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Abstract 
Understanding and simulating the underlying microscopic physics of the 
rock matrix is very useful for determining macroscopic physical properties 
such as permeability. Matrix diffusion is an important transport parameter 
controlling the late-time behaviour of breakthrough curves (BTCs). We com-
pute the memory function, implemented in the sink/source term of Mo-
bile-immobile mass transfer by solving the matrix diffusion using a time dif-
fusion random-walk approach. The diffusion is controlled by different para-
meters like the porosity, tortuosity, mobile-immobile interface and immobile 
domain cluster shapes. All these properties are investigated by X-ray micro-
tomography that captures the main characteristics of matrix diffusion at three 
dimensions. We compare the memory function deduced from the field-scale 
tracer tests well with the computed memory function. Simulation results of 
the memory function appeared to be coherent with that measured from the 
tracer test for a large tortuosity value. Probably, the diffusion paths are longer, 
and they are controlled by the properties mentioned above. From a representa-
tive elementary volume of natural reservoirs studied here, we conclude that, 
microscale diffusion process in the immobile domain play a crucial role to 
better understand the non-Fickian dispersion measured from the tracer test. 
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1. Introduction 
Transport properties in porous media are probably the most important parame-
ters in many geophysical and engineering situations, including pollutant migra-
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tion. Porous media, such as rocks, consist of pore space and a solid matrix. The 
pore spaces are usually connected, which allows fluid flow and mass transfer to 
take place. Permeability and electrical conductivity, as well as other parameters, 
are strongly influenced by the pore structure and pore-scale physics. In fact, we 
can determine the exact transport properties (Cai et al., 2019) of a porous me-
dium if we can solve the physical equations on a real pore space. However, Ma-
trix diffusion has an effective effect on the transport mechanism (Zhan et al., 
2019; Zhou et al., 2017), controlling the late-time behaviour of breakthrough 
curves (BTCs) (Zhou et al., 2018; Shapiro, 2001; Zhoua et al., 2007; Gouze et al., 
2008). An immobile volume zone in the matrix becomes accessible to solutes by 
diffusion. This process causes a delay of solutes arrival times and consequently 
produces strongly asymmetric BTCs (non-Fickian) at the macroscopic scale 
(Zhoua et al., 2007; Gouze et al., 2008; Berkowitz & Scher, 2000; Meigs & Beau-
helm, 2001; Levy & Berkowitz, 2003). Many authors focus on the transport in the 
rock’s matrix. Carrera (Carrera et al., 1998) proposed a formulation of the 
sink/source term of the transport equation, to characterize diffusion in the sim-
ple geometry of matrix (e.g., labs and spheres). Reference (Haggerty et al., 2000; 
Haggerty et al., 2001; Haggerty et al., 2004) reported a study on the transport in 
the rock matrix using the multiple rates of mass transfers for any complex struc-
tures (Gouze et al., 2008) reported a study to solve the transport using a 2-D mi-
croscale description of the matrix structure, precisely by computing the memory 
function in Mallorc limestones sample using the classical random walk particle 
tracking method (Salamon et al., 2006; Delay et al., 2005). These authors were 
inspired by the non-Fickian dispersion observed on tracer test BTCs. The idea is 
to link this observation from field scale, to microscale diffusion process within 
water immobile zones. The results obtained by (Gouze et al., 2008) showed that 
large-scale non-Fickian dispersion is controlled by the microscale matrix diffu-
sion. 

This class of model is often referred to as a mobile/immobile (MIM) mass 
transfer model by which solutes transfer from the water-flowing portions (mo-
bile) of permeable media to the non-flowing portions (immobile). In recent 
years, computing power is increasing; the simulation techniques are becoming 
an alternative solution. Recently, (Dweik et al., 2015) showed that computed 
memory function from three-dimensional XMT images provides a more accu-
rate definition than the two-dimensional ones. The problem that should be ad-
dressed is the delayed time behavior of BTCs that is related to the memory. The 
motivation of this study is the results obtained (Gouze et al., 2008). From XMT 
cross sections, the residence time of the tracer in the immobile domain is unde-
restimated when computed, may be the calculations carried out on longer cross 
sections diffusion paths. Probably three-dimensional computations tend to 
lengthen the time axis if the diffusion paths are longer. 

In this paper, we determine the memory function by 3D computations in mi-
croscale matrix structure, whose properties are investigated by X-ray microto-
mography (XMT). We solve the transport in heterogeneous matrix by the time 
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diffusion random walk (TDRW) method inspired by (Delay et al., 2002; Sardini 
et al., 2003; Sardini et al., 2007). Then, we develop an algorithm to compute the 
memory function in real matrix structure extracted from X-ray micro-tomo- 
graphy (XMT). In addition, the tortuosity parameter and its effect on the beha-
viour of memory function at the different percolation thresholds is quantified. 
Finally, we compare the computed memory function with those deduced from 
the field-scale tracer tests. 

2. Experimental Data 

The tracer tests discussed here are performed in a Miocene reef formation si-
tuated 50 km from Palma de Mallorca (Balearic Islands). The reservoir rock is a 
pure bioclastic carbonate (calcite). The characteristics of the medium, the tracer 
test equipment and protocols as well as the results obtained for the 10 tests per-
formed at depth, 94 m are detailed by (Gouze et al., 2008; Khrapitchev & Cal-
laghan, 2003). Cylindrical minicores of 18 mm length and 10 mm diameter were 
sampled from the borehole core at a depth corresponding to the SWIW tracer 
tests. Micro-Tomography XMT was used to investigate the pore space of Mal-
lorca limestone. Data were collected using the BM5 beam line of the European 
Synchrotron Radiation Facility (Grenoble, France). The stages of identification 
of different regions in the cluster (Figure 1) are well detailed in the previous ar-
ticle (Dweik et al., 2015). 

