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Abstract 
Flood is one of the most predominant disasters around the globe and fre-
quently occurring phenomena in the northern part of Pakistan. In this study, 
the effects of various divisions of flood inventory and combinations of condi-
tioning factors were assessed for the preparation of final susceptibility map. 
The flood inventory map was prepared for Charsadda by visual interpretation 
of Landsat-7 image alongside the field survey and a total of 161 flood loca-
tions were mapped. The flood inventory was subsequently divided into train-
ing and validation datasets, 129 (80%) and 112 (70%) locations for training 
the model and 32 (20%) and 49 (30%) for validation of the model. In this 
study, nine conditioning factors were used (Elevation, Slope, Aspect, Curva-
ture, Plan curvature, Profile curvature, Proximity to river, roads, and Land 
use/land cover) for the development of flood susceptibility map. All the con-
ditioning factors were correlated with flood inventory map using the infor-
mation value method. The final susceptibility maps were validated using pre-
diction rate and success rate curve. The results from validation showed that 
the areas under curve in the prediction rate curve for the models are: Model 
A (99.47%), Model B (95.04%), and Model C (94.06%), respectively. The Area 
under curve (AUC) in the success rate curve obtained for the three models 
are: Model A (95.03%), Model B (86.91%), and Model C (89.67%), respec-
tively. Eventually, the susceptibility maps were classified into five susceptibil-
ity zones. The success rate and prediction rate curve indicated that model A 
has more accuracy in comparison to model B and model C; though, the re-
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sults obtained from prediction and success rate curve indicated that all the 
models are reliable and has no significant difference between the susceptibili-
ty maps. Consequently, results obtained from this study are useful for re-
searchers, disaster managers, and decision-makers to manage the flood-prone 
areas in the study area to mitigate the flood damages. 
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Flood Inventory, Information Value Method, Flood Conditioning Factors, 
Flood Susceptibility Index 

 

1. Introduction 

Natural hazards are increasing day by day and have gained attention at the 
global and national levels. Flood is the most common and destructive hazard 
among all-natural disasters (Uddin et al., 2013). It is one of the most severe ha-
zards in which the river cannot accommodate water more than its capacity and 
overspills on the banks of river and causes the economic, social, and human 
losses (Jonkman, 2005). According to the international disaster database, more 
than a million people died every year due to floods in the low-income countries 
[EM-DAT: The OFDA/CERD, 2010 cited in (Al Saud, 2012)]. 

Flood is the most destructive natural hazard in Pakistan, and since indepen-
dence, the country has faced seventeen severe floods, which have caused an 
economic loss of 12 billion USD (WAPDA, 2013). However, since 2010, the 
country has faced floods almost every year during the monsoon season (Ju-
ly-September). The 2010 flood of Pakistan was worst in history and was more 
destructive than the 2004 Indian tsunami, 2005 Kashmir earthquake, 2008 Cyc-
lone Nargis, and 2010 Haiti earthquake (Alam et al., 2015). The 2010 flood killed 
more than 1900 people, affected 17 million of agricultural land, 1.5 million houses, 
and 20 million people affected due to the flood (WAPDA, 2013). Mostly the 
low-lying areas affected by riverine flooding during monsoon season and flash 
flood belong to hilly and semi-hilly regions. Indus River is the primary source of 
flooding in Pakistan and distresses the river basins in Khyber Pakhtunkhwa, 
Sindh, and Punjab. Since 1973, the densely populated districts of Khyber Pakh-
tunkhwa (Charsadda, Nowshera, and Peshawar) get affected by floods (At-
ta-ur-Rahman & Khan, 2013; Khan et al., 2013). In the 2010 flood, Mardan, 
Charsadda, Nowshera, and Peshawar were severely affected because of its expo-
sure to three main rivers of the province, namely, river Swat, Kabul, and Indus 
(Ahmad et al., 2011; Khan & Iqbal, 2013). Swat and Kabul River went through 
record flow of 400,000 cusecs of discharge in 2010 flood, which broke the pre-
vious record of 250,000 cusecs in 1929. The exceptional high discharge over-
whelmed Charsadda, Peshawar, and adjoining areas during the 2010 flood 
(WAPDA, 2013). Figure 1 is showing the number of affected and dead people 
due to the disastrous floods in the history of Pakistan. The 2010 flood is the  
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Figure 1. Number of affected and died people from disastrous floods in Pakistan (1973- 
2015). Source: (EM-DAT, 2018). 
 
deadliest one, which killed almost 1900 and affected 20 million people, followed 
by a flood in 1992 and 1995 in which 9.8 and 1.8 million people were affected 
with death toll of 1446 and 1063 respectively (EM-DAT, 2018).  

