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Abstract 
We try to enhance the AERMOD industrial pollution dispersion model with 
remote sensing observations and climatic models based on them. In this pa-
per, we focus on surface parameters (albedo, roughness, Bowen ratio) and 
land use classification on which they depend. We model maximum hourly 
concentrations and the resulting acute health risk and assess the effect on 
them produced by using remote sensing data for local areas around industrial 
plants instead of global standard AERMOD parameters. We consider five real 
multi-source plants for the effect of classification and two of them for the ef-
fect of surface parameters. The effect on the critical pollutant is measured in 
three ways: a) as difference between the yearly maxima of hourly concentra-
tions of a critical pollutant (“absolute”); b) the same limited to daytime 
workhours and 95% quantile instead of absolute maximum (“regulatory”); c) 
as maximum hourly difference over a year (“instant”). The measure of effect 
is divided either by the reference concentration of the pollutant, which yields 
the impact on health risk, or by the concentration obtained with AERMOD 
standards, which yields relative measure of impact. For a), the impact of 
roughness dominates, that of albedo is small and that of the Bowen ratio is 
almost zero. For b), the impact of roughness is less prominent, and that of al-
bedo and Bowen ratio is noticeable. For c), the impact is considerable for all 
three parameters. The effect of land use classification is considerable in all 
three cases a) - c). We provide the figures for different measures of remote 
sensing data effect and discuss the perspective of using remote sensing data in 
regulatory context. 
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1. Introduction 

AERMOD is one of the most widely used pollutant dispersion modeling tools for 
assessing the health risk from industrial air pollution. It contains a micrometeo-
rological model based on the description of surface by albedo, Bowen parameter, 
and roughness using global standards for land cover categories. Since the intro-
duction of AERMOD, many potentially useful free data have become available 
through space observations of surface and atmosphere and through reanalysis 
databases oriented mainly to climatic research.  

In this paper, we study the potential application of these new data sources to 
AERMOD pollution modeling. Our research is self-constrained by not en-
croaching on the micrometeorological model built into AERMOD as its com-
ponent processor AERMET: we introduce new data only through channels pro-
vided by AERMOD. This paper focuses on two parameters directly recon-
structed from space observations (albedo and roughness) and one (Bowen pa-
rameter), which requires the in-depth modeling of heat flux balance.  

The usual AERMOD workflow takes an existing land use category map 
(NLCD for US) and applies to each category its standard (seasonally dependent) 
values of albedo, roughness and Bowen parameter specified by AERSURFACE 
module. These standards do not depend on specific location of the plant mod-
elled and, in this sense, are global and easy to use. Bringing in the local specific 
remote sensing data for land use and surface parameters adds to the already 
considerable complexity of pollution dispersion modeling. However, we think it 
is justified: it is expected to improve the accuracy of surface parameters input 
into the model and hence of modelled concentrations and health risks. In our 
experience, local surface parameters reconstructed from remote sensing data can 
be radically different from AERMOD global standards both in absolute value 
and in seasonal dynamics. One example is given in this paper for Bowen para-
meter; there are many more.  

The availability of remote sensing data relevant to AERMOD modeling has 
been growing. Some of this data is directly applicable to AERMOD (e.g., albedo); 
some, so far, need a considerable processing effort of the modeler (e.g., rough-
ness and Bowen parameter). Anyway, the replacement of AERMOD global 
standards by locally specific parameters seems to us inevitable and this paper is 
an effort in this direction. 

We show how several types of space-based data can be used in AERMOD, and 
assess to what extent their use changes the modeled pollutant concentrations 
important for human health. We do this for a selection of five different industri-
al plants, with a special focus on two: a coke chemical plant and a cleaning sta-
tion (Balter & Faminskaya 2017). 
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The main result of this paper is the quantitative measure of the impact on 
model concentrations exerted by the use of locally specific remote sensing data 
instead of AERMOD global standards. The impact is different depending on the 
surface parameter to which remote sensing data are applied and on the criteria 
used to measure the impact. Three different criteria are discussed, each applica-
ble in an appropriate regulatory or non-regulatory context. 

2. Methodology and Data 

We begin with a short review of remote sensing data processing for parameters 
relevant to AERMOD and of existing databases of such parameters. Most of 
these efforts are oriented to climatic models rather than to pollution dispersion 
models. Nevertheless, several experiments using this data with AERMOD give a 
general picture of the extent to which various data influence the modelled pollu-
tant concentrations. This paper supports this picture and refines it. We studied 
the available datasets, selected those that yield reasonable values of AERMOD 
input parameters, and interfaced them with AERMOD. 

