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Abstract 
An analysis of nearly 250 years of flood records on the river Eden at Ap-
pleby-in-Westmorland has enabled a flood frequency relationship to be es-
tablished. The most severe floods were in the late 18th and early 19th century. 
With such a long history of flooding, some remedial measures would have 
been expected but the local people have, to some extent, adapted to the flood 
hazard by means of temporary and permanent flood proofing methods such 
as a cemented board across a doorway and removable flood boards. These 
measures were overwhelmed during the 2015 flood, as were the flood gates 
installed by the Environment Agency in 1998. A higher level of protection 
from floods at Appleby is called for. 
 

Keywords 
Historic Floods, Flood Frequency Analysis, Joint Probability Analysis,  
Human Responses 

 

1. Introduction 

Forty years ago, Smith and Tobin (1979) wrote: “as a result of inadequate plan-
ning policies and partial alleviation strategies, the responsible authorities have 
failed to contain the flood hazard”. Although improvements have been made in 
many areas of the UK, Appleby-in-Westmorland justifies the sentiments of 
Smith and Tobin. Even the greater use of historic flood information (Reed & 
Bayliss, 2001) has failed to produce a realistic assessment of the flood hazard, 
and subsequent meetings organised by the British Hydrological Society (Todd & 
Black, 2010), did not lead to much more historical flood frequency analysis. Ac-
cording to the Flood Estimation Handbook (IOH, 1999), this should be regarded 
with greater respect than other indirect methods. In recent historical flood stud-
ies (Williams & Archer, 1999; Macdonald et al., 2006; Macdonald and Black, 
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2010; Macdonald, 2012), all events up to the probable maximum flood (PMF), 
are rarely considered, which for small catchments are often important for dam 
safety assessments (Clark, 1999; Clark & Pike, 2007). With uncertainty playing 
an increasing role in people’s lives, there should be more cross validation of 
flood frequency estimates. The lack of combining evidence is called into ques-
tion in this paper, which is a description and analysis of major floods on the 
river Eden at Appleby from 1771.  

2. The River, Rainfall, and Floods 

The river Eden rises on the steep edge of the Pennine Hills and flows NNW to-
wards Appleby, where it drains a catchment area of 337 km2 (Figure 1). Below 
the town, the catchment lies in the rain shadow of the Lake District, an area of 
very high mountain peaks many in excess of 600 masl. The annual rainfall varies 
from over 2500 mm in the headwaters to about 900 mm at Appleby (UKMO, 
1977) for the period 1941-1970, whilst for the period 1981-2010, it remains un-
changed http://i.imgur.com/r/unitedkingdom/Lps9s0h. Land use is mainly peaty 
moorland on the high slopes with rough grazing and improved grassland on the 
lower slopes. With a catchment area of 337 km2, the river is most responsive to 
long duration rainfall from Atlantic depressions as in 1968 and 2015 (Smith & 
Tobin, 1979; Cumbria County Council, 2016). Floods have also been caused by 
summer convective storms such as in 1855 and 1928, (Carlisle Journal 8/7/1855; 
Cumberland and Westmorland Herald, 24/8/1828). Most floods are winter events, 
mainly due to the catchment size and response time of about 7 hours, as shown by 
gauging station records at Great Musgrave (Cumbria County Council, 2016). 
 

 
Figure 1. Catchment map and local detail of the river Eden at Appleby. 
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3. Previous Flood Chronologies 

Early studies by Graham Tobin as part of his Ph.D. thesis at Strathclyde Univer-
sity (Glasgow) (Smith & Tobin, 1979) identified 37 floods since 1815, grouping 
them into three classes according to their estimated size based largely on news-
paper reports. Floods during the 18th century were not considered. The British 
Hydrological Society website of historical events  
(www.dundee.ac.uk/geography/cbhe) reproduces most of this data, but mis-
quotes Mannex (1851) in stating that the water level in 1822 was three feet (0.9 
m) in Appleby church: the correct quotation is “In the great flood of 1822, the 
water was a yard deep both in the church and Rectory House” (Great Musgrave), 
which is 14 km upstream of Appleby. More recently, Watkins & Whyte (2008) 
gave a list of 34 severe events from a total of about 600 since 1686, covering the 
whole of the county of Cumbria. Since 2014, Darren Rogers  
(www.mauldsmeaburnweather.co.uk/floods.htm) has given a list of historic 
floods, newspaper reports of the serious events and photographs of the recent 
floods. However, he also identified additional floods not mentioned in Smith & 
Tobin (1979) taking place in 1816, 1829, and 1855. The severe flood of 1771 was 
described by Garret (1818) which marks the start of the present analysis. From 
the detailed descriptions of the events, the highest floods in chronological order 
are given in Table 1. 

