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Abstract 
Malaria, a febrile human disease transmitted by female anopheles whose ecol-
ogy is linked to water, is a major public health problem in Côte d’Ivoire, more 
precisely in the Marahoué region located in the southwest of the country. In 
order to effectively control this disease, it is necessary to understand the eti-
ology and the diffusion pattern of the vectors. This justifies this study, which 
proposes to determine the areas at risk of malaria transmission in order to 
carry out an effective fight against this disease in this region of Côte d’Ivoire. 
To achieve this, a combined approach of geographic information systems and 
multicriteria analysis was adopted. The analysis reveals that the south and 
northwest of the Marahoué region present a high risk for malaria transmis-
sion. This risk is linked to indicators such as climatic factors that cover 48.36% 
of the study area, environmental factors such as vegetation cover (NDVI), soil 
moisture (NDWI), altitude, hydrography (water point) and population that 
covers 55.29% of the area and land use. Also, the results indicated that 50.70% 
of the region has favorable conditions for malaria transmission. Overall, cli-
matic and environmental indicators are the risk factors associated with the 
resurgence of malaria. 
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1. Introduction 

Malaria is one of the major public health problems. According to the latest WHO 
report on malaria in the world, 241 million cases were reported in 2020 with 
627,000 deaths (WHO, 2021). The most affected region is sub-Saharan Africa 
with 96% of deaths, 80% of which are in children under five (WHO, 2021). Cli-
mate plays an important role in the dynamics and distribution of malaria (Gou-
ataine & Ymba, 2018; Fosah et al., 2022). Variations in climatic conditions, such 
as temperature, rainfall patterns, and humidity have a significant effect on vector 
life span, parasite development, and subsequently disease transmission (Dio-
mandé et al., 2017; Fosah et al., 2022; Zewga, 2021). Furthermore, the risk of 
transmission increases in a poorly maintained environment characterized by the 
proliferation of illegal dumpsites, the discharge of wastewater in the streets, and 
the presence of stagnant water after rainfall. Stagnant water provides potential 
breeding grounds for the malaria vector (Gramado et al., 2006; Gouataine & 
Ymba, 2018).  

Côte d’Ivoire is a malaria endemic country (Eholié et al., 2004; Konan et al., 
2009). More than 80% of general consultations in the Etablissements Sanitaires 
de Premiers Contacte (ESPC) are attributed to malaria (PNLP, 2005). The major 
vector in this country is Anopheles gambiae (PNLP, 2005). The Marahoué re-
gion, located in the central-western part of Côte d’Ivoire, presents favorable con-
ditions for the development of many species of mosquitoes (excessive dumping of 
household waste, collection of wastewater due to the failure of the sanitation 
system, presence of shallows and ponds on sunny surfaces with the presence of 
vegetation). Despite the efforts put in place by the country, with the National 
Malaria Control Program (PNLP) created in 1996 and the adaptation of the Na-
tional Strategic Plan (PSN) in 2016, this pathology remains endemic throughout 
the country with an incidence of 230‰ (PNS 2016-2020). In the Marahoué re-
gion, the incidence is 222.78‰ (RASS, 2018). This finding seems to indicate that 
the malaria control strategy does not exist sufficiently on the environmental 
health risk. This justifies this study whose objective is to determine the malaria 
risk areas for a more effective control of this disease in the Marahoué region of 
Côte d’Ivoire. The interest of this work is to provide results that will be used to 
solve health problems in which climatic and environmental factors intervene as 
factors favoring diseases and their vectors. Indeed, some tools such as mapping, 
remote sensing and geographic information systems are used to better target 
populations and areas at risk (Somé, 2010; Kotchi et al., 2019). Their studies re-
spectively (Oluwafemi et al., 2022; Kouame et al., 2017) used multi-criteria anal-
ysis modeling and Geographic Information Systems (GIS) to map areas at risk to 
the Yellow Fever epidemic in Nigeria and the Acute Respiratory Infection in Côte 
d’Ivoire. Thus, this approach is best suited for assessing environmental health risk 
by combining epidemiological, statistical, and Geographic Information Systems 
(GIS) methods (Beale et al., 2008; Zewga, 2021).  
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2. Study Area 

