27 67.5 100 

Total 44 50 206 37 40 377 
  

Overall Accuracy 78.51% 

Kappa Statistics 0.6668 

 
Random Forest Classifier 

Closed Forest 34 10 0 1 0 45 77.27 75.56 

Open Forest 10 38 0 0 0 48 70 79.17 

Cocoa 0 2 188 9 5 204 91.26 92.16 

Other Vegetation 0 0 17 27 5 49 72.97 55.1 

Settlement/Bare Surface 0 0 1 0 30 31 75 96.77 

Total 44 50 206 37 40 377 
  

Overall Accuracy 84.08% 

Kappa Statistics 0.7559 

 
Support Vector Machine Classifier 

Closed Forest 34 9 0 1 0 44 77.27 77.27 

Open Forest 10 39 0 0 0 49 78 79.59 

Cocoa 0 1 195 8 6 210 94.66 92.86 

Other Vegetation 0 1 11 28 4 44 75.68 63.64 
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Continued 

Settlement/Bare Surface 0 0 0 0 30 30 75 100 

Total 44 50 206 37 40 377 
  

Overall Accuracy 86.47% 

Kappa Statistics 0.7902 

 
Artificial Neural Network 

Closed Forest 38 10 0 0 0 48 86.36 79.17 

Open Forest 6 38 3 0 0 47 76.00 80.85 

Cocoa 0 2 191 15 1 209 92.72 91.39 

Other Vegetation 0 0 8 22 7 37 59.46 59.46 

Settlement/Bare Surface 0 0 4 0 32 36 80.00 88.89 

Total 44 50 206 37 40 377 
  

Overall Accuracy 85.15% 

Kappa Statistics 0.7700 

 

 

Figure 3. LULC classes areas per classifier. 
 

The highest overall accuracy is 86.47% for the SVM classifier, followed by 
ANN (85.15%), RF (84.08%) and the least is ML (78.51%). In addition, the kappa 
statistics of 0.7902 is the highest for SVM, next is ANN (0.7700), followed by RF 
(0.7559) with ML having the least (0.6668). 

The Kappa is the agreement between the model prediction and observed (Delgado 
& Tibau, 2019). It provides a more accurate indicator of the overall performance 
of the classifier. This is due to the possibility of a simple accuracy can be skewed 
if the class distribution is also skewed. Van Ness et al. (2008) considered kappa 
more than 0.75 as excellent and between 0.4 to 0.75 to be fair to good, hence 
SVM, ANN and RF are excellent classifiers while ML is a good classifier per this 
study. 
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Overall accuracy is somewhat inadequate for summarizing the accuracy of 
LULC classification. This is because the overall accuracy generated from the ac-
curacy assessment is an average value that does not tell whether the error was 
evenly distributed across the LULC classes. Consequently, two other measures 
are often used, which are the producer’s accuracy and the user’s accuracy. Pro-
ducer’s accuracy indicates for a given class the proportion of the reference data 
that are classified correctly. User’s accuracy calculates for a given class how 
many pixels are actually what the classification claims they are (Rwanga & Ndam-
buki, 2017). From (Table 4) the overall accuracy for ML classifier is 78.51% with 
closed forest having 81.82% and 57.14% as PA and UA respectively. This means 
that 81.82% of the closed forest area has been identified correctly with 57.14% 
identified as truly closed forest from classification perspective. Using the ML 
classifier the highly reliable LULC class associated with this classification is the 
cocoa class from the producer’s accuracy and user’s accuracy viewpoint with PA 
(89.32%) and UA (88.04%). Similarly using RF, SVM and ANN classifiers, the 
classification was able to map the cocoa class very well based on the producer’s 
accuracy and user’s accuracy with the highest in SVM (94.66% and 92.86%) for 
PA and UA respectively.  

4. Discussion 

The major LULC in the study area is cocoa as obtain from all four (4) classifiers, 
with the highest area obtained for ANN (56.40%) and the least in RF (49.76%). 
After cocoa, closed forest is the next in terms of area coverage with the highest 
area occurring in ML (22.19%) and the least in RF (18.40%). Open forest follows 
with RF (18.65%) as the highest and SVM (16.97%) as the least in terms of area 
coverage in this LULC class. Other vegetation follows with RF (11.14%) as the 
highest with the least in ML (3.04%) as an area in this class. The smallest area is 
the settlement/bare surface LULC class with RF having the highest area (2.05%) 
and the least in SVM (1.73%).  