4. Interpretation of Flood Levels 

The interpretation of the historic flood descriptions depends on an understand-
ing of local conditions, road levels at the time, changes in bridge dimensions, 
and the relationship between flood levels inside and outside of buildings. Indi-
rect evidence of flow velocities, which are related to flood depth, are also used, 
for example during the 1771 flood when Garret (1818) reported flagstones in the 
Cloisters being carried away by the flood waters. 

For Appleby four background facts are important. First, the river width has 
not changed significantly below the town bridge as shown by OS plans in 1971 
and 2018. The bridge was rebuilt in 1888. An engraving of the old bridge had 
been made by Thomas Girton (Figure 2). While the old bridge was narrower  
 

 

Figure 2. Part of Thomas Girton’s engraving of the old bridge at Appleby. 
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Table 1. The most severe flood events at Appleby. 

17/11/1771 

“In houses, it removed dressers, tables & c… the water ran with a strong current 
along Bridge-street, and on the high side of the low cross; it also came down 
the church yard, and ran out at the church gates, tore up flags in the cloisters, 
and the pavement in the street” (Garret, 1818). 

29/12/1816 

“The Eden, at Appleby, Saturday night last was swollen to a greater extent than 
has been known for the past fifty years… and though the water ran higher than 
the arches it remains unshaken” (Carlisle Patriot 4/1/1816). “it ran like a torrent 
through the streets carrying away with it six carts” (Evening Mail, 8/1/1816). 

1/2/1822 

“… the water was six feet in depth in the stables of the King’s Head inn. Such was 
the force of the torrent that the spray rose above the houses like a cloud. Many 
houses at the lower end of the town were immersed 5.5 feet in water” 
(Cumberland Pacquet 11/2/1822). “The water was two feet deep in Appleby 
church” (Westmorland Gazette, 9/2/1822). 

15/2/1829 
“the river Eden, at Appleby on Wednesday morning was tremendously swollen, 
equally in height the flood of February 1822” (Westmorland Gazette 17/2/1829). 

21/8/1928 

“In Chapel Street where the flood seemed to be worst, the tarmacadam was 
ripped off the road by the force of the running water, and houses were flooded 
to a depth of four and five feet. The road on The Sands was flooded to the 
extent of six feet” (Cumberland and Westmorland Herald, 24/8/1928). 
“At Appleby, the water rose to a height of six inches above the flood of 
New Years Day 1925” (Carlisle Journal 24/8/1928). 

24/3/1968 

“Appleby’s only chip shop kept on frying until 9.30 pm when the water was 
lapping around the counter and they were forced to close shop… Even the 
Police Station which is about 4 ft 6 in above the road was flooded to a depth of 
18 in forcing officers to move to an upstairs room. St Lawrence church was 
flooded to a depth of 2ft” (Cumberland and Westmorland Herald 30/3/1968). 
“About 250 properties, including 60 houses and many cars were damaged” 
(Cumberland News 29/3/1968). 

6/12/2015 

This flood caused widespread damage. The church at Appleby was flooded to 
a depth of 2 feet 2 inches (0.65 m) (Cumbria County Council, 2016). 
Great Musgrave Church was flooded to a depth of 0.59 m as compared with 
0.91 in 1822. Since the main flood response is from the upper two thirds of 
the catchment, the flood at Appleby in 1822 was considerably higher than in 2015. 
Both flood marks in Great Musgrave church are visible. 

 
due to a wider cutwater, its arches were higher by about 0.6 m. Second, road lev-
els along the Sands have not risen in the past 150 years or more. Third, the left 
bank floodplain by St Lawrence Bridge is about 0.8 m higher than the side occu-
pied by The Sands. Fourth, the water level inside a building, even if poorly fitting 
doors are present, may not be the same as that outside; for churches whose doors 
may or may not be closed this adds to the difficulty of interpretation. 