Flood inventory mapping is the first step towards susceptibility mapping 
(Rahmati et al., 2016). There are various techniques available for the generation 
of flood inventory maps, for example, Support vector machine (Ali et al., 2017) 
visual interpretation, and object based image classification (Owen et al., 2008) 
but mainly develop through visual interpretation of satellite images.In literature, 
it was found that most of the time, inventory data was divided with a 70:30 ratio 
(Tehrany et al., 2015); however, a few researchers used the 80:20 ratio as well 
(Bacha et al., 2018). Flood susceptibility can be assessed by qualitative and quan-
titative techniques that can divide the area into various susceptibility zones. 
Many statistical methods have been used for flood susceptibility which include 
Frequency ratio, weight of evidence (Rahmati et al., 2016), and logistic regres-
sion model (Tehrany et al., 2014). 

The objective of this paper is to explain the effects of two different types of 
flood inventories (70:30 & 80:20 ratio) and also the partial combination of con-
ditioning factors on the final flood susceptibility map using the bivariate statis-
tical information value method. Thus, three different kind of models developed 
for this study which are: Model (A) with 70% training and 30% validation in-
ventory data; moreover, Mode (B) used 80% training and 20% validation inven-
tory data. Model (C) is totally different from Model (A & B), Model (C) used few 
conditioning factors for flood susceptility mapping, to evaluate the predictive 
power of selected combination of parameters in Model C, only seven out of nine 
parameters were used. Eventually, three different kinds of flood susceptibility 
maps obtained Figure 5 and Table 2. Hence, there is a need for flood suscepti-
bility mapping, which can mitigate the impacts of flood, flood inventory and 
flood susceptibility maps are of a significant importance for developing and im-
planting flood mitigation and providing a base for proper flood management 
strategies. 

In this study, flood inventory was developed using remote sensing data. The 
spatial distribution of flood inventory was evaluated for developing flood sus-
ceptibility map using information value technique. 
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Study Area 

According to the 2017 population census, District Charsadda is the 7th largest 
district in the Province of Khyber Pakhtunkhwa, located between 34˚2'42" to 
34˚27'24" North Latitude and 71˚29'10" to 71˚56'7" East Longitude. The signifi-
cant crops in the area are sugarcane, wheat, rice, and tobacco. Intensive mon-
soonal rainfall and melting of snow from the mountainous region are the pri-
mary sources of river flow. The main sources of irrigation in the district are Riv-
er Swat, River Kabul along with the upper and lower swat canal, Michni Dalazak 
canal, and Dooaba feeder canal (Khan et al., 2013; Farish et al., 2017). According 
to the location and flow of rivers in the district make it susceptible to floods. 
Monsoonal rainfall starts in July and ends in September. Figure 4 shows the 
flooded area, the record 274 mm rainfall occurred on 29 July 2010, which results 
in the flooding which incurred around 1156 human losses and affected 3.8 mil-
lion people in Khyber Pakhtunkhwa (Ushiyama et al., 2014). The district was 
severely affected in 2010 flooding due to the intensive rainfall, and rivers failed 
to accommodate plenty of water. In 2010 the discharge of the Swat river at Munda 
headworks was recorded at 300,000 Cusec (Moazzam et al., 2018). 