The Marahoué region is located in the central west of Côte d’Ivoire and straddles 
the forest zone and the savannah zone. This region includes three departments, 
Bouaflé, Sinfra and Zuénoula, and eleven (11) sub-prefectures, the largest of 
which are Bouaflé, Bonon, Gohitafla, Sinfra, Zaguiéta, and Zuénoula (Figure 1). 
According to the 2014 General Census of Population and Housing (RGPH), the 
population of the Marahoué region is estimated at 862,344 inhabitants, including 
409,683 for the department of Bouaflé, 238,015 for the department of Sinfra, and 
214,646 for the department of Zuénoula, with an average density of 94.57 hbts/km2. 
The climate is equatorial and transitional, with an annual rainfall of 1800 mm. 
The climate has four seasons: a long rainy season from mid-March to mid-July 
characterized by abundant and frequent rainfall, followed by the short dry sea-
son from mid-July to mid-September, characterized by a quantitative decrease in 
rainfall. The short rainy season from (mid-September to November) is characte-
rized by slow cumuliform cloud formations. The long dry season from Novem-
ber to mid-March is characterized by frequent morning fog. The Marahoué re-
gion is largely drained by the Marahoué River and Lake Kossou. 
 

 
Figure 1. Presentation of the study area. 
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3. Materials and Methods 
3.1. Materials 
3.1.1. Climatic Data 
The climatic data come from two sources made available to us by the National 
Meteorological Department, namely the Société d’Exploitation et de Développe-
ment Aéroportuaire, Aéronautique et Météorologique de Côte d’Ivoire (SODE- 
XAM). They concern rainfall, minimum temperatures (min), maximum tem-
peratures (max) and relative humidity. The first source concerns maximum and 
minimum temperature and relative humidity data from Daloa and Yamoussou-
kro, which are the closest synoptic stations to the region, as well as rainfall data 
from Bouaflé and Sinfra. The second source of rainfall, temperature and relative 
humidity data from the Zuénoula agro-climatic station was provided by the 
SUCAF sugar complex in Zuénoula. Thus, the study area is covered by a net-
work of three rainfall stations, two synoptic stations and one agro-climatological 
station with a study time window of 1980 to 2013. These data are estimated to 
assess the risk related to climatic factors. The characteristics of the stations are 
recorded in Table 1. 

3.1.2. Data  
These data are composed of Landsat7 ETM+ (Enhancement Thematic Mapper 
plus) images at 30 m spatial resolution, Scene 197/055 acquired on December 12, 
2003. These images were used to develop the land cover, vegetation index (NDVI) 
and soil moisture index (NDWI) maps. 

The Schuttle Radar Topography Mission (SRTM) 3 digital elevation model 
(DEM) with a resolution of 30 m was used to produce the elevation map and the 
hydrographic network map. These data are estimated to assess the risk from en-
vironmental factors. The characteristics of the ETM images are presented in Ta-
ble 2. 

3.1.3. Population Data 
The population data comes from the 2014 general population and housing cen-
sus. This is data on human populations of communes and villages in the Ivory 
Coast. For this study, we used estimated 2018 data provided by the Direction de  
 
Table 1. Climatological stations selected for the study. 

Name Station 
Latitude 

North 
Longitude 

West 
Altitude 

(m) 
Period 

Bouaflé Rainfall 9˚31 6˚28 421 1980-2013 

Sinfra Rainfall 9˚30 7˚34 434 1980-2013 

Zuénoula Rainfall 10˚29 6˚24 356 1980-2013 

Daloa Synoptic 6˚52 6˚28 276 1980-2013 

Zuénoula Agro-climatological 7˚25 6˚30 209 1980-2013 

Yamoussoukro Synoptic 6˚54 5˚21 196 1980-2013 
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Table 2. Spectral characteristics of Landsat7-ETM+. 

Sensors 
Spatial  

resolution 
Number 
of bands 

Path/Row 
Date of  

acquisition 
Producer 

L4-5TM 30 m × 30 m 8 197/55 22/12/2003 USGS 

LsoLi 30 m × 30 m 8 197/55 22/12/2003 USGS 

 
l’Information de la Planification et de l’Evaluation (DIPE). 

3.2. Tools  

The data processing required the use of the following software: 
ArcGis 10.2 for mapping risk areas using inverse distance weighted interpola-

tion (IDW); 
Envi 4.7 from RSI (Research System Incorporation) was used to process the 

acquired images and land cover. 