The flood of 1822 is probably the highest since the level is stated as being six 
feet in the stables, which were located on the east side of the Eden. A field survey 
showed that the floor of these buildings is 127.7 m OD giving a flood level of 
129.53 m OD. The flood of 1829 was described as being equal in height to that of 
1822 and with no other evidence to suggest otherwise must be accepted. The 
flood of 1771 is clearly a very serious flood but for which no description of the 
level is given. However from the general damage and the flagstones in the Clois-
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ters being torn up, it has been ranked as the third highest in the record. The 
flood of 1816 can be interpreted by using the Girton engraving. The soffit level 
of the old bridge, the appearance of which was engraved by Thomas Girton can 
be calculated by using a plan dated 1863 which gives the width of the bridge as 
30.97 m By taking measurements directly from the engraving (Figure 2) gives a 
soffit level of 129.18 m OD. The flood description tells us that the river ran 
higher than the arches, but this would have been minimal because of the escape 
route to the east along The Sands. 

The floods of 1928 and 2015 can be distinguished by a consideration of the 
storm rainfall and flood levels. Table 2 shows that the rainfall intensity was 
higher in 1928 than in 2015. 

The 36 hr depth at South Road, Kirkby Stephen in 1928 was 13 mm higher 
than 2015 as shown by the isohyet maps, Figure 3 and Figure 4. For the Eden 
above Great Musgrave, the areal rainfall for 2015 and 1928 was 68 mm and 88 
mm respectively. Antecedent soil moisture conditions prior to the storm on 20th 
August were a zero soil moisture deficit (SMD), with 73 mm rainfall in July and 
86 mm up until the 20th August at Kirkby Stephen. Soil moisture deficit is crucial 
to the production of surface runoff. At CHRS there are 34 years’ sunken pan 
data most of which have already been published (Clark, 2013). Relationships 
have been established between temperature, rainfall and pan evaporation. The 
values of potential evaporation (PE) measured in an open pan are closely related 
to evaporation from the weighing lysimeter. PE is related to rainfall (R) via the 
following regression equations which are based on 25 years’ measurements 
gathered at CHRS (Clark, 2013). 

June PE = −0.2802R + 99.87. 
July PE = −0.2141R + 97.89. 
August PE = −0.1088R + 77.79. 
 

Table 2. Storm details for 1928 and 2015 floods. 

 
Average rainfall 

intensity (mm∙hr–1) 

1928 storm 
Kirkby Stephen (Redman House) 19th and 20th August: 15.5 mm, 110.5 mm 
Kirkby Stephen (South Road) 24 hrs ending 1830 hrs; 36 hrs 133.4 mm 
Catchment rainfall 20th 89 mm 
Storm data from UKMO and Westmorland Gazette, 25/8/1928 

 
0.64  4.6 
4.1  3.7 
3.7 
 

2015 storm 
Kirkby Stephen (isohyet map) 4th and 5th December 45.0 mm and 75.0 mm 
Barras (TBR*) 36.5 mm, 46.6 mm, Highest in 23 hours 
Kirkby Stephen scaled by rainfall depth: 75/46.6 × 2.02 
Dale Head (Lake District) highest 24 hours: 105 mm 
Scaled for Kirkby Stephen 75/105 × 4.37 
Scalebeck (NY674144) 140.4 mm in 23 hours; 189 mm total 
Scaled for whole catchment (75/140.4) × (140.4/23) 
Catchment rainfall 5th December 65 mm 

 
1.87  3.1 
2.02 
3.25 
4.37 
3.12 
 
3.26 
2.7 

*TBR Tipping Bucket raingauge. 

https://doi.org/10.4236/gep.2020.812001


C. Clark 
 

 

DOI: 10.4236/gep.2020.812001 6 Journal of Geoscience and Environment Protection 
 

 

Figure 3. Catchment rainfall for 4th December 2015. 
 

 

Figure 4. Catchment rainfall for 5th December 2015. 
 

During the early summer rainfall in the upper Eden was much greater than PE 
with 147 mm at Appleby; 157 mm at Kirkby Stephen, and 146 mm at Stainmore 
(old gauge). Daily rainfall for July and August until the 20th was then combined 
with estimates of daily PE to give an estimate of the SMD for 19th August. A 
summary of the results is shown in Table 3 below. 