Then, we describe the data and methodology used in this paper. We modelled 
five Russian industrial plants for which we had the emission data and local me-
teorological data. Remote sensing/reanalysis data used to enhance AERMOD 
modelling for each plant were from Landsat, GLASS and ERA5 databases. We 
describe three criteria for measuring the impact of using this data, in contrast to 
usual AERMOD standards: “absolute”, “regulatory” and “instant”. 

2.1. Review of Space Data Usable in Pollutant Dispersion Models 

The use of space data is built into AERMOD from its very beginning since its 
surface parameter processor AERSURFACE relies on ready-made Landsat-based 
classification of US territory into 21 NLCD-92 categories (AERSURFACE User’s 
Guide, 2008). Each category is assigned its specific season-dependent default 
surface parameters (called below “AERMOD standards”). However, such classi-
fications are not available everywhere outside US, at least, not as detailed as 
NLCD-92, and, anyway, the global applicability of AERMOD standard parame-
ters is questionable. The Landsat/AERSURFACE approach can be extended or 
replaced with other types of data. One can a) produce a NLCD-92-compatible 
classification of land use and then apply the AERSURFACE defaults; or b) esti-
mate directly the surface parameters required by AERMOD (albedo and rough-
ness); or c) use the parameters of atmosphere provided by existing global cli-
matic models for an estimate of Bowen coefficient or directly integrate these pa-
rameters into AERMOD workflow. Below, we give a short review of these three 
lines of remote sensing data processing; however, they are seldom used with 
AERMOD.  

In the line a), the simplest approach is to use an existing land use classification 
(Bo et al., 2015) translates the US EPA approach to Chinese situation using an 
existing land use GIS, which implied reassignment of GIS categories to 
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NLCD-92. The same approach was used in Thailand (Pongprueksa & Chatchu-
pong, 2016). Alternatively, one can use the global land use classification GLC30 
with a 30-meter resolution or GLC10 with a 10-meter resolution, but both use a 
coarser category system than NLCD-92, especially for built-up areas. Another 
global land use classification based on MODIS data is MCD12Q1 (Garcia-Mora 
et al., 2012); it has a lower resolution (500 m) but for AERMOD, this may be suf-
ficient. Using GLC30, GLC10 and MCD12Q1 with AERMOD was considered in 
(Balter et al., 2018). Rather than using a global classification, one can produce a 
classification of Landsat data based on locally chosen training sites, as in this 
paper.  

In the line b), broadband albedo can be reliably estimated from many space-
borne optical sensors. It is widely used in climatic research—see a comprehen-
sive review in (He et al., 2018). Landsat and MODIS are the most used sensors if 
the tens-to-hundreds meter resolution is required. (Pape & Vohland 2010) 
compares these data and provides the broadband albedo formulae for both 
sources in Lambertian approximation. (Baldinelli et al., 2017), in a study of ur-
ban heat island, show that the broadband albedo formulae need correction in 
this context.  

In the line b), roughness estimation uses different approaches for smaller (<~1 
m) and larger (>~1 m) roughness values. The first type is characteristic of grass-
lands, crops, et al., and the second type, of forests and buildings. Smaller rough-
ness is either directly observed from radar backscatter or estimated from models 
based on optical observation of vegetation parameters such as NDVI (Gupta et 
al., 2002) or LAI (Gowda et al., 2008). In (Cho et al., 2012), vegetation roughness 
is related to albedo. Larger roughness can be observed by radar or by optical ste-
reoscopy as in ALOS (Tadono et al., 2016); for a forest, it can be estimated from 
LAI-based models. In this paper, we use NDVI and ALOS for small and large 
roughness, respectively. In urban context, a perspective direction is combining 
the remote sensing digital elevation models (DEMs) with GIS data on buildings 
(e.g., Open Street Map OSM). Recently, a specialized processor UMEP (Lindberg 
et al., 2018) was developed for this purpose. 

Estimating the Bowen parameter lies in the line c) since there is no direct me-
thod to obtain it from space observations. It is based on climatic/mesoscale me-
teorological models, which assimilate the remote sensing data. We use two me-
thods for Bowen parameter: a) the ratio of gradients of potential temperature 
and specific humidity in the model-based vertical profiles of the atmosphere; b) 
the ratio of sensible to latent heat flux at the surface calculated from the balance 
of incoming and outgoing shortwave and longwave radiation. Both methods are 
well known and compared, e.g., in (Malek, 1993). However, there is a lack of 
publications on applying them with remote sensing data to estimate the Bowen 
parameter.  