3.3. Methodology  

The mapping of areas at risk of malaria proliferation was done by the Multicrite-
ria Analysis of Saaty (1977). Mapping areas of potential malaria risk requires 
climatic, environmental, and land use data. These data are the factors that favor 
malaria transmission and the proliferation of malaria mosquito breeding sites 
(Guerra et al., 2008; Gething et al., 2011). Studies (Hay et al., 2009; Ferrão et al., 
2021) have used mean temperature sometimes with precipitation and/or humid-
ity to develop maps representing spatiotemporal variation in malaria transmis-
sion risk. The approach consists of classification and standardization of criteria, 
weighting of criteria and aggregation following the multi-criteria approach (Jour-
da et al., 2006; Koudou et al., 2013). 

3.3.1. Choice of Decision Criteria 
The criteria used to characterize potential malaria transmission risk areas include 
climatic factors such as rainfall, maximum and minimum temperatures, and rela-
tive humidity; environmental and/or ecological factors such as vegetation cover, 
soil moisture, altitude, standing water, garbage dumps, irrigated and drained 
areas, and densely populated areas. The female Anopheles mosquito vector pro-
liferates in an insoluble environment characterized by the presence of stagnant 
water, vegetation cover and garbage dumps. Rainfall is important because it fa-
vors the development of the vectors by providing them with suitable habitats to 
reproduce. After rainfall, the presence of stagnant water provides potential breed-
ing sites for the female Anopheles mosquito. Temperature is a key factor for 
many mosquitoes and for the life of the parasite in the mosquito. Thus, the fac-
tors favoring the risk of malaria transmission include three indicators: climatic 
vulnerability, environmental vulnerability and land use.  

1) Climate vulnerability 
The climatic vulnerability indicator reflects the set of climatic factors that fa-
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vor the presence of malaria. It results from the linear combination of the maps of 
precipitation, maximum and minimum temperature and relative humidity ob-
tained by the Inverse Distance Weigthing (IDW) interpolation technique of the 
ArcGIS.10.2 geostatitica analyst extension.  

2) Environmental vulnerability 
The environmental vulnerability indicator translates environmental and/or eco-

logical factors resulting from the linear combination of the vegetation index map 
(NDVI), soil moisture index (NDWI), altitude, distance to any water point (hy-
drography) and the population density map. It thus conditions the environmen-
tal factors that favor the development of germs and/or vectors. 

Vegetation index or Normalized Difference Vegetation Index (NDVI) and Soil 
Moisture Index or Normalized Difference Water Index (NDWI) maps are ob-
tained from Landsat ETM+ image processing by color composition using ENVI 
4.7 software. The study area was extracted by binary mask on a Landsat 7 scene. 
The vegetation index was determined by the “weighted difference” formula. If 
the vegetation cover is dense and chlorophyll active, the index tends towards 1. 
However, when the index is low, the less vegetation there is. The formula for 
calculating this index is: 

PIR RNDVI
PIR R

−
=

+
                        (1) 

With PIR the near infrared and R the Red. In the case of the Landsat ETM+ 
images that we used, the PIR corresponds to the ETM+3 band and R to the 
ETM+4 band. In addition, the soil moisture index is obtained by the following 
formula 

TM4 TM5 PIR MIRNDWI
TM4 TM5 PIR MIR

− −
= =

+ +
               (2) 

Hydrography and elevation are obtained from the Schuttle Radar Topography 
Mission (SRTM3) Digital Elevation Model (DEM) and the population density 
map is obtained by the Inverse Distance Weigthing (IDW) interpolation method, 
from the ArcGIS.10 geostatitica analyst extension. Population density values re-
sult from the ratio of population to area of each locality in the region. 

3) Land use 
Like vegetation and soil moisture, land cover is obtained from Landsat ETM+ 

image processing by color compositing on ENVI 4.7. The extraction of the study 
area is performed by binary mask on a Landsat 7 scene. The colored composi-
tion consists in displaying simultaneously on the screen three image bands in the 
basic channels (Red/Green/Blue) and facilitates the extraction of information. In 
this study, the color composition of Landsat EM and ETM+ bands 7-5-6 was 
used because it presents the best land cover type discrimination. 

3.3.2. Classifications and Standardization of Decision Criteria 
The identified decision criteria were subdivided into different classes representing 
either a particular environment or a confidence interval. Two classes labeled low 
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and high risk were retained for each criterion for better interpretation (Kouamé 
et al., 2011). Subsequently, the different classes for each criterion were standar-
dized according to their particular influence on the disease. These classes were 
coded (numerical coding). The results of the combinations of the two classes of 
the different factors are also grouped into two classes ranging from low to high 
risk. The different criteria are then combined into indicators. These are in turn 
“divided” into two classes (low risk and high risk) and coded. It is ultimately the 
combination of the indicators that gives the overall malaria risk maps. The classes 
obtained for each of the criteria, and the codes assigned to them, are shown in 
Table 3. 