The 1928 flood level was reported as being 0.15 m above the New Year flood 
of 1925, where the water reached the window sills. A field survey along The 
Sands gave the level as 129.17 m OD. 

For the flood of 2015, the surveyed flood level from the church is in very close 
agreement with a level given by an eye witness running a business along The  
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Table 3. Estimated soil moisture deficit for the August 1928 flood event. 

Raingauge Month Rainfall PE mm∙day–1 SMD (mm) 

Appleby Castle 
July 

August* 
88 
93 

2.55 
1.97 

6.8 
0.0 

Kirkby Stephen 
July 

August* 
74 
86 

2.65 
2.02 

29.2 
0.0 

Stainmore (old gauge) 
July 

August* 
75 
83 

2.63 
2.03 

12.2 
0.0 

NB: PE for August calculated by adjusting rainfall up until the 19th for the whole month: Eg. (31/19) × 93 
and using the result to calculate PE for the whole month. *Until August 19th. 

 
Sands. In the Flood Investigation Report (Cumbria County Council, 2016) the 
reported flood level is the soffit of St Lawrence Bridge. This stands at 128.68 m 
OD but the surveyed level from the wrack mark on the church door is 129.04 m. 
The difference may be that the peak flow took place at night and could have 
been missed. Furthermore, the 1968 flood is reported by Smith & Tobin (1979) 
as also reaching the bridge soffit at 128.68 m OD. But residents stated that the 
2015 flood was higher than in 1968. A check on this level was based on the 
newspaper description with 1.83 m floodwater along The Sands near the Police 
station. The result was 128.83 m OD, which needs to be reduced by the water 
surface slope because this location is above the bridge, to give 128.8 m OD mak-
ing the 1968 flood lower than in 2015, in agreement with the statements of resi-
dents. 

Less severe floods are difficult to distinguish and are therefore not included 
for analysis. Eye witness reports speak of the river coming to the top of the bank 
nearly every year, which is an occurrence that would not be reported as a flood. 
If levels reach nearby properties then an occurrence of about 1 in 3 years would 
be expected and this compares with 3.5 years (Smith & Tobin, 1979) and 3 years 
from the work of Darren Rogers (2019) 
(www.mauldsmeaburnweather.co.uk/floods.htm). In comparison, a value of 5 - 
10 years is given by Rogers from a report by the Environment Agency, but the 
lower limit of 5 years is too high since there have been over 70 reported floods in 
200 years. The uncertainty is reduced by the evidence in Figure 5 which is a 
postcard, posted in 1907 and almost certain to be the flood of 26th January 1903. 
The tops of the equi-spaced bollards are visible on the left hand side. These are 
still present and are 0.5m high. Calculation of the discharge at this level gives a 
value of 337 m3∙s−1 which when compared with the flood frequency analysis be-
low, has a return period of about 3 years. From these analyses and comparisons, 
it is now possible to calculate the flood discharge of the most serious floods. 

5. Calculation of Flood Discharges 

The ranked flood levels allow an estimate to be made of their respective dis-
charges. A field survey of the channel just downstream of St Lawrence Bridge 
was carried out during the summer of 2019. Two cross sections were surveyed  
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Figure 5. Looking downstream along The Sands in 1907. 
 
one of which is shown in Figure 6. A postcard, which was sent from Appleby in 
1903 (Figure 7) looking upstream, shows that the river channel has remained 
sensibly unchanged for over 120 years. River discharge is calculated using the 
velocity area method, via the Manning equation: 

Q = V × A where V = velocity, A = cross section area. 
Q = discharge, V = R0.666S0.5n−1. 

where R = hydraulic radius, S = water surface slope, n = Mannings roughness 
value obtained from (Chow, 1959). 

The water surface slope was measured in the field and compared with the 
value surveyed after the 1968 flood. Field survey between river channel riffles 
upstream and downstream of St Lawrence Bridge: 1.30 m in 930 m = 0.0014. 
From Smith & Tobin (1979), there was a drop of 1.18 m in 767 m = 0.0015. In 
the present study, the lower value was used. 

The n value was taken as 0.043 which is for a channel “clean, straight, full 
stage, no deep pools, but with stones and weeds and moderate meandering”. 
More objectively using equation 5.12 (Chow, 1959): n = [material involved 
(0.028) + degree of irregularity (0.010) + variation in cross section (0.00) + effect 
of obstruction (0.00) + vegetation (0.005)] × degree of meandering (λ/L) where λ 
= wavelength and L = length of straight reach. In this = 1.00. Thus n = 0.043. 

