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Abstract 
Urban cities are the major drivers of economic growth and development. 
Economic growth and development however results in considerable land 
cover land use dynamics. This study assessed the dynamics in land cover land 
use that have occurred in New Braunfels, Texas in the last 7 years (2013-2020) 
to observe areas in the city that had experienced considerable shifts in land 
cover and land use. 30-meter resolution Landsat images were used to examine 
possible changes in land cover land use. New Braunfels was observed to have 
experienced significant changes in land use especially in developed areas. This 
change can be attributed to the influx of people into the city, contributing to 
the need for increased urban development. Analysis of this study shows that 
about 16% (about 553 hectares) of forest land cover class and 28% (about 
1139 hectares) of grassland class in time 1 (August 31, 2013) changed to 
built-up land use class in time 2 (November 5, 2020). A limitation to this 
study was that of the spatial resolution of images used. Higher spatial resolu-
tion images could impact the producers, users, and overall accuracy assess-
ment. Results from this study can aid in supporting better decision-making 
for sustainable urban development and climate change mitigation. 
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1. Introduction 

Urban land use change is a significant process resulting from global environ-
mental dynamics (Hersperger et al., 2018; Lasode et al., 2021; Verburg et al., 
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2015). The formation and operation of an ecosystem is greatly affected by urban 
land uses (Oluseyi, 2006). The challenges associated with urban land use change 
include overcrowding, crime, pollution, increased energy utilization, and a loss 
of viable farming land (Oluseyi, 2006; Seto & Kaufmann, 2003). Remote sensing 
aids the precise procurement of urban land-use information for developing ur-
ban districts; however, inadequate remote sensing information limits the acqui-
sition of urban land use data (Herold et al., 2002). Remote sensing can also be 
used in explaining the spatial distribution between various land uses in urban 
districts (Rinner & Hussain, 2011; Yao et al., 2017). 

New Braunfels (Figure 1) is a city that falls inside Comal and Guadalupe 
counties in Texas, USA. The city spans across 44.9 square miles (116 km2) and 
had a total population of about 90,209 people in 2019 (Lopez, 2018). New 
Braunfels is considered a suburb just north of San Antonio, and part of the 
Greater San Antonio metropolitan area (Rogers & Sletto, 2010). New Braunfels 
is one of the cities in the US experiencing a massive population influx. It was 
ranked by the US Census Bureau, the second fastest growing city in the US 
between July 1, 2016 and July 1, 2017, having an 8% increase and a total popu-
lation of 79,152 people (Census Bureau, 2016). This population growth is pro-
jected to continue. The city is located in the southeastern part of Comal County, 
about 48 miles (77 kilometers) southwest of Austin, right between the cities of 
San Marcos and San Antonio with the Interstate highway 35 (IH-35) cutting 
through it. 

New Braunfels has experienced a 158% population growth since the year 1990. 
New Braunfels has a median age of 37 years and a considerable amount of its 
land use consists of residential areas (Census Bureau, 2016). Specifically, low 
density residential land uses make up a large part of the city, alongside commer-
cial, industrial and open space. Commercial land uses occur along IH-35, with  

 

 
Figure 1. Map showing new Braunfels. 
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some pockets of commercial and industrial areas along the parkways of Loop 
337, State Highway 46 and FM 306. Waterways together with open space blend 
together with residential and commercial spaces. Other mixed land use types are 
seen around Gruene and Creekside areas in New Braunfels. Schools, institutional 
and government uses are located throughout the city. 

2. Objectives 

This study performs a change detection analysis to uncover those changes in land 
use that have occurred in the city of New Braunfels, Texas in the last seven years 
(2013-2020). In this study, we examine those parts of New Braunfels that have 
had considerable changes in land usage. The specific objectives of this study are 
as follows: 

1) Construct a Normalized Vegetation Index (NDVI) for images from 2013 
and 2020 and compare their indices. 

2) Classify both images (2013 and 2020) using a supervised classification algo-
rithm into 4 classes namely forest, water, grassland and built-up. 