3.3.3. Weighting of Criteria 
The decision criteria are weighted according to the linear combination method 
based on the pairwise comparison technique according to the Analytic Hierarchy 
Process (AHP) of Saaty (1977). It is developed by Meyer-Waarden, L. & Zeitoun, 
H. (2005) and used by Koudou et al. (2013) and Yao et al. (2014). This method 
generates standardized weights whose sum is equal to 1. It first consists of a bi-
nary comparison of the relative importance of all elements belonging to the 
same hierarchical level with respect to the element of the next higher level ac-
cording to the numerical scale proposed by Saaty (Table 4). Then, set up a reci-
procal square matrix formed by the evaluations of the ratios of the weights (K × 
K), K being the number of elements compared. In this way we obtain: 
 
Table 3. Classification and standardization of decision criteria. 

Criteria Parameters Values Ribs Classes 

Plant cover ndvi <−0.02 and >0.41 1 low risk 

  
from −0.02 to 0.41 2 high risk 

soil moisture ndwi <−0.2 and >0.94 1 low risk 

  
from −0.2 to 0.94 2 high risk 

Hydrography distance at any point >1.5 km 1 low risk 

  
<1.5 km 2 high risk 

relief altitude >137 m 1 low risk 

  
<137 m 2 high risk 

Population population density <98.08 1 low risk 

  
>98.09 2 high risk 

precipitation Annual rainfall <1174 and >1275 1 low risk 

  
1174 à 1275 2 high risk 

Temperature Temperature value <20.8 and >32.30 1 low risk 

  
20.8 à 32.30 2 high risk 

Relative humidity Humidity level >78.06 1 low risk 

  
<78.06 2 high risk 

https://doi.org/10.4236/gep.2022.106015


A. P. Gouzile et al. 
 

 

DOI: 10.4236/gep.2022.106015 241 Journal of Geoscience and Environment Protection 
 

Table 4. Verbal and numerical expression of the relative importance of criteria (El Morjani, 
2003). 

Expression of one criterion in relation to another Note 

Same importance 1 

Moderately important 3 

Highly important 5 

Very important 7 

Extremely important 9 

Extremely less important 1/3 

Significantly less important 1/5 

Less important 1/7 

Extremely less important 1/9 

 

1
ji

ij

a
a

=                             (3) 

With ija a=  and 1ija =  (reciprocal value) where a is the value of each fac-
tor i and j are the rows and columns respectively (Saaty, 1977). Finally, the linear 
combination method is used to determine the weights of each criterion by the 
approximate method of computing eigenvectors (Vpi). The eigenvectors are ob-
tained by calculating their geometric means per row. The Vpi is determined by 
the following formula: 

1
nn

i iiV N
=

ρ = ∏                         (4) 

1

i
i n

ii

V
W

V
=

ρ
=

ρ∑
                         (5) 

With: iVρ  eigenvector of each criterion, Ni value of each criterion. The 
weighting coefficient Wi is determined as follows  

The binary comparison matrix and criteria weights for each criterion and for 
the three indicators are reported in Table 5. 

3.3.4. Evaluation of the Decision Criteria 
Various methods are applied for the evaluation of decision criteria in multicrite-
ria analysis. In this study, to evaluate the decision criteria, the full aggregation 
method by weighting used by Joperin (1995) and Saley (2003) was implemented. 
It consists of multiplying each criterion or indicator by its weighting coefficient 
and then adding the results to produce a fitness index according to the following 
equation: 

1
n

i iiS w x
=

= ∑                          (6) 

With: S the final result; Wi: the weight of the criteria i; Xi; standardized value 
of the criterion i. 

This method was used for the climate vulnerability and environmental indicators.  
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Table 5. Weighting of risk factors for malaria. 