Thus: A = 141.5 m2. P = 49.68 m, V = (141.5/49.68)0.666S0.50.043−1. 

V = 1.748 m∙s−1. 

Q = 1.748 × 141.5 = 247 m3∙s−1. 

6. Calculation of Bridge Capacity and the 1822 Flood 

      New   Old 
Area (m2)    52.32  46.68 
Wetted perimeter (m)  33.28  31.23 
Water surface slope  0.0014  0.0014 
Mannings n    0.02   0.02 
Discharge (one arch)  132.3  114.2 
Total discharge    265   228 
The estimated discharge for the 1822 flood: 
Flood level was 1.78 m above bankfull discharge. 
A = 226.05 m2. P = 53.24. 
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Figure 6. River cross section below St Lawrence Bridge. 

 

 

Figure 7. Looking upstream towards St Lawrence Bridge, circa 1900. 
 

S and n as before. 
Q = 515.7 m3∙s−1. 

Floodwaters also passed along The Sands and Bridge Street (Figure 1). These 
pathways have a different n value. The water surface slope is assumed to be the 
same as the main channel. 

The Sands: A = 44.5 m2. P = 28.56 m. n = 0.025. S = 0.0014. 
Q = 89.5 m3∙s−1. 

Bridge Street. Level taken from 128.3 m. Thus flood depth = 1.23 m. A = 
15.48. P = 12.26. n = 0.02. Q = 33.83. 

Total discharge = 515.7 + 89.5 + 33.83 = 639 m3∙s−1. 
Discharge for the remaining floods was calculated and the results are shown in 

Table 4. 

7. Flood Frequency Analysis 

Flood frequency and rainfall analyses are an inexact science. Land use change 
can affect flood frequency but for the upper Eden early maps show little if any 
change in land use especially above Kirkby Stephen where the flood response is 
generated. Neither have there been any marked changes in monthly rainfall in 
the region since 1873 
(www.metoffice.gov.uk/hadobs/hadukp/data/download.html). Hence the prob-
lem of non-stationarity is not significant. However, there are a number of cross 
checks which can be made. These include an estimate of bankfull discharge, a 
water balance check of the probable maximum flood (PMF), SMD measure-
ments or calculations, and comparison with the Extreme Catastrophic Flood 
(ECF) of Allard et al. (1960), which give the user more confidence in the results. 
Very few historical hydrology studies make estimates of very rare 103 - 106 year 
events. The present author’s work is an exception (Clark, 2014, 2018) and as a  
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Table 4. Estimates of peak discharges of the seven largest floods at Appleby in Westmor-
land. 

Year of flood River level (m) Peak discharge Return period 

1822 129.53 639 271 

1829* 129.53 639 271 

1771 129.34 587 99 

1816 129.3 577 72 

1928 129.17 539 57 

2015 129.04 517 47 

1968 128.8 488 40 

Note: Return periods calculated on the basis of record length (249 years) plus 20 years to make some al-
lowance for the period of record starting with a flood (Reed & Bayliss, 2001). Return periods calculated us-
ing Clark (1983) Rp = N/(M – 0.3) where N = number of years’ record, M = rank order of the flood. Return 
periods plotted on a modified Gumbel scale (Clark, 2015). *The levels of the 1822 and 1829 floods are given 
as the same. Therefore the return period is estimated as being the average of 384 and 158 years had they 
been different: viz. (249 + 20)/(1 − 0.3) = 384 years. (249 + 20)/(2 – 0.3) = 158 years. 

 
result of the estimates of the PMF at Bruton flood detention reservoir in Somer-
set UK based on historic flood analysis, which was also backed up by new esti-
mates (Clark, 1995, 2002) of probable maximum precipitation (PMP), the origi-
nal estimate of the PMF of 240 cumecs (Wessex Water Authority, 1982) was in-
creased to 500+ cumecs at the Bruton dam site and was eventually used in order 
to make the original structure, built in 1984, comply with the Reservoir Safety 
Act. It was increased in capacity and made safe from breaching and a life 
threatening flood downstream (Environment Agency, 2006). 

