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Abstract 
The Multilayer Perceptron Neural Network (MLPNN) induction technique 
has been successfully applied to a variety of machine learning tasks, including 
the extraction and classification of image features. However, not much has 
been done in the application of MLPNN on images obtained by remote sens-
ing. In this article, two automatic classification systems used in image feature 
extraction and classification from remote sensing data are presented. The first 
is a combination of two models: a MLPNN induction technique, integrated 
under ENVI (Environment for Visualizing Images) platform for classifica-
tion, and a pre-processing model including dark subtraction for the calibra-
tion of the image, the Principal Components Analysis (PCA) for band selec-
tions and Independent Components Analysis (ICA) as blind source separator 
for feature extraction of the Landsat image. The second classification system 
is a MLPNN induction technique based on the Keras platform. In this case, 
there was no need for pre-processing model. Experimental results show the 
two classification systems to outperform other typical feature extraction and 
classification methods in terms of accuracy for some lithological classes in-
cluding Granite1 class with the highest class accuracies of 96.69% and 92.69% 
for the first and second classification system respectively. Meanwhile, the two 
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classification systems perform almost equally with the overall accuracies of 
53.01% and 49.98% for the first and second models respectively though the 
keras model has the advantage of not integrating the pre-processing model, 
hence increasing its efficiency. The application of these two systems to the 
study area resulted in the generation of an updated geological mapping with 
six lithological classes detected including the Gneiss, the Micaschist, the Sch-
ist and three versions of Granites (Granite1, Granite2 and Granite3). 
 

Keywords 
Neural Network, Multilayer Perceptron, Principal Components Analysis,  
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1. Introduction 

The Geological map represents one of the most important sources of informa-
tion required before any exploration project is carried out. It is a highly inter-
pretative, scientific process that can enable production of a map representing the 
distribution of rocks found in a given area. The application of the remote sens-
ing technique to enable the description, classification and boundaries of surficial 
features of an area is mapping the lithology (Amusuk et al., 2016). Lithological 
mapping enables the discovery of lithological discontinuities existing between 
two or many rock types and therefore sometimes represents the manifestation of 
non-renewable resources found inside the earth (Njoku, 2014). One way of 
mapping geological structures is through remote sensing image classification, 
data analysis technique that can be used to define and/or recognize classes or 
groups of features or members that have certain characteristics in common (Al-
malki et al., 2017). The classification process is carried out thanks to the machine 
learning algorithms for multi-class discrimination. 

However, classifying remote scenes according to a set of semantic categories is 
a very challenging problem, because of high intra-class variability and low inter-
class distance (Luo et al., 2018). The confusion of classes is always present dur-
ing the classification process due to the heterogeneity and the overlapping of 
spectra of the constituents of the natural environment. The geographical infor-
mation system software which is not always free of charge provides computer 
environments integrating machine learning approaches but in general, they do 
not enable the flexibility of code customization and integration. In addition, tra-
ditional mapping methods, one way of mapping geological structures, are based 
on interpretation of air photos requiring expert knowledge and experience. In-
terpretation is subjective, labour-intensive and difficult to repeat, while expert 
knowledge can be challenging to maintain and transfer (Latifoc et al., 2018). In 
the last few decades, the tasks of remote sensing image classification have been 
of great concern. In this wise, different induction techniques have been proposed 
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and generally, these techniques include the pre-processing, feature extraction 
and classification steps. These techniques extremely vary in their theoretical ap-
proaches to the problem, validation of results and the amount of data analyzed. 

Furthermore, fieldwork in remote and heterogeneous regions like Cameroon’s 
Centre, South and East regions where the presence of forest is covering the few 
rock outcrops is costly and logistically challenging. It is hoped that if a suitable 
neural network classification system could be designed, it may alleviate some of 
the above-mentioned difficulties and pave the way to proposing valid lithological 
maps of an area. 