Parameters Eigenvector (EV) 
Coefficient of weighting 

(CP) 

Rain 2.6 0.51 

Maximum temperature 1.3 0.26 

Minimum temperature 0.4 0.08 

Relative humidity 0.8 0.15 

Climatic factors 2.47 0.64 

NDWI 2.67 0.43 

NDVI 1.55 0.25 

Population 0.64 0.10 

Altitude 0.37 0.06 

Distance to water sources 1 0.16 

Environmental factors 1 0.26 

Land use 0.41 0.10 

 
The realization of the “malaria risk” map consists in transferring in space the 
different values resulting from the addition of the standardized and weighted 
values of each indicator added to the land use. A reclassification of the factors 
allowed the realization of thematic maps with two classes expressed in risk, namely 
low risk and high risk. The number of classes is fixed at two for a better readabil-
ity and a good interpretation of the map.  

3.3.5. Map Validation Method 
The validation of the maps consists in the analysis of the uncertainty and error 
of the maps. The analysis consists of calculating the uncertainties of the average 
of the different parameters of the main indicators of power and vulnerability. 
The uncertainty is calculated by the following equation: 

X
m
σ

∆ =                              (7) 

With: Δx: the uncertainty of the mean of the data series; σ: the standard devia-
tion of the data series; m: the number of data. 

To determine the confidence interval, an expansion factor (K) is then calcu-
lated. The determination of this factor is based on the principle of statistical cal-
culation of the expanded uncertainty. The K factor allows the definition of an 
interval of sufficient range to have a high confidence in the results. The expres-
sion of this factor is as follows: 

E X
K

−
=

σ
                            (8) 

With: K: expansion factor; E: extreme value of the statistical series. It can be 
the maximum or minimum of the series; σ: standard deviation of the series. 
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The confidence level of the different parameters was deduced from the differ-
ent values of K. Thus, K = 1 for the 68% confidence level, K = 2 for the 95% con-
fidence level, and K = 3 for the 99% confidence level (Yao et al., 2014).  

4. Results  
4.1. Land Use 

The land use map shows five landscape classes, which are dense forest, degraded 
forest, crops (fallow), water, and bare soil and habitats. The main classes are 
dense forest, degraded forest and crops/fallow. Dense forest appears as a support 
in which the other classes are embedded. 

The dense forest is observed practically throughout the study area at various 
points. However, it is more present in the west of the study area, precisely at the 
level of the park of Marahoué. It occupies 44.8% of the total area. Degraded for-
est, crops and fallow land, bare soil and water occupy 22.7%, 22.90%, 9.1% and 
0.5% of the total area, respectively (Figure 2). This dense forest has practically 
disappeared due to various human activities. These include deforestation for 
agriculture (presence of crops/fallow) and land use planning with the progress of 
urbanization through the policy of decentralization. This disappearance of the 
forest could also be due to the decrease in rainfall in this region. In the southern 
part of the region, the presence of degraded forest is noted.  

4.2. Malaria Risk Related to Climatic Factors 

The malaria risk according to climatic factors is represented in Figure 3. The  
 

 
Figure 2. Land use map of the Marahoué region. 

https://doi.org/10.4236/gep.2022.106015


A. P. Gouzile et al. 
 

 

DOI: 10.4236/gep.2022.106015 244 Journal of Geoscience and Environment Protection 
 

 
Figure 3. Malaria risk map related to climatic factors. 
 
analysis of the map shows two classes: 
- The low risk class is located in the north and central-east of the study area and 

is characterized by low rainfall of less than 1152 mm, very high maximum 
temperatures (35˚C) and high relative humidity (>60%). This risk represents 
51.64% of the total area and occupies almost all of the Zuénoula health dis-
trict and part of the Bouaflé district. These temperatures limit the sporogonic 
development of plasmodium falciparum in the mosquito and therefore do 
not favor malaria transmission. 

- The high risk class covers 48.36% of the total area of the study area. This zone 
extends from the extreme northwest through the central west of the region to 
the south. It also affects the Marahoué National Park and is characterized by 
abundant rainfall, high maximum temperatures (30˚C) and very high relative 
humidity (>75%). This risk is limited to the Sinfra health district and certain 
localities in Bouaflé and Zuénoula. Rainfall favors the presence of watering 
holes and perennial ponds, which constitute mosquito breeding grounds. The 
temperature favors the reproduction of the vector. These factors present fa-
vorable conditions for the proliferation of the vector, the maturity of the pa-
rasite and the transmission of the disease.  