With the introduction in AERMOD of dependence on the above-mentioned 
surface parameters, several studies estimated the sensitivity of model concentra-
tions to them. (Grosch & Lee, 1999) concludes, for a surface source, that “only 
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the surface roughness length affects the design concentrations significantly; al-
bedo and Bowen ratio have little or no effect on the annual design concentra-
tions”. There was almost no effect of albedo or Bowen parameter on maximal 
1-hr or 3-hr concentrations because they are formed in stable conditions, mostly 
at night, when these parameters do not enter the AERMET algorithm. For ele-
vated sources, the impact of albedo and Bowen parameter was considerable be-
cause, for a high stack, the maximal concentrations occur near midday. Cur-
rently, the general consensus is that “AERMOD is highly sensitive to changes in 
surface roughness length and rather indifferent to albedo and Bowen ratio varia-
tions” (Karvounis et al., 2007). Usually, these studies deal with an isolated 
source, while in this paper we deal with real plants, which include a mix of sur-
face and elevated sources.  

There is a growing interest in using the existing mesoscale meteorological 
models in air quality modeling: MM5 (Isakov et al., 2007), WRF (Kumar et al., 
2017; Kesarkar et al., 2007) and others. Because of the coarse spatial resolution of 
such models, they are mostly used in conjunction with air quality models of a 
coarser resolution than AERMOD. When used with AERMOD, these models are 
usually considered as a replacement of the local meteorological data or of the 
model embedded in AERMET (Kesarkar et al., 2007). In contrast, we consider 
such models as an addition to local meteorology used by AERMET model. Mid-
way between climatic/meteorological models and remote sensing observations 
are the reanalysis databases, e.g., GLASS (Global Land Surface Satellite), which 
we use in this paper. They may still have a coarser resolution than that required 
by AERMOD. However, in the industrial context with sources concentrated in 
space, the problem is alleviated since resolution of health impact is determined 
only by the model grid, which is usually much denser than reanalysis or climatic 
model data. 

2.2. Data Used in This Paper 

We have chosen five Russian plants for the variety of their industries and loca-
tions (Table 1). For all plants, we included the full set of their pollution sources, 
as reported in their regulatory documents. To simplify the interpretation of re-
sults, all sources were assumed to work uninterruptedly, with constant emission 
rates, in contrast to regulatory dispersion modeling (Balter & Faminskaya, 2017). 
Modeling was performed for years 2013-2018. To study the impact of space-based 
land use classification on pollutant concentrations, we compared two regimes: 
Landsat-based land use classification with local training sites and existing global 
land use maps (mostly GLC10), which we translated into NLCD-92 category 
system. For the impact of three other parameters, we have concentrated on the 
first two plants and compared two model regimes based on Landsat land use 
classification: the one with AERMOD standards (STD), and the “experimental” 
one, which substituted one of three surface parameters with values derived from 
remote sensing data and/or from reanalysis databases. The two remote data  
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Table 1. Plants and maximal hourly (Cmax) and yearly average (Cavg) concentrations (mg/m3) of critical pollutants calculated for 
critical points outside exclusion zones. In relation to acute and chronic reference concentrations RFCac, RFCch. Modeled with land 
use classification based on standard data (GLC30, GLC10, MOD12Q1). 

Plant # 1 2 3 4 5 

Industry type Coke chemistry Cleaning station Metallurgy Petroleum depot Pulp and paper 

Coordinates 56N, 38E 44N, 44E 55N, 59E 45N, 38E 59N, 38E 

Main pollutant Coke dust NO2 Ferromanganese dust Hydrocarbons C1-C5 Wood dust 

Cmax/RFCac 1.2 = 0.35/0.3 2 = 0.4/0.2 4.7 = 1.4/0.3 3.2 = 29/9 1.3 = 0.63/0.5 

Cavg/RFCch 0.4 = 0.03/0.075 0.75 = 0.03/0.04 0.27 = 0.02/0.075 0.2 = 0.04/0.2 0.07 = 0.005/0.075 

 
sources most used in this work were Landsat and GLASS (Zhao et al., 2013) al-
though not all GLASS datasets cover the entire time span 2013-2018.  

We studied the available datasets, selected those that yield reasonable values of 
AERMOD input parameters, and interfaced them with AERMOD. Then, we 
studied the impact on maximal hourly model concentrations of replacing 
AERMOD standards with space-based surface parameter estimates. 