The objective of this research is to update the lithological map of some areas 
of Cameroon’s Centre, South and East Regions which are having as a common 
feature, of being heterogeneous environments. This was achieved by accurately 
classifying dominant lithological classes from multispectral satellite images of 
this forest zone with the use of two developed neural network multi-class classi-
fication systems. Initially the ENVI sub setting tool is applied on the Landsat 
multispectral image for the selection of the study area. With this first classifica-
tion system, the Dark subtraction algorithm is applied to the study area for im-
age corrections, the PCA and the ICA techniques are used for band selections 
and feature extractions respectively. The MLPNN is finally used for training, 
classification and validation of the model. In the second classification system, a 
MLPNN is designed using the Keras platform, and is used for feature extrac-
tions, training and classification. Results obtained in the study area show re-
markable improvement with regards to accuracy, an indication that it could also 
work very well in other areas with similar environmental characteristics. 

2. Some Review 

Satellite remote-sensing data and advances in digital image processing (DIP) 
techniques provided a new impulse to the development of lithological mapping 
(Imane et al., 2019). Spectral data from space and airborne sensors were widely 
applied to geological mapping, including lithological discrimination (Ninomiya 
et al., 2005), structural mapping (Raharimahefa & Kusky, 2009), hydrothermal 
alteration (Zhang et al., 2016), and economic mineral deposits (Cardoso-Fernandes 
et al., 2019). Recently, many advanced classification approaches including artifi-
cial neural network, Fuzzy logic and expert systems have been used for remote 
sensing image classifications. (Trepanier, 2005) proposed an approach based on 
the supervised classification that uses a MPLNN for binary classification to 
detect basalt. (Brandmeier & Chen, 2019) worked on lithological classification 
using multi-sensor data and convolutional neural network (CNN) and proposed 
a deep learning model used in conjunction with ArcGIS to implement a CNN 
for lithological mapping in the Mount Isa Region of Australia. Results highlight 
the power of using sentinel-2B in conjunction with ASTER data with accuracies 
of 75% in comparison to only 70% and 73% for ASTER or Sentinel-2 data alone 
(Brandmeier & Chen, 2019). However, the joint use of radiometric data was 
problematic, possibly due to the different spatial resolution. 
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(Ge et al., 2018), worked on lithological classification using remote sensing 
data in the Shibanjing Ophiolite Complex in Inner Mongolite, China. In their 
work, a multi-layer feed-forward ANN (Artificial Neural Network) method was 
employed with the Landsat OLI DEM dataset for lithological classification using 
SAGA GIS 6.3.0 software. A logistic function of the logarithmic function was 
used to configure ANN. An accuracy of 74.5% was obtained. 

(Latifoc et al., 2018), worked on assessment of convolutional neural networks 
for surficial geology mapping in the South Rae geological region, Northwest 
Territories, Canada. The research was aimed at assessing the potential of deep 
neural networks to aid surficial geology mapping by providing an objective sur-
ficial materials initial layer that experts can modify to speed map development 
and improve consistency between mapped areas. The evaluation of the CNN was 
carried out using aerial photos, Landsat reflectance and high-resolution digital 
elevation data over five areas within the South Rae geological region of North-
west Territories, Canada. The CNN generated an average accuracy of 76% when 
locally trained (Latifoc et al., 2018). Novelty and originality of their study came 
not only from classifying different types of rocks, but also from employed mul-
ti-sources data, computational methodology as well as comparing different me-
thodologies of such type, based on their accuracy and other classifier metrics. 