4.3. Malaria Risk Related to Environmental and/or  
Ecological Factors  

The risk due to environmental factors reflects the vulnerability of malaria due to 
variables such as vegetation cover, soil moisture, distance to water points (hy-
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drology), altitude and population density. Mosquitoes, the vectors of malaria, 
and Plasmodium falciparum thrive in these factors. Figure 4 presents the mala-
ria risk map according to environmental and/or ecological parameters. This map 
is identified in two classes of degree of risk. 
- The low risk class is located in the north of the region and in certain localities 

of Bouaflé (Tibiéta, Bouafla.). It covers 44.71% of the region and is characte-
rized by a degradation of the vegetation cover, a low soil moisture level due 
to low rainfall, and high altitudes. These factors reflect the low transmission 
of the disease. However, some endemic areas (Zuénoula) can be detected be-
cause of environmental conditions characterized by the presence of domestic 
wastewater due to the failure of the sanitation network (lack of proper pip-
ing), and household waste deposits (Photo 1). 

- High risk covers more than half of the region (55.29%) and is located in the 
south of the region, specifically in the departments of Sinfra and Bouaflé, in 
the area of the Marahoué National Park and near Lake Kossou. This area is 
characterized by the presence of water points, low altitudes and a high popu-
lation density. The vegetation cover is dense, resulting in soil moisture. This 
zone is characterized by the presence of large cities in the region and is con-
fronted with a sanitation problem with the presence of garbage dumping at 
every turn (Photo 1). 

4.4. Global Malaria Risk Mapping  

The overall malaria risk map is derived from the linear combination of the climate, 
environmental, and land use risk maps according to their respective weights 
(Figure 5).  
 

 
Figure 4. Malaria risk map by environmental factors. 
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Photo 1. Proliferation area of the Anopheles vector of malaria in the Marahoué region (a) 
Wastewater (b) Household garbage dump and (c) Puddle. 
 

 
Figure 5. Global malaria risk map. 
 

Observation of the map shows that the southern and northwestern parts of the 
region are more vulnerable to malaria transmission with a high risk level of 
50.70%. Located in the pre-forest part of the region, these areas are characterized 
by abundant rainfall favoring the presence of stagnant water points which con-
stitute the places of proliferation of the mosquito, temperatures between 21 and 
30˚C leading to the virulence, aggressiveness and infestivity of the vector (the 
mosquito) of malaria and the presence of vegetation and water points leading to  
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Table 6. Statistics of risk factor assessment criteria. 

Parameters max min average 
Standard 
deviation 

Total Uncertainty K NC 

Land use 5 1 4.07 1.32 21,760,440 0.0003 1 68 

Climate sensitivity 4.35 2.52 3.2 0.48 39,716 0.002 2 95 

Ecological sensitivity 4.8 1 3.02 0.79 41,063 0.004 2 95 

Malaria risk map 5 1 2.96 1.1 39,519 0.006 2 95 

 
high soil moisture. It is a swampy area with the presence of rice-growing low-
lands due to the dense hydrographic network.  

The low risk class covers 49.03% and occupies the north (Zuénoula health dis-
trict), the center (Tibiéta, Bouafla, Angovia, Gbégbéssou, etc.), the rainfall in this 
zone is low and the temperatures are high (35˚C). 

4.5. Validation of Risk Maps 

Validation of the thematic maps was done by statistical analysis of the error or 
uncertainty associated with each map (Table 6). The uncertainties calculated on 
the malaria risk assessment factors vary from 0.002 to 0.006. Overall, the errors 
in the construction of these maps are minimal. The confidence level of the dif-
ferent malaria risk maps is significant (95%). 

For the land use map, the uncertainty is 0.0003 or 3E−4 with a confidence in-
terval of 68% which means that the land use map is not a good approximation of 
the areas at risk of these diseases. 

5. Discussion 

The use of Geographic Information Systems (GIS) and multi-criteria analysis in 
the Marahoué region resulted in the production of a climatic risk map, an envi-
ronmental risk map and a land use map. The linear combination of these maps 
allowed the identification of potential malaria risk sites in this region in order to 
predict malaria infection and conduct effective malaria control.  