2.3. Measures of Remote Sensing Data Impact on Pollutant  
Dispersion 

By “impact” we mean the difference in modelled pollutant concentrations be-
tween “what we are proposing” (using remote sensing data) and “what was be-
fore” (using AERSURFACE standards). We estimated this impact in three ways. 
First, by comparing the absolute yearly maxima of concentrations in each region 
around the plant. This is a common regulatory indicator but it is less influenced 
by space/reanalysis data because maxima are usually formed in stable atmos-
phere, especially in nighttime, when albedo and Bowen parameter do not enter 
the AERMOD algorithm. We call this measure DiffLast or “absolute” Second, we 
consider the regulatory situations when the indicator is less dominated by stable 
conditions: emissions limited to daytime workhours (8:00-17:00) and 95% quan-
tile, rather than the absolute maximum of concentrations, as the regulatory cri-
terion. We call this measure “regulatory” or Day95%. Third, the maximal hourly 
difference of concentrations in each region over a year is taken as the indicator. 
We call this measure DiffFirst or “instant”. It is sensitive to space/reanalysis data 
because it uses maximum of difference instead of difference of maxima. Its prac-
tical importance is debatable but it is a useful criterion for model comparison 
and adjustment. 

3. Results 

We begin by studying the impact on modelled concentrations exerted by using 
the specially processed local Landsat data for land use, in contrast to existing 
ready-made land use maps available on Internet, which we consider as “stan-
dard”. For US, the AERMOD “standard” would be the NLCD maps, but for Rus-
sia, such maps do not exist, and we have to use other freely available land use 
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maps: GLC30, GLC10, and MOD12Q1. For both types of maps compared, the 
AERSURFACE standard parameters are applied to each land use category, 
which produces differences in all three surface parameters. We assess the result-
ing differences in maximum hourly concentrations of a critical pollutant (dif-
ferent for each plant) on the surroundings and on the critical region closest to 
the plant. 

Then, we repeat the procedure separately for each of the three surface para-
meters using in all cases the Landsat-based land use map and contrasting the ap-
plication of AERSURFACE standards to this map and the surface parameters 
derived from space data. For albedo, we used Landsat and GLASS; for rough-
ness, ALOS for buildings and forests and GLASS for other vegetation; for Bowen 
parameter, Landsat, GLASS and ERA5 data. 

3.1. Impact of Classification 

We compared concentrations obtained by applying AERMOD standards to 
ready-made global land use classifications GLC10, GLC30, and MOD12Q1 
(here, only GLC10 is listed) with concentrations obtained by applying them to 
supervised classification of multi-year Landsat data (weighted maximum like-
lihood ML) with locally selected training sites, as described in (Balter et al., 
2018). The classification procedure uses unsupervised clustering of the full mul-
ti-year set of Landsat data cleaned from clouds, selection of training sites cor-
responding to relevant NLCD-92 categories within clusters, ML classification, 
and manual adjustment of category weights to exclude obvious misclassifica-
tions. Mapping of GLC30, GLC10, and MOD12Q1categories to NLCD-92 cate-
gories is described in (Balter et al., 2018). 

Model dispersion calculations were performed for five plants, ignoring the relief 
and the pulsed character of some emissions. Table 2 shows the results obtained 
with the global land use map GLC10 and the local Landsat classification LC8. 

Three criteria for measuring difference are used; since Day95% radically cuts 
the maxima of concentrations, its comparison with other criteria should be done 
using its ratio to GLC10 rather than to RFCac. The effect of using space data for 
classification is considerable. Its relative (divided by GLC10) impact on concen-
trations is usually 10% - 100%. For DiffLast and DiffFirst, the absolute impact is 
comparable to RFCacute, which is the threshold of admissibility, somewhat larger 
in the critical region (residential region with maximal concentrations). Thus, re-
finement of land use classification with space data has a considerable impact on 
maximal hourly concentrations of pollutants and hence, on acute health risk. 
This is due to the influence of land use classification on all three surface para-
meters (albedo, Bowen, roughness) but the main impact factor is roughness as 
shown below. 

3.2. Impact of Albedo 

First, we compared the seasonal dynamics of albedo obtained from GLASS and  
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Table 2. Difference of maximal hourly concentrations (measured as DiffLast, or absolute, 
Day95%, or regulatory, and DiffFirst, or instant) obtained with global land use map 
GLC10 and local land use map constructed from Landsat (LC8). Difference shown for the 
critical pollutant in relation to RFCacute and to STD. 