The architecture is important to achieve top performance, but, like most ma-
chine learning algorithms, the quality of the input data is generally more critical 
than the specific algorithm used (Latifoc et al., 2018). (Imane et al., 2019), 
worked on a supervised classification method considering SVM (Support Vector 
Machine) for lithological mapping in the region of Souk Arbaa Sahel belonging 
to the Sidi Ifni inlier, located in southern Morocco (Western Anti-Atlas). The 
aims of their study were firstly to refine the existing lithological map of this re-
gion, and secondly to evaluate and study the performance of the SVM approach 
by using combined spectral features of Landsat 8 OLI (Operational Land Im-
ager) with digital elevation model (DEM) geomorphometric attributes of 
ALOS/PALSAR data. They performed a SVM classification method to allow the 
joint use of geomorphometric features and multispectral data of Landsat 8 OLI 
and results indicated an overall classification accuracy of 85%. The SVM and 
ANN were not able to detect a large quartz vein because of several factors in-
cluding vegetation cover, atmospheric effects, heterogeneity of the chemical and 
mineralogical composition of the rock at the sub-pixel level, spectral and spatial 
resolution of the image, and soil presence (Imane et al., 2019). All these factors 
affect the spectral responses of the lithological units even after rigorous 
pre-processing tasks. The set of samples is also an important factor affecting the 
accuracy of the classification. The selection of training samples through the geo-
logical map of the visual interpretation had some uncertainty. Moreover, the test 
samples were selected randomly; thus, the sample from the same geographical 
location could correspond to diverse classification results (Imane et al., 2019). 

In general, compared to other studies on lithological classification using ar-
tificial neural networks, our system achieves high performances in some litho-
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logical classes even though the overall accuracy is still relatively low compared to 
the state of art results. These discrepancies in results motivated the design of this 
research which is aimed at classifying accurately dominant rock types from mul-
tispectral satellite images of a forest zone by constructing two neural network 
multi-class classifications that can be used to update the lithological maps of 
some areas in Cameroon. The advantage of the proposed system whose 
workflow is illustrated in Figure 1 is that it can be used for lithological mul-
ti-class classification problems applied in the forest zone since highly discrimin-
ative features are selected and high performances are obtained for some classes. 

3. Materials and Methods 

A presentation and description of the study area, materials and the overall me-
thodology used to develop the two MLPNN classification systems is given in this 
section. The first proposed MLPNN classification system as depicted in Figure 
1, applies the Dark subtraction for image corrections at the first instance and the 
next step dealing with dimension reduction, band selection and feature extrac-
tions was done thanks to the PCA and the ICA. The features extracted are then 
fed as inputs to the multi-class classifier implementing the MLPNN induction 
technique. Thus the seven bands of the multispectral sensor are fed directly to 
the MLPNN for training and classification. 

3.1. Study Area 

Cameroon is located in the Central African forest zone between longitude 
12.354722 (12˚00'E) and latitude 7.369722 (6˚00'N), but the area of interest is 
between Yaoundé (Latitude = 03˚52'N & Longitude = 11˚32'E), Ebolowa (Lati-
tude = 04˚00'N & Longitude = 13˚08'E) and Abong-mbang (Latitude = 02˚55'N 
& Longitude = 11˚10'E). The latitude of this country suggests its position in the 
northern hemisphere. The rocks of the study area are enriched with variety of 
mineral resources: these include the gneiss found around Yaoundé, the schists 
found along the Nyong river of Mbalmayo, the granites found toward the Sang-
melima, Ebolowa and Abong-mbang zones and mica-schists found around Me-
tet according to the existing geological map as shown in Figure 2. The climate 
condition in Cameroon alters with altitude and locations. In the study area, the 
weather is generally sultry and humid and this favours the presence of forest  
 

 

Figure 1. General architecture of the first classification system. 
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Figure 2. Geological map of the study area. 
 
covering the few outcrops of the area. However, the impact of human activities 
due to the various constructions and agriculture are progressively creating hete-
rogeneous environment where multiple transitions between forest and buildings 
are most often found.  

The study area as described by (Assembe et al., 2020), is located within the 
densely vegetated Southern Cameroon, a region dominated by a thick lateritic 
soil making it difficult to find outcrops. Generally, north to south, the lithology 
is regrouping into two domains, the Central Africa Fold Belt and the Ntem com-
plex as shown in the (a) part of Figure 2 (Top left hand side). 