Table 4 shows the estimates of peak discharge for the top seven events. Al-
though the actual values of the peak discharge may be in error, and there is no 
way to get an exact answer, the frequency of flooding remains robust. 

Figure 8 shows these results plotted on a Logarithmic-modified Gumbel scale. 
Several points are of vital importance. Traditionally many studies use a linear 
scale for either rainfall or riverflow, the result is an exponential relationship 
which at some point must change to a much lower gradient. The present analysis 
does not have this problem since the modified Gumbel scale goes up to the 
probable maximum flood (PMF) or precipitation (PMP) with the restriction that 
the best estimates of the events will always plot as a straight line. Figure 8 shows 
the estimate of bankfull discharge with a rarity of around 1.1 years, within the 
range of 1.1 - 4 years (Leopold et al., 1964; Williams, 1978; Edwards et al., 2019) 
most common for alluvial and gravel bed rivers. Also shown on Figure 8 is the 
threshold of flooding, the seven highest floods, and an estimate of the PMF 
based on the envelope curve of Allard et al. (1960), enhanced by Acreman (1989) 
and called the Extreme Catastrophic Flood (ECF). According to Allard et al. 
(1960), it will commonly occur on steep, wet, upland catchments such as the 
Eden at Appleby. 
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Figure 8. Flood frequency analysis for the river Eden at Appleby. 
 

Application of the Revitalised rainfall runoff method of the Flood Estimation 
Handbook (Rev FEH) gave a value for the 1.1-year flood of 150 m3∙s−1. For this 
result to be correct the roughness factor in the Eden would have to be 0.072 a 
value which is simply not credible as compared with a value of 0.043. An n value 
of 0.072 is for a channel with large boulders and other restrictions such as over-
hanging vegetation. Furthermore, as shown in Chow (1959) the n value tends to 
decrease with increasing stage up at least to bankfull stage. 

In addition to the results in Table 4 there are the estimates of bankfull dis-
charge of 252 cumecs, and an estimate of the threshold of reported flooding of 
once every three years. A depth of water along The Sands of about 0.5m gives a 
discharge of 337m3∙s−1. At the very extreme flood level the Extreme Catastrophic 
Flood (ECF) was calculated: 

log ECF 0.5686log 1.9820A= − +  

where the ECF is cumecs per km2. A = catchment area. This equation is best ap-
plied to steep wet catchments of which the upper part of the Eden is very repre-
sentative. The result gives an ECF = 1185 m3∙s−1. Trials with estimates of PMP 
show that the FEH (IOH, 1999) cannot reproduce a flood of this size whereas 
those produced using estimates of PMP by Clark (2002) get within 170 cumecs 
of the ECF. A higher result would be expected with a full hydrograph analysis 
since the rainfall intensity is not uniform during a PMP event.  

All the evidence of floods must broadly fit in linear fashion on the 
Log-modified Gumbel scale as shown in this paper and advocated by the author 
for over 20 years. From the eye witness accounts by people of long residency an 
estimate of the frequency of bankfull discharge is 1.1 - 1.5 years. Using a fre-
quency for bankfull discharge of 1.1 years and an ECF of 1185 cumecs as a 
minimum value, gives a flood frequency equation: 

log 0.0630 2.4820Q y= +  

Application of this equation to a flood level of 0.8 m above bankfull gives a 
return period of 8 years. This is the level of the floodgate at St Lawrence Bridge. 
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8. Estimating the Return Period of the December 2015 Flood  
Using Hydrometeorology 

As an example of cross validating estimates of flood rarity, the author has de-
veloped a method based on rainfall frequency and soil moisture deficit (SMD) 
(Clark, 2007, 2018 + online material). In essence, the rarity of a flood is equal to 
the joint probability of the flood producing rainfall and the threshold SMD. In 
terms of return period (1/p) the equation becomes: 

ThresholdRp flood Rp ER Rp SMD= ×                (1) 

where: 
Rp ER = return period of the effective rainfall = (R − SMD). 
Rp SMDThreshold = return period of the SMD at which runoff takes place. 
Rainfall frequency follows the methodology in Clark (2018, 2019). During the 

winter period when the SMD (soil moisture deficit) is nil the equation reduces to: 
Rp flood = Rp ER or simply storm rainfall. 
Figure 3 and Figure 4 show areal distribution of rainfall for the 4th and 5th 