Plant 
RFCac 
mg/m3 

|GLC10-LC8| 
/RFCac 
DiffFirst 

|GLC10-LC8|
/GLC10 
DiffFirst 

|GLC10-LC8| 
/RFCac 
DiffLast 

|GLC10-LC8|
/GLC10 
DiffLast 

|GLC10-LC8| 
/RFCac 
Day95% 

|GLC10-LC8| 
/GLC10 
Day95% 

Average of regions outside exclusion zone 

1 0.3 0.60 0.32 0.36 0.19 0.013 0.38 

2 0.2 0.52 0.42 0.31 0.27 0.024 0.39 

3 0.3 0.40 0.93 0.19 0.41 0.009 0.28 

4 9 2.43 0.31 1.04 0.14 0.046 0.26 

5 0.5 1.06 0.68 1.20 0.58 0.01 0.77 

Critical region 

1 0.3 1.31 0.34 0.86 0.22 0.021 0.36 

2 0.2 2.57 0.37 1.63 0.23 0.24 0.19 

3 0.3 0.46 0.98 0.18 0.39 0.004 0.16 

4 9 1.34 0.17 0.63 0.08 0.001 0.02 

5 0.5 1.34 0.58 1.40 0.56 0.0017 0.20 

 
Landsat LC8 and that obtained with AERMOD standards. Both GLASS and 
Landsat show a perceptible increase of albedo in summer, as compared to spring 
and autumn, which is absent in AERMOD standards. The absolute values of al-
bedo are generally lower than in AERMOD by ~0.05 for both plants. Winter 
values are most problematic due to cloudiness; for Plant 1 they more or less cor-
respond to AERMOD values while for Plant 2, the difference is considerable. 
Figure 1 shows the maps of albedo for Plant 1. Color scale is from violet (mini-
mum) to red (maximum). The same color scale is used throughout this paper. 
Table 3 shows the summary of dispersion modeling results for Plant 1 - Plant 3 
using AERMOD standards denoted STD or albedo from Landsat and GLASS 
data denoted LC8.   

The impact of using space/reanalysis data for albedo is greatest if measured by 
DiffFirst—15% - 100% of RFCacute. However, this measure of impact is the least 
relevant in the regulatory sense. DiffLast, except for Plant 1 critical region, is 
only several percent of RFCacute, which agrees with the estimates by other au-
thors. Such small refinements of model concentrations can be neglected in regu-
latory context but refinements can be considerable in some critical regions (as 
for Plant 1) and/or if Day95% is more relevant than DiffLast (as for Plant 2). As 
concentrations cut to 95% quantile are much lower than absolute maxima, the 
ratio to STD is more relevant for comparison with DiffLast and DiffFirst than 
the ratio to RFCacute. Considering the concentration timeline provides an insight 
into the reason of small impact of albedo on concentrations.  

Figure 2 shows the sensible heat flow H0 as an indicator of differences between  
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Figure 1. Albedo from AERSURFACE standards, Landsat and GLASS. Plant 1. 

 

 
Figure 2. Diagram of hourly (abscissa) vs. daily (top-down: days, 2013) values of: (a) 
sensible heat flow H0, (b) model concentrations for AERMOD standards, (c) concentra-
tion differences between (b) and values based on GLASS albedo, (d) concentration dif-
ferences between (b) and values based on GLASS Bowen parameter (see below). 
 
stable and convective or nightly and daily heat flux. Abscissa is the hour and or-
dinate is the day of year (starting at top). Convective and daytime situations 
(H0 > 0) are shown in black. 
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Table 3. Absolute differences between maximal hourly concentrations of critical pollu-
tant calculated with AERMOD standards (STD) and with Landsat 8 or GLASS data for 
albedo (LC8). 

Plant 
RFCac 
mg/m3 

|(STD-LC8)| 
/RFCac 
DiffFirst 

|(STD-LC8)| 
/STD 

DiffFirst 

|(STD-LC8)| 
/RFCac 
DiffLast 

|(STD-LC8)| 
/STD 

DiffLast 

|(STD-LC8)| 
/RFCac 
Day95% 

|(STD-LC8)| 
/STD 

Day95% 

Average of regions outside exclusion zone 

1 0.3 0.15 0.11 0.035 0.02 0.0013 0.15 

2 0.2 0.56 0.55 0.009 0.008 0.027 0.17 

3 0.3 0.21 0.15 0.028 0.02 0.0084 0.0097 

Critical region 

1 0.3 0.37 0.12 0.25 0.08 0.0003 0.0035 

2 0.2 2.6 0.53 0.02 0.045 0.26 0.16 

3 0.3 1 0.35 0.029 0.07 0.031 0.011 

 
Peak concentrations (STD diagram) occur mostly for H0 < 0 while the highest 

impact of GLASS data occurs for H0 > 0 so that concentration peaks are affected 
by it but rarely. 

3.3. Impact of Roughness 

For roughness, urban and non-urban (vegetated) territories are processed diffe-
rently. To distinguish them, we use the supervised classification of the territory 
based on Landsat data. For non-forest vegetation, we use the formula from 
(Gupta et al., 2002) relating roughness to NDVI in Landsat data. For forests, the 
formula yields too small values, so that we have adopted the usual assumption of 
roughness equal to 0.1 of the average forest height estimated from ALOS DEM 
data in the following manner. 