3.2. Database Description 

The database used in this research consists of seven bands of the OLI multispec-
tral sensor captured by the NASA on the 12th of January 2015 at 9:27 am. The 
image was captured at 705 km of altitude with a spatial resolution of 30 m. 
Thanks to the flexibility of the OLI sensor, the spectral bands range from 0.443 
µm to 2.201 µm wavelengths. The result is therefore an image of 185 km of 
length over 50 km of width. This area is covering dense forest, urban area, agri-
culture and industrial zones. The study area is extracted from this large image 
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called LC81850582015012LGN01 of 7731 × 7591 × 7 using the ENVI Sub setting 
tool to obtain an image of 2803 × 3894 × 7. Figure 3(a) displays the original 
image from the study area while Figure 3(b) shows the final input image. 

3.3. The ENVI Software Architecture 
3.3.1. Pre-Processing Model 
Remote sensing images always contain imperfections due mostly to the hetero-
geneity of the study area where the few outcrops are covered by the vegetation. 
In addition, the alteration of minerals due to weather conditions and the mixture 
of many signals due to the spatial resolution of the image since it is very difficult 
to see some homogenous areas of 30 m resolution, are factors which can signifi-
cantly impact the quality of the image. For these reasons, it is advisable to per-
form some corrections before running any classification task. Initially we have a 
Landsat image of eleven spectral bands but the first seven were selected because 
they have the same spatial resolution. Radiometric corrections and the suppres-
sion of black pixels were carried out. 

3.3.2. Bands Selection 
For dimensional reduction and band selection, we used the PCA technique. The 
PCA technique enables us to transform correlated variables into new non-correlated 
variables. These new variables are called Principal Components. The optimiza-
tion here passes through the selection of the first, second and third principal 
components out of the 7 bands. The ICA is considered as a blind source in order 
to select discriminate features and reduce the number of mixed pixels present in 
the study area. The ICA was also used to select spectral bands less noisy. Com-
ponents 3, 4, 5 and 6 out of 7 components generated by the ICA were selected. 
Finally, the bands 6 and 7 were selected for practical reasons since they signifi-
cantly increase the accuracy of the classifier. In fact, combining band 6 and 7 to-
gether increases the global accuracy of the classifier while any other combination 
drops it. All these components were stacked in order to obtain a final total of 
input features of 9. 
 

  
(a)                                       (b) 

Figure 3. (a) Original image from the study area; (b) pre-processed study area. 
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3.3.3. Configuring and Training the Classifier 
The configuration of a MLPNN is done using trial and error method since a 
proper and well known automated method of doing it does not yet exist. In this 
research, our MLPNN is made up of three layers: the first layer or input layer 
contains 9 neurons to receive the 9 inputs bands selected, the third layer also 
called output layer contains 6 neurones representing the six lithological classes 
of the study area and finally the hidden layer is configured by the ENVI plat-
form. The Logistic activation function was used for the entire network. Figure 4 
displays the MLPNN with three layers. 

3.3.4. Classification 
After the training of the MLPNN, thanks for the gradient descent algorithm, the 
classification process is carried out to generate a lithological map with six classes 
representing the various rock types found in the study area. A confusion matrix 
is presented to measure the ability of the classifier in detecting rock types glo-
bally found in the study area. The algorithm used for training is given as follows: 
 

 

3.4. The Architecture on the Keras Platform 

The second classification system is implemented using the Keras platform. The 
same database used in the first classification system was used here, but no 
pre-processing operation was done. The Keras platform is a toolbox of machine 
learning algorithms including MLPNN for training and classification. Keras has  
 

 

Figure 4. Representation of a MLPNN for the classification of C classes. 
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the flexibility for code customization. As such personal neural network archi-
tecture can be designed from scratch by creating the various layers, fixing the 
number of neurones in each layer including the hidden layers and one can vary 
the activation functions from one layer to the next. For the conversion of the 
database into a proper file format supported by the Keras platform, the Orfeo 
Tool Box (OTB) library which has the flexibility to provide multiples image 
processing functions as well as image manipulations tasks was used.  