This study is based on the devastating flood event, which occurred in July 
2010. Figure 2 shows the highest annual rainfall recorded in 2003 with 904 mm, 
which is followed by 710 mm, 667 mm, 642 mm, and 595 mm in 1983, 1996, 
1994, and 2010 respectively. However, the maximum annual rainfall in monsoon 
season (July-September) reaches to 400 mm in 2010, followed by 2003, 1984, 
1983 with 381 mm, 359 mm, and 298 mm rainfall, respectively 

2. Materials and Methods 

In this study information value technique used for flood susceptibility mapping. 
The methodology adopted for this study is given in Figure 3. 

2.1. Flood Inventory 

Flood locations were identified using Landsat 7 ETM+ captured after the flood 
event. The product consists of six multispectral bands with 30 m spatial resolu-
tion, one thermal band with 60 m spatial resolution and one panchromatic band  
 

 
Figure 2. Peshawar monsoonal and annual rainfall. 
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Figure 3. Road map of this study. Note: PRC = Prediction rate curve SRC = Success rate 
curve. 
 

 
Figure 4. Map of the study area-showing flood inundated area. 
 
with 15 m resolution. All raw images were atmospherically corrected. Eventual-
ly, flood, affected areas were demarcated by visual interpretation of Landsat 7 
ETM+ image (Table 1), and a total of 161-flood locations were mapped over the  
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Table 1. Characteristics of sensor/satellite images used in this study. 

Sensor/Satellite Spatial Resolution Acquisition Date 

ASTER DEM 30 m 25 July, 2015 

Landsat 7 ETM+ 30 m 04 August, 2010 

 
study area (Figure 4). It is necessary for developing the model to divide the 
flood inventory data into two groups, i.e., training and validation (Caniani et al., 
2008). For the development of the model, the training dataset was used to allo-
cate the weight values to each conditioning factors (Pradhan et al., 2014); on the 
contrary, validation flood inventory datasets were used to estimate the efficacy of 
the models. There are no such guidelines available for the division of inventory 
data (Pradhan, 2010). Thus, in this study, flood inventory was subsequently di-
vided into both 70:30 and 80:20 ratio to assess the effects of the division of in-
ventory data on the final susceptibility map and its efficacy.  

2.2. Flood Influencing Factors 

It is necessary to have main influencing factors for generating of flood suscepti-
bility map (Lee et al., 2012; Tehrany et al., 2015; Rahmati et al., 2016). Several in-
fluencing factors contribute to flooding, i.e., elevation, slope, aspect, curvature, 
plan and profile curvature, land use/land cover, proximity to roads, and proxim-
ity to rivers. The selection of influencing factors for flood susceptibility mapping 
varies from area to area. The correlation of each influencing factor should be as-
sessed with flooding to perform the flood susceptibility mapping (Elkhrachy, 
2015). 

All the conditioning factors were classified using the natural break classifica-
tion method (Margarint et al., 2013). The high-quality topographic representation  
is the base to build the best quality of flood susceptibility model. Low elevated 
and flat areas are more prone to flood, and for that purpose, ASTER DEM with 
30 m spatial resolution (Table 1) was used in this study to extract the elevation, 
slope, aspect, and curvature. The attribute of DEM can play a significant role for 
identifying the prone areas towards flooding (Pradhan, 2009). 

Land use/Land cover is the important influencing factor for flood suscepti-
bility assessment because each class of LULC has different effects on increasing 
or decreasing the flow of water. Shrubs and bushes can control and reduce the 
flood; on the contrary, barren/open land intensifies the flooding (Tehrany et al., 
2015). Common land use types in the study area are Settlement, agricultural 
land, shrubs and bushes, rangeland, and water bodies.  

Proximity to river is a significant factor due to its impact on flood spread and 
magnitude (Glenn et al., 2012). Euclidean distance tool was used to generate the 
proximity to the river map.  

Slope angle can hold the surface runoff infiltration and the velocity of water 
flow. The slope angle is inversely proportional to rise in the lower catchment 
(Tehrany et al., 2015; Khosravi et al., 2016). 
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Curvature is the significant geomorphological index extracted from DEM, 
which defines the rate of change of slope in a particular direction. Plan and pro-
file curvature can better assess the flow and slope morphology (Tehrany et al., 
2014).  

Proximity to roads, the impact of roads on water depth is less significant as 
compared to the velocity of the flood, which can cause damage to the roads and 
flow-through structures (Nam, 2011).  