3) Conduct an accuracy assessment to assess classification results. 
4) Post-classify the classified images to observe for land cover changes in both 

years (2013 and 2020) 

3. Data and Methodology 

For this study, the dates of August 31, 2013 and November 5, 2020 were chosen. 
These dates were specifically selected based on availability of data having signif-
icantly less cloud cover (0.13% and 0.19% cloud cover respectively). A relatively 
high resolution (30 meters) Landsat 8 Imagery for both dates was derived from 
the United States Geological Survey (USGS) Earth Explorer database  
(https://earthexplorer.usgs.gov/). The images were already georectified and aligned 
with the city of New Braunfels boundary shapefile which was sourced from the 
city of New Braunfels Geographic Information Systems (GIS) department. The 
New Braunfels city boundary Shapefile was used to clip both Landsat images us-
ing ArcGIS Pro version 2.6, a GIS software application. Microsoft EXCEL was 
used to construct a bar chart to graphically show the observed changes in land use 
classes in both years. 

A land use classification scheme was used to group land and water features in 
the images into distinctive land use classes. For this, a subset of the pre-defined 
and widely used 2016 National Land Cover Dataset (NLCD) classification (Jin et 
al., 2019) was used. This land use classification scheme was modified from the 
Anderson Land Cover Classification System (Anderson, 1976). The shortlisted 
classes used in this study are listed in Table 1 below. 

4. Results 
4.1. Normalized Vegetation Index (NDVI) 

NDVI quantifies the greenness of vegetation and is useful in understanding ve-
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getation density and assessing changes in plant health. NDVI is calculated as a 
ratio between the red (R) and near infrared (NIR) bands. NDVI was constructed 
for both images using ERDAS IMAGINE, a remote sensing software application, 
to assess for any differences in their vegetation indices (Figure 2). From the 
NDVI map, the areas in white have the highest NDVI while the black areas have 
low NDVI. The maximum brightness value does indicate the healthiest vegeta-
tion cover while the minimum brightness value indicates poor vegetation cover. 
The black and generally darker areas have the lowest NDVI values. The achieva-
ble extreme range from the NDVI equation (Equation (1)) is −1 for poor vegeta-
tion and 1 for healthy vegetation cover. From both maps in Figure 2, NDVI for 
time 2 (November 5, 2020) was lower for the healthy vegetation range than that 
of time 1 (August 31, 2013) while time 1 had more concentration of healthy ve-
getation when compared with time 2. Also time 2 had more poor vegetation 
cover than in time 1. 

( ) ( )NDVI NIR R NIR R= − +                   (1) 

 
Table 1. Land use classification. 

Class Classification Description 

Water Open Water—areas of open water 

Developed 
Developed, High Intensity—consisting highly developed/urban areas where people 
reside or work in high numbers. These include apartment complexes, houses, 
commercial and industrial buildings. 

Forest Deciduous, evergreen and mixed forest. 

Grassland Grasses, bare land, shrubs and scrubs. 

 

 
Figure 2. NDVI maps for both timeframes (August 31, 2013 and November 5, 2020). 
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4.2. Land Use/Land Cover Classification of 2013 and 2020 Images 

ERDAS IMAGINE was used to perform a supervised maximum likelihood land 
cover classification analysis based on the 4 classes defined in Table 1. As seen on 
Figure 3, both 2013 and 2020 images were grouped into forest, water, grassland 
and built-up classes. These classes were used based on prior study and the con-
figuration of the study area. New Braunfels consists predominantly of forests 
and grasslands with most built-up areas being very close to the major highways. 

4.3. Accuracy Assessment 

An accuracy assessment was performed on the final classified images in Figure 3 
to obtain percent accuracy and omission values as well as the Kappa statistic 
(Table 2 and Table 3). For this, a stratified random method was used to distri-
bute 60 reference points around the 4 land use classes on both classified images. 
The specific locations of these reference points were then validated using Google 
Earth Pro to observe for any variations in prior chosen classes. Points that had 
been previously mis-interpreted were now obvious and as such the accuracy as-
sessment was conducted. An overall accuracy of 68.33% and 73.33% was gener-
ated respectively for 2013 and 2020 classified images. 

4.4. Post-Classification Change Detection 

Before the change detection process, ERDAS IMAGINE recode tool was used to 
recode the class values for both previously classified images to ensure that classes 
in both images had the same codes. Thereafter, a post-classification change de-
tection algorithm using the matrix union tool in ERDAS IMAGINE was applied  

 

 
Figure 3. Land cover classes for both sampled images (August 31, 2013 and November 5, 
2020). 
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Table 2. Accuracy assessment for August 31st, 2013 image. 