The map of malaria risk due to climatic factors has a high risk of 48.36% to 
predict malaria in the Marahoué region. This risk is higher in the south, west, 
and northwest of the region. The south and west are characterized by abundant 
rainfall, temperatures ranging from 21˚C to 31.5˚C, and very high humidity 
(>75%). This result shows that heavy rainfall seems to predict malaria risk. Ac-
cording to Craig et al. (1999) a minimum of 80 mm of rainfall over a consecutive 
four-month period with average temperatures is essential for malaria transmis-
sion. Heavy rainfall results in the formation of temporary or permanent pools 
and puddles that are breeding grounds for mosquito larvae and abundant vector 
populations. According to Zhao et al. (2020), a weekly rainfall of more than 10 
mm leads to the development of mosquitoes. The high humidity associated with 
it, favors mosquito survival (Gouataine & Ymba, 2018). Rainfall affects mosquito 
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dynamics (Ndiaye et al., 2006) and increases the daily entomological inoculation 
rate of the vector (Dolo et al., 2003). They account for 60% of malaria anomalies 
(Niangaly, 2009). The risk due to environmental or ecological factors is domi-
nated by a high degree of risk. This environmental risk is more marked in the 
south of the region and covers 55.29% of the area. This high risk is due to the 
high chlorophyll density (NDVI), high soil moisture (NDWI) reflecting the 
presence of swampy areas, low altitudes and the presence of water points. This 
result shows that NDVI, NDWI, altitude and water points predict malaria risk. 
This result confirms the work of Ferrão et al. (2021) carried out in the village of 
Sussundenga in Mozambique which states that human modified landscapes are 
conducive to malaria vectors. This result is very important because it shows that 
the Tasselrd-cap transformation generally used to study phenomena related to 
the environment is a technique that can be used in epidemiology. Studies by 
Martiny et al. (2012) in Bancoumana (Mali) have shown that NDVI can be used 
as an indicator of rainfall when rainfall data are lacking. Malaria transmission is 
accelerated, when the NDVI value exceeds the threshold of 0.36. These studies 
show that there is a 15-day lag between the increase in NDVI and the increase in 
malaria incidence, which is explained by the duration of the development of 
Anopheles larvae. With respect to altitude, the results show that this parameter 
influences the risk of malaria (Sahondra et al., 2001). Water points and market 
gardening areas maintain moisture for vector survival and transmission even in 
dry season (Martiny et al., 2012; Ferrão et al., 2021). This risk could be due to 
land use types (Ferrão et al., 2021). Indeed, the land use map shows that more 
than half of the region is occupied by crops and fallow. The southern part of the 
region, identified as a high-risk area, is dominated by food crops such as rice 
cultivation in the lowlands. These crops influence the distribution of malaria and 
therefore constitute risk factors (Dossou-Yovo et al., 1998). The annual cycle of 
vector abundance is linked to the variation in rainfall patterns and rice cultiva-
tion phases (Ravoahangimalala et al., 2003). And the density of vector aggres-
siveness is very high after the pricking of young rice shoots (Dossou-Yovo et al., 
1998). Rainfall, relative humidity, temperatures (min and max), elevation, NDVI, 
NDWI, population density, land use, and distance to permanent water points are 
significant variables in predicting malaria risk (Dansou & Odoulami, 2015; 
Ferrão et al., 2021; Zewga, 2021). This method prioritizes malaria control based 
on climate, remote sensing, and mapping data. The distribution of the study area 
showed that 50.70% of the total area belongs to the high risk class and 49.03% to 
low risk. This indicates that the Marahoué region appears to be endemic for ma-
laria. The calculation of uncertainties and confidence level shows that the pro-
posed model for malaria prediction classifies well the risk areas with a good ac-
curacy. The uncertainties are low and the confidence level of 95% gives a high 
reliability of the maps and allows the model to be used validly. These low uncer-
tainties could be due to the fact that these parameters come from sources that 
have already been validated and are therefore more reliable. The climatic and 
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environmental data (remote sensing data) introduced in the GIS allowed the 
prioritization of malaria risk areas.  

6. Conclusion 

Modelling using the multi-criteria analysis combination method was used to es-
tablish malaria risk maps, identified in two classes: the low risk class and the 
high risk class. The approach adopted in this work uses both climatic and envi-
ronmental data. This approach has many advantages as it has contributed to the 
identification of malaria vulnerable areas for malaria prediction and rational de-
cision making. However, these methods have limitations because the estimation 
of the parameters often lacks precision due to insufficient or completely missing 
data in some parts of the study area. Thus, sufficient data (health, climatic and 
environmental) should be available for the entire region to better determine all 
the risk factors for the spread of malaria in the region. Also, this methodological 
approach and the tools could be used at the national level for an effective fight 
against this pathology throughout the country. GIS remains an invaluable con-
tribution to human health management. 
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