Slope aspect is concerned with trends of earth surface and patterns of mois-
ture in the soil, so it is considered as an effective hydrological factor.  

Elevation is considered as the most significant factor as it decreases the oc-
currence of flood and increases the flood resilience because it is a natural fact 
that on high elevated areas, flood cannot occur.  

Information Value Method 
Information value is a bivariate statistical method proposed by (Yin & Yan, 
1988) and later modified by (Van Westen, 1993). In statistical analysis, all para-
meters are compared to the flood inventory map. The weighted values were used 
to categorize the classes of the parameters based on landslide density (Yalcin, 
2008). IFV was used to predict the event based on the correlation between flood 
inventory map and its conditioning factors. This method can determine the im-
pact of flood conditioning parameters on floods in the area (Zêzere, 2002). The 
information value li of each factor i can be calculated using the formula given 
below (Yin & Yan, 1988). 

log i i
i

S N
l

S N
=                            (1) 

where 
Si = class containing the landslide pixels. 
Ni is the total number of pixels in the class. 
S is the total number of landslides pixels in the study area. 
N is the total number of pixels in the study area. 
The natural logarithm takes care of variations in the values if the density of 

flood is lower than normal, the negative weight will be assigned, and if the den-
sity of flood is more than normal, the positive weight will be assigned (Saha et 
al., 2005). Thus the information value of each class of a parameter was summed 
up using (Equation (2)). 

1FSI n
ii I

=
= ∑                            (2) 

3. Results and Discussion 

The flood susceptibility maps were produced from the bivariate statistical me-
thod alongside its sub-models using a GIS-based approach.  

3.1. Information Value Method and Flood Susceptibility  
Assessment 

The information value of each influencing factor was calculated through Equa-
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tion (1), and their relationship with the occurrence of the flood is shown in 
(Table A1). The lowest class (274 - 317) in elevation has the highest IFV in 
Model A and Model B, which are 330.157 and 0.178, respectively, and except 
that all other classes have no or very less impact on flooding. The results indi-
cated the behavior of flooding, which mostly occurred on the flat land (Tehrany 
et al., 2015). River is the most important conditioning factor in flood susceptibil-
ity assessment, and a range of 200 m distance from the river has a substantial ef-
fect on flooding in both models with IFV of 0.2319 and 0.265 for Model A and 
Model B, respectively. In LULC, each class has a different impact on flooding, 
and shrubs can control the speed and reduce the flooding (Tehrany et al., 2015), 
as it is showed by the lowest IFV value in Model A and Model B −0.0926 and 
−0.189 respectively. 

Moreover, in both models, barren land showed no impact on flooding. How-
ever, water bodies, rangeland, and settlement have a high impact on flooding in 
both models with IFV of (0.6329, 0.580), (0.2908, 0.444), and (0.1159, 0.020) re-
spectively. Low-lying areas in comparison to steep slopes are more susceptible to 
flooding, and the IFV indicated it in the class of 0.58˚ - 1.43˚ and 3.30˚ - 6.58˚ 
for Model A and Model B with 0.0122, 0.044 and 0.5609 respectively. It can be 
indicated that as the slope is higher, the incidence of flooding in lower parts of 
the catchment will rise as well (Tehrany et al., 2015). The concave and convex 
slopes in curvature, plan, and profile curvature parameters have comparatively 
high IFV value to flat areas. In the case of the slope aspect, flat land is more sus-
ceptible in both models 0.0217 and 0.141. North, southeast, and southwest-facing 
slope also showed positive values towards the occurrence of flooding in the study 
area. For distance from roads in the range of 101 - 200, 201 - 300, 301 - 400 and 
401 - 500, has an increasing trend of IFV values found with increment in dis-
tance from the roads. 

After the calculation of IFV values for all influencing parameters, that values 
were assigned to each concerned class of a parameter and summed up using Eq-
uation (2) in order to get the final flood susceptibility map. 

The final susceptibility maps were divided into various zones range from very 
low to very high using the natural break classification method (Figure 5). 