The DEM image is scanned by a moving 7 × 7 pixel window called “large”, 
which is covered by 3 × 3 pixel sub-windows called “small”. For each position of 
the large window, in each small window within it the operation shown as rows of 
Table 4 is performed, and then the results of all small windows are aggregated to 
a single large window value in ways shown as columns of Table 4. For forest 
height, the small window operation was “minimum” and the aggregation rule 
“minimum”. Subtraction of this smoothed image from the original DEM pro-
duces the heights of forest borders as shown for Plant 1 in Figure 3, left. We cut 
out the values < 7 m, which, presumably, correspond to non-forest borders, and 
interpolate heights from borders inside the forest plots (Figure 3, right). After 
translating height to roughness, the seasonal dependence had to be introduced 
since ALOS DEM is a single multi-year set. We have taken ALOS-based rough-
ness as the maximal summer value and applied to it the seasonal change coeffi-
cients adopted from AERMOD standards. 

For buildings, we used the same procedure as for forests. The small-window op-
eration applied was the standard deviation (Table 4). Then, we used the regression  
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Table 4. Types of two-scale moving window used for forests and buildings. Column: op-
eration performed within the small window; row: operation performed in aggregating 
small windows to a large window. 

Large window 
Small window 

Minimum Mean 95% - 5% quantile 

1 pixel value   + 

Standard deviation  +  

95% - 5% quantile  +  

Minimum + +  

 

 
Figure 3. Left: forest height at forest borders constructed by a two-scale moving window 
from ALOS DEM (Plant 1). Right: forest height interpolated from borders to the interior 
of closed forest areas. Black: >30 m, heights < 7 m not taken into account. 
 
between ALOS-based heights and OSM building heights constructed from com-
bined Plant 1 and Plant 2 data for the areas where OSM is available (Figure 4). 
The regression has a satisfactory R2. Then, we applied the coefficient 0.1 to 
transform height to roughness. 

This approach used some lessons learned from (Simpson et al., 2012) and 
(Kent et al., 2019). Its two stages are illustrated in Figure 5. 

Figure 6 shows the results as maps. In both versions of impact measures, 
there is a considerable territory where the impact of using Landsat + ALOS data 
for roughness is significant. This contrasts the situation for albedo where there 
are no such significant points outside the exclusion zone. The results are sum-
marized in Table 5. 

3.4. Impact of Bowen Parameter 

Extracting the Bowen parameter from space observations involves a full thermal 
flux model of the area. Therefore, in this section we rely on reanalysis/climatic 
model data rather than on direct space observations. See (Liang et al., 2019) for 
review. We consider two different sources of information on Bowen parameter: 
models of surface heat balance and models of vertical atmospheric profile. The 
first approach is applied to Plants 1 and 2, and the second one, to Plant 2. The  
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Figure 4. Regression between OSM building heights and the heights reconstructed from 
moving-window scans of ALOS DEM with two aggregation rules: mean and 95% - 5% 
quantile. For Plant 1 (P1) and Plant 2 (P2), areas with predominant 1-storey, 5-storey and 
17-storey buildings. 
 

 
Figure 5. Smoothed ALOS DEM for Plant 1 and building roughness derived from it. 
 
Table 5. Absolute differences between maximal hourly concentrations of critical pollu-
tant calculated with AERSURFACE standards (STD) and with Landsat 8 + ALOS DEM 
data for roughness (LC8). 

Plant 
RFCac 
mg/m3 

|(STD-LC8)| 
/RFCac 
DiffFirst 

|(STD-LC8)| 
/STD 

DiffFirst 

|(STD-LC8)| 
/RFCac  
DiffLast 

|(STD-LC8)| 
/STD 

DiffLast 

|(STD-LC8)| 
/RFCac 
Day95% 

|(STD-LC8)| 
/STD 

Day95% 

Average of regions outside exclusion zone 

1 0.3 0.45 0.33 0.23 0.12 0.026 0.59 

2 0.2 0.203 0.19 0.117 0.11 0.032 0.35 

Critical region 

1 0.3 1.4 0.36 0.42 0.095 0.05 0.65 

2 0.2 0.683 0.099 0.457 0.066 0.21 0.15 
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Figure 6. Absolute difference between yearly maxima of critical pollutants for Plant 1 and 
Plant 2. Red = RFCacute, values < 0.1 RFCacute not shown. 
 
first approach for Plant 1 is more complex and involves data from Landsat 
and/or GLASS, data from local meteorological stations and several semi-empirical 
formulae. For Plant 2, we use a simpler version of the first approach based on 
only GLASS data but with a worse spatial resolution. The second approach uses 
only data from ERA5 and has the spatial resolution 0.125˚ more or less corres-
ponding to the 10 × 10 km area characterized by Bowen parameter in AERMOD. 
In the first approach, we obtain a map of Bowen parameter and, thus, are able to 
calculate its geometrical rather than arithmetical mean value over the area as 
recommended by AERSURFACE. In the second approach, we have a single val-
ue for the entire area. 