3.4.1. Implementation of the Second MPLNN Using Keras Platform 
The MLPNN in the second classification system differs from the first classifica-
tion system architecture in that; there are 9 layers instead of three layers as in 
ENVI. These nine layers are organised into one input layer with seven neurones, 
one output layer with six neurones and seven hidden layers with a total of 64 
neurones. The logistic activation function was used as a transition from the first 
hidden layer to the second hidden layer while the Softmax function was used at 
the ninth layer also called output layer. The hyperbolic tangent and the logistic 
function were used for the various transitions between the intermediates layers. 
Table 1 below clearly described the proposed network configuration. To train 
the MLPNN, a database was designed using the OTB library as described earlier. 
Each region of interest (ROI) is a window of 100 × 100 pixels (10,000) pixels. A 
total of 40,000 pixels is used for training the MLPNN.  

The threshold value of the above model in Figure 5 represents the percentage 
of all the pixels correctly classified in each lithological class. This hyper parame-
ter is fixed as one of the stopping criteria to end the training process of the mod-
el and depends on the user but should be at least greater or equals to 50%. 
 

 

Figure 5. General architecture of the second classification system. 

https://doi.org/10.4236/gep.2021.96007


C. G. A. Otele et al. 
 

 

DOI: 10.4236/gep.2021.96007 129 Journal of Geoscience and Environment Protection 
 

Table 1. Description of the network architecture. 

Layer type Number of neurones Type of activation 

Input 7  

Hidden (1) 10 Logistics 

Hidden (2) 8 Tanh 

Hidden (3) 10 Tanh 

Hidden (4) 8 Logistics 

Hidden (5) 8 Logistics 

Hidden (6) 10 Tanh 

Hidden (7) 10 Tanh 

Output 6 Softmax 

3.4.2. Some Hyper Parameters of the Second MPLNN Using Keras 
Table 1 illustrates the type and number of layers, the number of neurones per 
layer and the activation functions used in Keras platform to design the second 
classification model whose workflow is depicted in Figure 5.  

In Table 1, the first column shows the types of layers used in the second neur-
al network including the input for each layer, with hidden (i) for the hidden 
layer located at the ith position after the input layer and Output for the output 
layer. The second column shows the number of neurones used per layer includ-
ing 7 neurones in the input layer, 6 neurones in the output layer, for the six li-
thological classes and 64 neurones in all the intermediate layers. The third col-
umn displays the activation functions used. This includes the Logistic and 
hyperbolic Tangent (Tanh) functions used at the intermediate layers while the 
Softmax function which is more suitable for multi-classification tasks is used in 
the output layer.  

4. Results and Discussions 
4.1. Results 

The presentation of the inputs was done in Section 3.2.2. Table 2 displays a de-
tailed description of the nine input components used where the first column 
contains the origin of input including PCA, ICA and the OLI sensor while the 
second and third columns contains the name of feature inputs and the number 
of each type of feature input respectively. PCA1, PCA2 and PCA3 represents re-
spectively the first, second and third components of the Principal Component 
Analysis while ICA3, ICA4, ICA5, ICA6 represents the third, fourth fifth and 
sixth components of the Independent Component Analysis. Band6 and Band7 
are simply OLI sensor spectral bands of the Landsat8.  

The training data base is made up of six lithological classes extracted thanks to 
the ROI tool included in ENVI and the geological map of the study area. Table 3 
below provides a detailed description of the repartition of the various pixels ex-
tracted per lithological class: The training data set represents 80% of the above  
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Table 2. Description of the various input bands. 

Origin of spectral bands Name Number 

PCA PCA1, PCA2, PCA3 3 

ICA ICA3, ICA4, ICA5, ICA6 4 

OLI Band6, Band7 2 

TOTAL  9 

 
Table 3. Description of the repartition of the various pixels extracted per lithological 
class. 

Class name Colour used Number of pixels Accuracy in % 

Granite1 Green (0, 128, 0) 322 96.69 

Granite2 Blue (0, 0, 255) 594 34.14 

Granite3 Yellow (255, 255, 0) 453 57.14 

Schists Red (255, 0, 0) 458 33.62 

Mica-schists Sky blue (0, 255, 255) 648 79.17 

Gneiss Violet (255, 0, 255) 481 15.18 

Total  2498  

 
mentioned data while the evaluation of the classifier represents 20% of the above 
data set.  