3.2. Validation of the Model 

The results obtained from the models were evaluated with success and predic-
tion rate curve, and the area under curve (AUC) was calculated using Excel 
software. The area under curve indicates the efficacy of the model for its reliabil-
ity in the prediction of flood occurrence (Chung & Fabbri, 2003). The model 
would be considered good if AUC value ranges from 50% - 100%; however, be-
low 50% would be considered as a failure of the model. For the success rate 
curve, the training flood inventory (112, 129) was compared with flood suscepti-
bility maps (Figure 6), and area under curve of three models were calculated. 
The results obtained from the success rate curve of all the models shown in  
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Figure 5. Flood susceptibility maps (a) Model A; (b) Model B; (c) Model C. 

 

 
Figure 6. Success rate curve with area under curve for flood susceptibility maps. 

 
(Figure 5). Though, the results indicated by the success rate curve are not ap-
propriate for predicting the flood (Brenning, 2005). That is why the prediction 
rate curve is taken into consideration to predict the occurrence of flood and can 
describe how well the flood models and its conditioning factor predict the 
flooding (Chung & Fabbri, 2003; Brenning, 2005). Thus, the prediction rate 
curve results were obtained by comparing the validation flood inventory map 
(49, 32) with flood susceptibility maps (Figure 5). Figure 7 shows the results 
obtained from the prediction rate curve and area under curve (Table 2) for the 
three models are 99.47%, 95.04%, and 94.06%. 

Subsequently, the results obtained from the success and prediction rate curves 
indicated that Model A is more accurate in assessing floods as compared to 
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Model B and Model C, but the results of success and prediction rate curve 
proves that all the models (flood inventory with 70%, 80%, and few selected pa-
rameters) have overall good accuracy for assessing flood in the study area. And 
the comparison of flood susceptibility zones with flood inventory map also 
proved that calculated and classified susceptibility zones are in good agreement 
because of very high, high, and moderate susceptibility zones covered most of 
the flooded area (Figure 8). 
 

 
Figure 7. Prediction rate curve for flood susceptibility maps. 

 

 
Figure 8. Flood susceptibility zones and the observed flood area in percentage. 

 
Table 2. Various types of flood inventories, & combination of causative factors and AUC 
in percentage. 

Model Factors Combination and different types of flood inventory AUC (%) 

Model A 
All nine factors with 80% flood inventory 

(Elevation, Slope, Aspect, LULC, Curvature, Plan and 
Profile Curvature, Proximity to roads and Proximity to rivers) 

99.47 

Model B 
All nine factors with 70% flood inventory 

(Elevation, Slope, Aspect, LULC, Curvature, Plan and 
Profile Curvature, Proximity to roads and Proximity to rivers) 

95.04% 

Model C 
Elevation, Aspect, Land use/Land cover, 

Plan and profile curvature, Proximity to river 
94.06% 
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3.3. Discussion 

It has been mentioned that bivariate statistical methods usually use in hazard 
studies with a pre-defined ratio of inventory dataset. However, a few researchers 
have used different ratio of inventory (Bacha et al., 2018), however, in this study, 
both (70% & 80%) training dataset and different combinations of conditioning 
factors were used for producing the susceptibility maps, which make this study 
novel. Many researchers have used 70:30 ratio for inventory and a few used 
80:20 ratio but this study used both to test what are the effects of random inven-
tory data on final susceptibilty map which also differentiate this work from oth-
ers.  