December. The storm started at 20.33hrs UTC on 4th December. Peak discharge 
at Appleby was at 20.30 UTC on 5th December and allowing one hour for rainfall 
to enter the main river gives an effective storm duration of 23 hours. The nearest 
TBR is at Scalebeck 7 km SSW of Appleby. Rainfall in this time period was 140.4 
mm with a total of 189 mm for the two rainfall days. From Figure 3 and Figure 
4, the catchment average rainfall for the two days was the sum of 39.9 mm and 
64.7 mm. Scaling this rainfall in the effective rainfall time of 23 hours gives: 
(140.4/189) × (39.9 + 64.7) or 78 mm in 23 hours. Box 1 shows the detailed cal-
culations of areal rainfall frequency. 

BOX 1 Rainfall frequency estimation. 
24 hr PMP = 475 mm (Clark, 2002, map showing 24 hr Probable Maximum 

Precipitation for Britain). 
1 hr PMP = 160 mm (Clark, 2009, estimated from storm maximisation).  
For durations 1 - 24 hr can be calculated using the logarithm of the duration 

and rainfall depth R = 228.225logD + 160 where D = duration (hours). 
Therefore 23 hr PMP = 470.8 mm. 
An estimate of the 2-year rainfall is obtained from the FEH (IOH, 1999). 
23 hour 2-year areal rainfall = 44.1 mm (FEH CDROM). This estimate in-

cludes an areal reduction factor which is the ratio of point to areal rainfall for a 
given storm duration and area. 

The areal reduction factor varies according to storm rarity (Clark, 2007, 2012). 
Areal reduction factor for 23 hr PMP = 0.595 (Clark, 2012). 
Rainfall frequency varies according to the time of year. The seasonal correc-

tion factor is obtained from Kjeldsen et al. (2005): 
Seasonal correction factor ReFH (Kjeldsen et al., 2005) = 0.84. 
The storm took place during winter so the seasonal areal 23 hr PMP = 470.8 × 

0.84 × 0.595 = 235.3 mm. 
Seasonal areal 2 yr 23 hr rainfall = 44.1 × 0.84 = 37.0 mm. 
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The modified Gumbel reduced variate equation (Clark, 2015): 

( )( ) 0.046518ln ln 1 1 3.3842 1.09348 3.3842y T T − = − − ÷ − × × +      (2) 

where T = return period. 
y: 2 yr = 0.1891; y: 106 yr = 9.3826. 
The logarithm of the two depths of rainfall, 37 mm and 235.3 mm are re-

gressed with their respective y values of 0.1891 and 9.3826: 
Thus the rainfall frequency equation: logR = 0.0873y + 1.5516. 
Thus for 78 mm in 23 hours y = 3.9002. 
The value of 3.9002 is used with Equation (2) to yield its value of T or return 

period. 
Return period = 53 years. 
End of Box 1. 
This compares with a return period of 47 years from the historic flood fre-

quency analysis. The uncertainty of this estimate depends on the measurement 
of rainfall. Although the rainfall intensity was low there can be an underestimate 
of 5% which would give a return period of 59 years. On the other hand, the value 
of PMP may be an underestimate in the higher parts of the catchment and this 
would lead to a reduction in the return period. Overall, the event of December 
2015 has an estimated return period of about 50 years. 

The uncertainty in the flood frequency analysis has been reduced by the close 
agreement of the bankfull discharge calculated from channel dimensions and as-
signed a rarity of 1.1 years, the seven historic floods, the threshold of flooding 
from photographic evidence and discharge calculation of the 1903 flood event, 
and an estimate of the PMF which is consistent with the nationwide survey of 
historic floods (Allard et al., 1960) and brought up to date by Acreman (1989). 
Where these 10 estimates are correlated with their estimated frequency the result 
is r = 0.99 sig. 0.01%. By itself this does not constitute proof of accuracy, but 
shows that when flood estimates produced in different ways are related to their 
frequency there is a high degree of consistency. The hydrometeorological esti-
mate of the rarity of the flood producing conditions would need a 9% reduction 
in the peak discharge of the 2015 flood to produce an exact match with the flood 
frequency equation. If this were correct then the threshold of flooding declines 
to a frequency of 1 in 4 years. The low level of uncertainty is shown by the esti-
mates of bankfull discharge, threshold of flooding and the PMF being shown as 
open circles on Figure 8. 