The training data are fed to the MLPNN to generate a lithological map with 
six classes. The performances of our MLPNN are summarised in the Table 3 and 
the final lithological map is displayed in the Figure 6.  

The second classification system implemented in the Keras platform is having 
approximately the same performances as depicted in the Table 4 after 1000 ite-
rations. The obtained lithological map is shown in Figure 7. 

4.2. Discussion 

A critical analysis of the above results is raising the following concerns: 
When applied to remote sensing in the lithological multiclass discrimination, 

the MLPNN does not perform similarly in all the classes involved with a gap in 
terms of accuracy observed and growing as the number of classes increase. One 
reason of the following observation can be due to the imbalance distribution of 
available training data. In addition, the high intra-class variability and the low 
interclass distance mostly observed in rock lithological classes can also produce 
these observed discrepancies. Furthermore, the pre-processing phase is a critical 
phase in that, if it is not well handled, can negatively affect training data by re-
ducing the discriminating power of the descriptors. 

Among the various classes, those with low accuracies due to the presence of 
poorly classified pixels contribute negatively in the overall accuracy which is 
53.01% for the first classification system and 49.98% for the second classification 
system. This situation can be due to the difficulty of the classifier to find suitable  
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Figure 6. Updated version of the lithological map from the first classifier. 
 

 

Figure 7. Updated version of the lithological map from the second classifier. 
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Table 4. Accuracy per class for the second MLPNN classifier in Keras. 

Class name Accuracy in % 

Granite3 92.69 

Granite2 30.11 

Granite1 50.53 

Schists 33.62 

Micaschists 74.13 

Gneiss 28.13 

 
discriminating descriptors for those very classes. In fact, different rock units 
have different susceptibilities to weathering, because of their diverse mineralog-
ical composition, texture, age and rate of erosion, which can lead to different 
topographic expressions in the field (Yu et al., 2012). A possibility to integrate 
and run many induction techniques of different natures and configurations on 
the same training data could enable the identification of a suitable classifier for a 
given lithological class. 

The performances and the visual representation of the lithological map of the 
two classifiers are almost the same even though in the ENVI platform, pre- 
processing operations were necessary to get the present results. In Keras howev-
er, the flexibility to design and customize our network from scratch is the key 
point to obtain interesting results with highly noisy data. 

The design of the different MLPNN architecture is not yet automated since it 
is still done with trial and error test. This situation could yield inadequate neural 
network architecture since the research of suitable architectures in the search 
space of all the possible configurations is done manually. Therefore, many other 
configurations are left over. 

The design of the two systems has been well spelled out; however, the imple-
mentation was based on trial and error. It is believed that for a proper metho-
dology on the design of automated neural network architecture through Neural 
Architecture Search (NAS) to be obtained, it would go a long way to improve 
performance. In addition, a deep learning neural network architecture used in 
conjunction with ensemble method or multi agent system could be explored to 
address the problem of mixed pixel and reduce the gaps existing between the 
various lithological classes in terms of accuracy. 

5. Conclusion 

This research aimed at updating the existing lithological map of the Cameroon’s 
Center, South and East regions using MLPNN applied to Landsat images. Two 
different approaches were used for the realization of this objective. The novelty 
in this research is that we have been able to design two MLPNN with architec-
ture different from the traditional classifiers; with the first implemented on the 
ENVI platform in conjunction with pre-processing algorithm including Dark 
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subtraction for image correction, PCA and ICA for dimension reduction and 
band selection as well as feature extraction respectively. 

The second architecture implemented on the Keras platform appears to be less 
complex since the platform allows user customisation. Though the results ob-
tained are almost the same, this model has the advantage that it bypasses the 
pre-processing phase, thus making it computationally efficient and also robust as 
it can handle even the noise in the data.  
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