The correlation between flooding and its conditioning nine factors was inves-
tigated using the information value method (IFV) and their results shown in 
(Table A1). The study revealed that proximity to roads, proximity to rivers, land 
use/land cover, and low elevated areas of the nine factors are the significant fac-
tors for the occurrence of flooding. Especially, the proximity to river is the most 
important factor for flooding in the study, which is also observed by Tehrany et 
al. (2014). The majority of floods occurred within the range of 200 m from riv-
ers. According to Tehrany et al. (2014), the elevation and curvature are generally 
the essential factors for the occurrence of flood. The results of this study revealed 
that flood occurs on the low elevated and flat area (Table A1). The elevation 
class below 317 m and slope angle in a range of 3.30 - 6.58 were the most sus-
ceptible areas for flooding. Moreover, it is also the natural fact that floods cannot 
occur in high elevated areas, and when the angle of slope increases, the number 
of flood cases increases in the catchment area (Tehrany et al., 2015; Khosravi et 
al., 2016). Among the concave and convex slope of curvature, plan and profile 
curvature were found more susceptible to flooding which is also observed by 
Khosravi et al., (2016) but contradicting with various other studies (Tehrany et 
al., 2014; Tehrany et al., 2015; Rahmati et al., 2016). Flat, north, southeast, and 
southwestern slopes are more susceptible to the occurrence of flooding. Rahmati 
et al. (2016) also concluded that flat and southwest facing slopes are susceptible 
to flooding. Rangeland and water bodies class from land cover factor has the 
highest IFV values 0.444 and 0.580, respectively. From the results, we found a 
close relationship of flood susceptibility with distance from roads, and it is clear 
from Table A1, that distance from roads increase the flood susceptibility in-
crease. 

Based on the results, the very high and high susceptibility zones contribute 
23% in model A, 20%, and 16% in model B and model C, respectively. Mostly 
very high and high susceptible zones are located in the north, east and southeas-
tern parts of Charsadda and its proportion expressively increase in the southeas-
tern part. According to the flood susceptibility map of Charsadda, most parts are 
located in very low and low susceptibility zones.  

In this study, the effects of different combination of flood inventory dataset 
and the combination of various conditioning factors were also assessed (Table 2 
and Figure 5). The prediction rate curve for Model A, Model B, and Model C 
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was obtained 99.47%, 95.04%, and 94.06%, respectively. Meanwhile, the success 
rate curve also showed that Model A has the better accuracy as compared to 
Model B and Model C, with area under the curve obtained 95.03%, 86.91%, and 
89.67% respectively. As the one way ANOVA and student t-test were performed 
to test the significant difference between the maps obtained from the given 
models, the result of tests showed no significant difference between them. Thus, 
we can find that the various types of flood inventory maps and combinations of 
different influencing factors have no significant variation on the final flood sus-
ceptibility map in the study area. 

4. Conclusion 

Floods are the most dominant and destructive phenomena in Pakistan. Flood 
susceptibility mapping has been used for watershed management in order to 
have sustainable development. For the mapping, it is necessary to have an accu-
rate and reliable method to identify the flood-prone areas; moreover, this needs 
to gain the author’s attention to understand the capabilities of these approaches. 
In this study, flood susceptible zones have been identified using IFV (Informa-
tion Value) method. Initially, flood inventory map with 161 floods locations was 
prepared by the visual interpretation of Landsat 7 ETM+ satellite image. The 
nine conditioning factors (Elevation, slope degree, slope aspect, slope curvature, 
plan, and profile curvature, LULC, proximity to roads, and rivers) were used for 
the flood susceptibility maps using the IFV method. Eventually, AUC curves us-
ing validation datasets were produced to test the efficacy of the model. The vali-
dation results show that IFV with various flood inventory types and combina-
tions of various conditioning factors have more or less similar results.  

The information values calculated for the nine factors helped to determine the 
significance of them for the occurrence of flooding in the study area. In these the 
factors, proximity to roads, proximity to rivers, land use/land cover, and eleva-
tion are significant contributing factors for flooding that were found. The flood 
inventory map and flood susceptibility map generated in this study could be 
used for flood hazard and risk management. Therefore, this map can also assist 
decision-makers, urban planners, and engineers for proper actions to avoid and 
lessen the flood occurrence in future. 
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Appendix A 
Table A1. Results of information value method for each conditioning factor. 