CLASSIFICATION ACCURACY ASSESSMENT REPORT (August 31, 2013 Image) 

ACCURACY TOTALS 
     

Class Name 
Reference 

Totals 
Classified 

Totals 
Number 
Correct 

Producers 
Accuracy 

Users 
Accuracy 

Forest 17 16 12 70.59% 75.00% 

Water 4 10 4 100.00% 40.00% 

Grassland 23 17 13 56.52% 76.47% 

Built-up 16 17 12 75.00% 70.59% 

Totals 60 60 41 
  

Overall Classification Accuracy = 68.33% 
     

KAPPA (K^) STATISTICS 
     

Overall Kappa Statistics = 0.5657 
     

Conditional Kappa for each Category. 
     

Class Name Kappa 
    

Forest 0.6512 
    

Water 0.3571 
    

Grassland 0.6184 
    

Built-up 0.5989 
    

 
Table 3. Accuracy assessment for November 5th, 2020 image. 

CLASSIFICATION ACCURACY ASSESSMENT REPORT (November 5, 2020 Image) 

ACCURACY TOTALS 
     

Class Name 
Reference 

Totals 
Classified 

Totals 
Number 
Correct 

Producers 
Accuracy 

Users 
Accuracy 

Grassland 19 14 12 63.16% 85.71% 

Built-up 20 22 16 80.00% 72.73% 

Water 7 10 7 100.00% 70.00% 

Forest 14 14 9 64.29% 64.29% 

Totals 60 60 44 
  

Overall Classification Accuracy = 73.33% 
     

KAPPA (K^) STATISTICS 
     

Overall Kappa Statistics = 0.6347 
     

Conditional Kappa for each Category. 
     

Class Name Kappa 
    

Grassland 0.7909 
    

Built-up 0.5909 
    

Water 0.6604 
    

Forest 0.5342 
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on both classified images to examine for any changes in land cover classes be-
tween time 1 (August 31, 2013) and time 2 (November 5, 2020). ArcGIS Pro ver-
sion 2.6 was used to create a map of the post-classification change detection im-
age (Figure 4). Furthermore, the summary report of matrix tool was used to 
generate the numeric count of changes per class between time 1 and time 2 
(Tables 4-7). Classes that had a considerable amount of change are shown on 
the map in Figure 4. The water class did not have any significant change; hence, 
it is not shown on the map. Grassland, built-up and forest classes had the most  

 
Table 4. Change summary of forest class between time 1 and time 2. 

Class name: Forest (Time 1) 
   

Class Name (Time 2) Count (Pixels) % Hectares 

Forest 104,802 67.7 2358.045 

Water 1120 0.72 25.2 

Grassland 24,313 15.71 547.043 

Built-up 24,565 15.87 552.712 

Total 154,800 100 3483 

Zonal Statistics: 
   

Majority 1 Mean 1.7974 

Median 1 Minimum 1 

Maximum 4 Range 4 

Diversity 4 Std. Deviation 1.1949 

Majority Count 104,802 Majority (%) 67.7016 

Sum 278,241 
  

 
Table 5. Change summary of water class between time 1 and time 2. 

Class name: Water (Time 1) 
   

Class Name (Time 2) Count (Pixels) % Hectares 

Forest 721 26.06 16.223 

Water 1800 65.05 40.5 

Grassland 191 6.9 4.297 

Built-up 55 1.99 1.238 

Total 2767 100 62.258 

Zonal Statistics: 
   

Majority 2 Mean 1.8482 

Median 2 Minimum 1 

Maximum 4 Range 4 

Diversity 4 Std. Deviation 0.6215 

Majority Count 1800 Majority (%) 65.0524 

Sum 5114 
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Table 6. Change summary of Grassland class between time 1 and time 2. 

Class name: Grassland (Time 1) 
   

Class Name (Time 2) Count (Pixels) % Hectares 

Forest 15,041 8.46 338.423 

Water 102 0.06 2.295 

Grassland 112,104 63.04 2522.34 

Built-up 50,588 28.45 1138.23 

Total 177,835 100 4001.287 

Zonal Statistics: 
   

Majority 3 Mean 3.1147 

Median 3 Minimum 1 

Maximum 4 Range 4 

Diversity 4 Std. Deviation 0.7811 

Majority Count 112,104 Majority (%) 63.0382 

Sum 553,909 
  

 
Table 7. Change summary of Built-up class between time 1 and time 2. 