The logic of calculations for Plant 1 is the following. Net radiation Rn is calcu-
lated from downward shortwave radiation, surface albedo, the emissivities of 
atmosphere and of surface (as a function of NDVI), and the temperatures of air 
(taken from local meteorological station) and of surface (from thermal channels 
of remote sensors). We account for atmospheric transmissivity using either the 
number of sunshine and cloudy hours or precipitable water content. Thermal 
flux into soil G is calculated from NDVI as in (Bastiaanssen & Roebeling 1993). 
Sensible heat flow H0 is calculated from the surface-air temperature difference as 
in SEBAL (Bastiaanssen et al., 1998a, 1998b). Finally, the Bowen parameter Bo is 
calculated as H0/(Rn − G − H0), where the denominator is the latent heat flow LE. 
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With GLASS data for Plant 2, H0 is calculated as H0 = Rn – G – LE, where Rn is 
provided by GLASS reanalysis database at a resolution of 0.05˚ and LE at a reso-
lution of 1 km and 8-day intervals. G is calculated as for Plant 1 from GLASS 
data on NDVI. Bowen parameter is calculated as Bo = H0/LE. 

With ERA5 data for Plant 2, the potential temperature difference DT is calcu-
lated between two lowest levels of ERA5 atmospheric profile (1000 and 975 
mbar), and Bo = γ DT/De, where γ is the psychrometric constant and De is the 
difference of specific humidity between the two levels.  

The resulting maps of Bowen parameter are compared in Figure 7 with maps 
constructed from AERMOD standards applied to supervised Landsat-based clas-
sification. Figure 8 demonstrates that two versions of the seasonal dynamics of 
Bowen parameter constructed from GLASS and ERA5 are more or less concor-
dant despite the differences in data and algorithms. This speaks in favour of re-
liability of Bowen parameter obtained from reanalysis data. Both are radically 
different in value and seasonal trend from AERMOD standards. Thus, we expect 
that using the remote sensing and reanalysis data would make a considerable 
difference in Bowen parameter values used by AERMOD. 

Table 6 presents the summary of model concentrations. For Plant 1, the im-
pact of Bowen parameter from Landsat data is comparable in magnitude to that 
of albedo from Landsat data and much weaker than that of roughness. For Plant 
2, the impact is considerably weaker than even that for albedo. The DiffLast im-
pact is close to zero and not shown. The weak impact that Bowen parameter has 
on maximal concentrations is due to the same reasons as for albedo. 

4. Discussion and Limitations 

Since the official introduction of AERMOD in 2004, many new and potentially 
useful sources of remote sensing data/reanalysis have appeared. We are interested  
 

 
Figure 7. Bowen parameter maps for Plant 2 constructed from AERSURFACE standards 
and from GLASS and ERA5 data. Black ≥ 2 values used by AERMOD. 
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Figure 8. Comparison of seasonal dynamics of Bowen parameter in AERSURFACE and 
as constructed from GLASS or ERA5. For Plant 2. 
 
Table 6. Absolute differences between maximal hourly concentrations of critical pollu-
tants calculated with AERMOD standards (STD) and with GLASS or ERA5 data for Bo-
wen parameter (NonSTD). 

Plant 
RFCac 
mg/m3 

|(STD-NonSTD)| 
/RFCac 
DiffFirst 

|(STD-NonSTD)| 
/STD 

DiffFirst 

|(STD-NonSTD)| 
/RFCac 
Day95% 

|(STD-NonSTD)| 
/STD 

Day95% 

Average of regions outside exclusion zone 

1 0.3 0.034 0.058 0.14 0.45 

2 GLASS 0.2 0.1 0.03 0.076 0.44 

2 ERA5 0.2 0.089 0.045 0.049 0.29 

Critical region 

1 0.3 0.112 0.093 0.175 0.40 

2 GLASS 0.2 1 0.07 0.48 0.31 

2 ERA5 0.2 0.95 0.139 0.36 0.23 

 
in using this data for enhancement and/or replacement of standard values of 
surface parameters, which are used by AERMOD by default but may be irrele-
vant for a specific area. A priori, we assume that using remote sensing/reanalysis 
data for a concrete territory is more accurate than using global AERMOD stan-
dards. This is a feasibility study in view of practical/regulatory application, e.g., 
in establishing the exclusion zones. Therefore, we focus on data that can be used 
with little user effort. The first choice is the readily available remote sensing rea-
nalysis data but, due to their lower spatial resolution, we also consider using 
Landsat data. 