Class 
Pixels of 

each class 
Flood 
Pixel 

CP 
IFV with 
Model A 

CP 
IFV with 
Model B 

Elevation (Meters) 

274 - 317 466,124 89 0.000146 0.1575 0.000191 0.178 

318 - 350 367,727 40 0.000073 −0.1406 0.000109 −0.066 

351 - 390 247,160 25 0.000077 −0.1207 0.000101 −0.098 

391 - 458 166,005 7 0.000024 −0.6245 0.000042 −0.478 

459 - 611 18,917 0 0.000000 0.0000 0.000000 0.000 

612 - 964 4979 0 0.000000 0.0000 0.000000 0.000 

Slope (Degree) 

0 - 0.57 520,284 66 0.000081 −0.0995 0.000127 0.001 

0.58 - 1.43 613,058 86 0.000104 0.0122 0.000140 0.044 

1.44 - 3.29 118,520 9 0.000067 −0.1772 0.000076 −0.222 

3.30 - 6.58 10,831 0 0.000369 0.5609 0.000000 0.000 

6.59 - 11.01 5711 0 0.000000 0.0000 0.000000 0.000 

11.02 - 36.47 2508 0 0.000000 0.0000 0.000000 0.000 

Aspect (Degree) 

Flat 131,208 23 0.000107 0.0217 0.000175 0.141 

North 133,490 27 0.000120 0.0722 0.000202 0.203 

Northeast 146,388 14 0.000096 −0.0259 0.000096 −0.122 

East 154,737 20 0.000058 −0.2418 0.000129 0.009 

Southeast 173,611 15 0.000109 0.0327 0.000086 −0.166 

South 163,803 23 0.000085 −0.0747 0.000140 0.045 

Southwest 135,492 12 0.000140 0.1404 0.000089 −0.155 

West 125,161 16 0.000032 −0.5019 0.000128 0.004 

Northwest 107,022 11 0.000084 −0.0817 0.000103 −0.091 

Curvature 

Concave 184,356 28 0.000125 0.0896 0.000152 0.079 

Flat 680,373 73 0.000066 −0.1860 0.000107 −0.072 

Convex 406,183 60 0.000123 0.0838 0.000148 0.067 

Plan Curvature 

Concave 117,848 21 0.000144 0.1527 0.000178 0.148 

Flat 740,636 81 0.000073 −0.1437 0.000109 −0.064 

Convex 412,427 59 0.000114 0.0503 0.000143 0.053 

Profile Curvature 

Concave 215,066 33 0.000126 0.0923 0.000153 0.083 

Flat 771,656 91 0.000082 −0.0946 0.000118 −0.031 

Convex 284,189 37 0.000099 −0.0129 0.000130 0.012 
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Continued 

Land use/Land cover 

Settlement 82,986 11 0.000133 0.1159 0.000133 0.020 

Agriculture Land 1,018,926 109 0.000075 −0.1338 0.000107 −0.073 

Shrubs & Bushes 12,193 1 0.000082 −0.0926 0.000082 −0.189 

Rangeland 45,387 16 0.000198 0.2908 0.000353 0.444 

Barren Land 44,204 3 0.000045 −0.3509 0.000068 −0.271 

Water bodies 43,594 21 0.000436 0.6329 0.000482 0.580 

Proximity to river 

0−200 450,493 105 0.000173 0.2319 0.000233 0.265 

201 - 400 347,701 31 0.000066 −0.1860 0.000089 −0.153 

401 - 600 211,244 11 0.000038 −0.4282 0.000052 −0.386 

601 - 800 131,972 8 0.000045 −0.3488 0.000061 −0.320 

801 - 100 86,800 3 0.000012 −0.9450 0.000035 −0.564 

>1001 42,702 3 0.000047 −0.3359 0.000070 −0.256 

Proximity to road 

0 - 100 585,851 51 0.000055 −0.2691 0.000087 −0.163 

101 - 200 388,331 47 0.000106 0.0171 0.000121 −0.020 

201 - 300 193,749 25 0.000108 0.0285 0.000129 0.008 

301 - 400 72,111 27 0.000236 0.3660 0.000374 0.471 

401 - 500 24,162 11 0.000290 0.4555 0.000455 0.556 

>501 6708 0 0.000000 0.000 0.000000 0.000 

Note: Total No. of Flood pixels = 161, No. of Pixels used in training the model = 112 & 129 (70% and 80% 
model), No. of pixels in study area = 1,270,912, Prior probability = 0.0009 (70%) & 0.00010 (80%), CP = 
Conditional probability, IFV = Information value. 
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