Class name: Built-up (Time 1) 
   

Class Name (Time 2) Count (Pixels) % Hectares 

Forest 26,849 14.27 604.102 

Water 60 0.03 1.350 

Grassland 11,813 6.28 265.793 

Built-up 149,377 79.41 3360.983 

Total 188,099 100 4232.228 

Zonal Statistics: 
   

Majority 4 Mean 3.5083 

Median 4 Minimum 1 

Maximum 4 Range 4 

Diversity 4 Std. Deviation 1.0521 

Majority Count 149,377 Majority (%) 79.414 

Sum 659,916 
  

 
changes between 2013 and 2020. 

The histogram values for the corresponding land cover classes of the pre-
viously classified images in Figure 3 were populated in a chart (Figure 5) using 
Microsoft EXCEL to graphically observe for generic changes in time 1 and time 
2. From the chart, a considerable amount of change (an increase of 36,486 pixels) 
is observed from time 2 for the Built-up class. This is also relatable to the de-
creased number of pixels for grassland and forest land cover classes in time 2. 
These vegetated areas could have been cleared out for construction purposes,  
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Figure 4. Considerable changes in land cover between August 31, 2013 (time 1) and No-
vember 5, 2020 (time 2). 

 

 
Figure 5. Pixel value change between time 1 (2013 image) and time 2 (2020 image). 

 
hence the decreased number of pixels. Water land cover class in time 2 had a lit-
tle change from time 1 and this could be attributed to the presence of swimming 
pools and other man made water bodies which were present in time 2 image. 

5. Discussion 

This study examined the city of New Braunfels, Texas, USA to assess for any ob-
servable land cover/land use changes from August 31, 2013 to November 5, 2020. 
From the results, we noticed a considerable change in pixels in the built-up class 
(with an increase of 36,486 pixels from time 1 to time 2) followed by the grass-
land class which was a decrease of 29,414 pixels from time 1 to time 2. Forest 
class also had a decrease of 7387 pixels from time 1 to time 2 and Water class 
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had the least gain of only 315 pixels more than time 1. 
From the generic land cover change chart on Figure 5, we see again how the 

built-up class changed massively in the last seven years. This considerable 
change comes mainly as a result of the developments of residential and other 
urban land uses in New Braunfels. This also comes as a result of the continuous 
influx of people into the city which has created the need to clear out forests and 
possibly, cultivated lands in order to construct new apartment complexes and 
other urban structures. The NDVI change from time 1 to time 2 can also be at-
tributed to the extent of change in the built-up class especially surrounding the 
main highways in the city (IH-35 and highway 46). Most of these parts of the 
city were covered with dense and healthy vegetation in time 1 but had been 
cleared out in time 2. 

In the accuracy assessment process, we used 60 and 80 points (2 scenarios) 
distributed around the 4 land cover classes using both stratified random and 
random sampling methods. However, we observed, after 3 trials, that the water 
land cover class had got only a few points compared to the 3 other classes 
(grassland, built-up and forest) on both images. This may have produced a fairly 
biased result and impacted on both the users and producer's accuracy values. 
This limitation was in part due to the water class having a limited number of 
pixels (only a very small part in both images had water). Perhaps, it would be 
helpful if one could manually place the reference points on the images instead of 
depending on the randomly generated points but again, this could aggravate us-
er bias. Another solution to this could be to increase the number of randomly 
generated points. Another limitation to this study was that of the spatial resolu-
tion of the images used in this study. Perhaps, higher spatial resolution images 
could have impacted on the producers, users and overall accuracy assessment 
(Reba & Seto, 2020; Zhou et al., 2018). 

6. Conclusion 

Results from this study can aid the appropriate bodies in planning properly for 
the city of New Braunfels and other cities as regards resource allocation and dis-
tribution. As noted by (Dong et al., 2020) in their land use land cover change 
study of Changchun, most cities place their emphasis on economic development 
which often lead to increased pressure on urban land, as such, urban planners 
should explore strategies to promote urban sustainable development. Cities can 
also apply land use change methods in determining areas where growth and de-
velopment need to be promoted as well as where they need to be controlled. 
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