9. Human Response to the Flood Hazard at Appleby 

It was Burton et al. (1968) who showed that control works are usually imple-
mented when floods take place once every three years, so with such a long flood 
history it is instructive to see how people have coped over the past 250 years. 
Because of the frequent floods, a scheme giving protection for the 1 in 100 year 
flood might be expected, especially as the number of properties affected has ex-
ceeded 200 in 1928 and 100 in 1968. Smith & Tobin (1979) describe previous 
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responses. In 1907 there was a proposal to dredge the river Eden from just above 
to below the town. Flood walls were planned in the 1930’s while in the mid 
1970’s a more comprehensive scheme of dredging and bank grading at a cost of 
£120,000 considered. None of these schemes were implemented and while Smith 
& Tobin suggested cost as the main reason, when it is inflated to 1984 prices an 
estimate of £0.4 M is produced. This is only 36% of the cost of the 1984 Bruton 
flood alleviation scheme where the number of affected properties was less than 
50. A new flood wall and floodgate (Figure 9) were installed in 1998. However, 
in comparison with the analysis presented here, it only has a design standard of 
about 1 in 10 years. Furthermore, the hydrostatic pressure from the Eden during 
high flow leads to backflow up road drains, making the scheme rather ineffec-
tive. During the author’s visit to Appleby in May 2019, there was evidence of 
sand bags close by doorways. In some cases refuse from the last flood in 2015 
was still left outside. Although there is a flood warning system with an alarm 
given, it is still dependent upon residents taking personal action, day or night to 
avoid damage to personal belongings and the interior fabric of their homes. The 
question then becomes what do they do if they decide to go on holiday? 

10. Discussion 

Historically villages and small towns have had little or no consistent flood in-
formation available. It has been the existence of several good local newspapers in 
a fairly remote part of England that has been the main source of information. 
The results show that notable floods occur about once every three years. Else-
where this regularity of flooding has been enough to prompt significant remedial 
works where the frequency of positive certainty and adopted remedial works is 
about 1 in 2.5 years. Yet in spite of the Water Act of 1973 and subsequent legis-
lation a good level of protection has not been provided for the town of Appleby. 
The reasons for this are more complicated than appears at first sight. One reason 
is that the townsfolk have largely adapted to the hazard by means of flood 
proofing and a warning system. Another may be a resignation to the problem 
which, apart from events like 1968, 2005, and 2015, do not cause huge damage  
 

 

Figure 9. Moveable flood barrier close to the west bank of the Eden at Appleby. 
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and are not perceived as life threatening: for example the 2004 flood at Boscastle 
in Cornwall brought swift engineering works at considerable cost, whereas Ap-
pleby has experienced many more flood events. 

It may be that an estimated rarity of 1 in 50 now assigned to the 2015 flood 
could lead to an economic justification for a better level of protection. It remains 
to be seen whether or not the effects of the rather inadequate self operated 
schemes have to be taken into account when a cost benefit analysis is carried out. 
But with an aging population, a flood stress-free lifestyle would be very welcome. 
A realistic identification of the flood frequency at Appleby is the first step to-
wards this goal. 

11. Conclusion 

Taking into account a change in bridge cross section, an analysis of 249 years of 
recorded flood events, together with the use of hydraulic calculations to estimate 
the peak discharges, has allowed an estimate of the flood frequency for the river 
Eden at Appleby. To some extent, the result is validated by estimates of the 
bankfull discharge and the PMF. Land use changes in at least the upper part of 
the catchment have been minimal which largely avoids problems of non-stationarity 
in the record. However, changes may take place in the future of land use and 
climate. Further cross validation of flood rarity was achieved using the joint 
probability method. Another check related to the threshold of flooding of prop-
erties which is about 1 in 3 years. This agrees well with the detailed records of 
the more common flood events. Significantly the highest five events all took 
place before 1930, suggesting, that all else equal, very serious floods are now 
overdue, and that any interpretation of these future events must be tempered by 
what the historic record shows. Recent attempts by the Environment Agency to 
alleviate flooding at Appleby by means of flood gates have a low standard of 
protection. With over 100 domestic and commercial properties at risk, and with 
a resident population of just over 3000, many of whom live in the flood prone 
area, serious consideration should be given to producing a flood alleviation 
scheme with a high standard of design. 
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