Support vector machine produced the highest overall accuracy and kappa of 
86.47%, 0.7902 respectively, followed by ANN (85.15%, 0.7700), RF (84.08%, 
0.7559) and the least is ML (78.51%, 0.6668). Support vector machine has the 
ability to handle minimal training data sets and usually produce higher classifi-
cation accuracy (Bouaziz et al., 2017). Khatami et al. (2016) revealed that SVM 
was the best among numerous classifiers, including random forest, neural net-
work and decision trees. 

Random forest and artificial neural network also performed very well and 
their performances are closed to that of SVM. Each decision tree is constructed 
with random forest using a subset of the features. This is favourable because 
each decision tree may make a precise classification determination that is based 
only on useful features and the decision trees perform voting to come out with 
the final classification (Tian et al., 2016). Artificial Neural Network performs 
supervised classification using small data and the ability to integrate multiple 
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types of data in the study, because there are no assumptions about the data used 
(Mas & Flores, 2008).  

Maximum likelihood classifier performance is fairly good, as it was able to se-
gregate closed forest, open forest, cocoa and settlement/bare surface LULC classes 
with some misclassification in the other vegetation class. The inability of ML to 
classify the other vegetation very well may be as a result of the mixed and com-
plex environment of the landscape. Parametric classifiers such as ML is not best 
suited for complex systems (Mishra, 2018).  

The classification results in a research earlier conducted by Benefoh et al. 
(2018) in the Krokosua Hills forest reserve catchment of Ghana using maximum 
likelihood method gave an overall accuracy of 82.6% and a kappa of 0.73. Also 
Ashiagbor et al. (2020) classification results in the Juaboso-Bia cocoa landscape 
of Ghana using sentinel-2 bands and its Vegetation Indices (VIs) with random 
forest classifier produced overall accuracy of 79.02% and kappa of 0.748. 

One drawback observed in this study is imbalanced classification, thus, where 
the training dataset is biased or skewed towards a class or classes. Imbalanced 
classifications present a challenge for predicting models because the majority of 
machine learning algorithms for classification were built on the premise that 
there should be an equal number of samples in each class. As a result, models 
perform poorly when making predictions, especially for the class with small train-
ing samples (Browniee, 2019). 

A total of 869 training samples were used for the classification, with closed 
forest class constituting 10.70%, open forest 12.20%, cocoa 58.45%, settlement 
9.67% and other vegetation 8.98%. From Figure 2, other vegetation class was not 
well represented and this is due to the small number of training samples used for 
the classification and cocoa class was visibly represented because more samples 
of cocoa was used. 

5. Conclusion and Recommendation 

This research has demonstrated the comparative ability of SVM, ANN, RF and 
ML classifiers to map the cocoa landscape of the Juaboso and Bia West districts 
of Ghana. Based on overall classification accuracy, kappa statistics, producer’s 
accuracy and user’s accuracy, SVM is the best among the four classifiers for map-
ping LULC categories of the study area. Hence SVM classifier map could be used 
as the final LULC map for the study area. Also classification accuracy of the 
SVM, ANN and RF methods were close to each other and higher than ML, 
which indicates that non-parametric algorithms like machine learning tech-
niques can deliver more precise results than parametric algorithm like maximum 
likelihood classifier. The reason is that, the method of the mapping function is 
not assumed by non-parametric classifiers. 

The final LULC map produced in this research provides useful information on 
the area used for cocoa farming in the study area with 53% of the total land mass 
under cocoa cultivation. The LULC map can be used to monitor cocoa driven 
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deforestation especially in the gazetted forest and game reserves. This map will 
also be very useful in the national forest monitoring framework for the REDD + 
cocoa landscape project in Ghana. 

It is recommended that, in future using machine learning algorithms to per-
form supervised image classification for complex ecosystems like the cocoa 
landscape of Ghana, the training samples to be used should be almost the same 
for each class in order minimize the problem of imbalanced classification. 
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