Three measures of the impact of remote sensing data on model concentrations 
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are applied. The ratio of these impact measures to RFCacute (understood as ad-
missible limit) is, essentially, a measure of the impact on acute health risk. 
Usually, we perceive the 0.1 changes in health risk index as considerable. An al-
ternative measure of remote sensing data impact on concentrations/health risks 
is “relative”: calculated with respect to “standard” concentrations, rather than to 
RFCacute. It is especially relevant for comparison between “absolute” and “regu-
latory” effects since it alleviates the influence of cutting the maxima to 95% in 
the latter criterion. 

It is well known that of three surface parameters used by AERMOD (albedo, 
roughness and Bowen ratio), roughness has by far the largest impact on model 
concentrations. The conclusion had been made mostly from studies of isolated 
sources. This study supports it for real multi-source industrial complexes, but 
with qualifications (see below). 

Normally, one would consider a combined usage of all three parameters de-
rived from remote sensing/reanalysis data. A measure of such a combined im-
pact is provided by comparing the land use classifications from standard global 
land use maps (GLC10, GLC30, and MOD12Q1, of which only the first is listed 
in this paper) to Landsat data classified with local training sites. Changing 
classes changes all three surface parameters. The effect is, probably, mostly due 
to roughness; nevertheless, a synergetic effect of parameter changes is also possi-
ble. The next step to research this synergy would be to combine together the re-
mote sensing-based estimates of three surface parameters, which in this paper 
are studied separately. 

Seasonal dynamics is an important characteristic of AERMOD parameters 
reconstructed from remote sensing data. It can serve as a control for applicabili-
ty of AERMOD standards to specific territories. For albedo, GLASS and Landsat 
data show more or less the same spatial pattern and seasonal dynamics as 
AERMOD standards but the values are quite different, especially in winter. For 
Bowen parameter, the seasonal dynamics constructed from very different data 
(ERA5 profiles and GLASS surface thermal fluxes) is similar in form (although 
different in values), which supports its reality. It is radically different from 
AERMOD standard seasonal dynamics. For roughness, values for built-up terri-
tories and forests are constructed from ALOS DEM and have no seasonal dy-
namics (it is imposed on them according to AERMOD standards). Values for 
other vegetation types are calculated from NDVI and are more or less compati-
ble with AERMOD standards in summer and autumn but not in winter and 
spring. 

Various measures of impact of remote sensing data on model concentrations 
and health risk presented in Table 2, Table 3, Table 5, and Table 6 are summa-
rized in Table 7. Strong impact is that >1 (in RFCac or relative units), considera-
ble impact is between 0.4 - 0.5 and 1, small between 0.1 and 0.4 - 0.5, negligible < 
0.1 for all plants. 

As usual for real plants, no systematic onsite monitoring of pollutant concen-
trations is available, therefore we cannot prove that adding the remote sensing  
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Table 7. Summary of various measures of remote sensing data impact. Codes: ! strong, + considerable, ~ small, – negligible im-
pact. Aggregated over all plants considered. 

  Full study area for each plant Critical region for each plant 

Measure Criterion Classification Roughness Albedo Bowen Classification Roughness Albedo Bowen 

Health risk 
(/RFCac) 

Absolute ! ~ – – ! ~ ~ – 

Regulatory – – – ~ ~ ~ ~ + 

Instant ! + + ~ ! ! ! + 

Relative 
(/STD) 

Absolute + ~ – – + ~ ~ – 

Regulatory + + ~ + + + ~ + 

Instant + + + – + + + ~ 

 
data does actually improve the model estimates of concentrations. However, this 
seems a reasonable assumption. 

5. Conclusion 

Using remote sensing data is justified, with “absolute” criterion, in critical re-
gions for albedo and everywhere, for roughness and classification. With “regu-
latory” criterion, which somewhat suppresses the dominant role of nighttime, 
stable atmosphere concentrations, the judgement depends on the measure used. 
Measured against RFCac, using remote sensing data is justified for Bowen para-
meter everywhere and for other parameters in critical regions only. However, 
measured “relatively”, justification is for all parameters everywhere. With “in-
stant” criterion, the use of remote sensing data is justified everywhere except for 
the Bowen parameter, for which it is justified in critical regions only. 

We consider this study as a contribution to future assimilation of remote 
sensing/climatic model data into pollution dispersion models, especially impor-
tant for developing countries. Hopefully, this study will help to choose where to 
concentrate the effort. 
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