3. Mathematical Formulations and Algorithm 

In the immobiledomain, the complicated microstructure causes the microporos-
ity, tortuosity, and the diffusion coefficient, to vary spatially i.e., ( )im im xφ φ′ ′ ′= , 

( )im im xτ τ ′=  and ( )im imd d x′= , respectively. In a heterogeneous matrix, the 
diffusion equation can be written as: 

( ) ( ) ( )
,

,im
im im im

c x t
d x c x t

t
φ

′∂
′ ′ ′= ∇ ⋅ ∇

∂
                 (1) 

The grey level of each voxel of the image can be converted into an effective 
porosity value ( )im xφ′ ′  and the tortuosity of diffusion path is assumed to be ex-
pressed by an inverse power of the immobile porosity ( ) ( ) nx xτ φ −′ ′ ′= . The 
boundary condition ( ) ( ),,im m x tx

c x t C
′ ∂Ω

=′
  

at the domain boundary ∂Ω  be-
tween mobile/immobile zone and initial condition ( ), 0 0imc x t′ = = . The spa-
tially variable diffusion coefficient ( )d x′  in the immobile region depends on 
the microporosity ( )xφ′ ′  and tortuosity ( )xτ ′  such that 

( ) ( ) ( )0im im imd x d x xφ τ′ ′ ′ ′=                          (2) 

The tortuosity mτ  is an important transport parameter controlling the arriv-
al time of the tracers in porous media (mobile zone). These parameters can be 
deduced from numerical simulations of time-dependent effective diffusion coef-
ficient in the porosity of the rock. In the matrix, the tortuosity imτ  of diffusion 
path is assumed to be expressed by an inverse power of the immobile porosity  
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Figure 1. Three-dimensional volume (510 × 510 × 510 pixels) that represents of 
a sub-volume in sample with the coordinates are given in pixels (pixel size 5.01). 
The immobile fraction is displayed in blue, the mobile fraction of the connected 
macroporosity is displayed in cyan, the porosity of the microporous phase is 
displayed in shades of gray with dark and light gray denote low and high poros-
ity, respectively, and the non-connected macroporosity is displayed in green. 

 
( ) ( ) n

im imx xτ φ −′ ′ ′= . The value of ( )im xφ′ ′< >  is known, so we assume the value 
of imτ  is up or equal to mτ . Subsequently the diffusion in the immobile do-
main is given simply given by 

( ) ( )10
n

im imd x d xφ +′ ′ ′=                            (3) 

where 0d  is the molecular diffusion coefficient. 

3.1. Time Domain Random Walk (TDRW) 

The TDRW simulates solute transport in 3D heterogeneous media and calculates 
the arrival time of a particle cloud at a given location. The principle is to calcu-
late the diffusion time needed by a particle to jump from one center to the other 
center of neighbouring voxels with the transition probability P. Each particle 
holds its location and residence time, which are recorded at each jump. This 
method is inspired by and modified from attempts in petroleum engineering to 
solve the steady-state flow equation (Delay et al., 2002; McCarthy, 1993; Dentz et 
al., 2012). The diffusion time from i to j across the volume of voxel I is given by 

i
i

j
j

ij

V
b→Γ = −

∑
                             (4) 
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with the probability ij  corresponding to the fraction of the volumetric flux 
that passes by diffusion from i to j such as: 

ij
i j

j ij

b
b→ =

∑
                                (5) 

with ( ) .ij ij im ijij
b S d L=  

The Equations (4) and (5) can be integrated in the algorithm of memory func-
tion to determine respectively the diffusion time and the displacement of the 
particles. 

3.2. Algorithm of Memory Function 

In the mobile domain, the sink/source term implemented by the transport equa-
tion can be expressed as the convolution product of the time variation of the 
mobile concentration mC t∂ ∂  by the porosity imφ  in immobile domain and 
time-dependent function, called the memory function G(x,t), (Gouze et al., 2008; 
Carrera et al., 1998; Haggerty et al., 2000) such that: 

( ),m
im im

C
F G x t

t
φ

∂
= ∗

∂
                         (6) 

the memory function is an intrinsic characteristic of the medium, depends only 
on the properties of the immobile domain, then the Equation (6) is easy to 
compute. 

The memory function G(t) is the probability that a tracer entering the immo-
bile zone will stay there until time t (Haggerty et al., 2004). We develop an algo-
rithm to compute the memory function using the TDRW method. The goal is to 
calculate the diffusion time required for a particle to go from one center to 
another of the neighboring pixels according to the transition probability P. Large 
number of random walkers sN  up to 108 is applied in the simulation to obtain 
clear results. The initial distribution of the random walkers at time t = 0, is at the 
mobile-immobile interface over a small volume SV Sε

Ω Ω= . One of three possi-
ble movements is executed: 1) The walker is free to move. 2) the walker strikes a 
nonpermeable solid grain ( imφ′  bigger than a given threshold φξ ). In this case 
the jump is not performed, and a new random position is selected for a new po-
sition to be observed. 3) The walker crosses the surface SΩ  of the immobile 
domain. Until the last particle leaves the immobile domain, the total number of 
random walkers inside the immobile domain ( )VN t′  is recorded as function of 
time. Finally, we determine the memory function by the formula given by (Gouze 
et al., 2008) 

( )
V

d

d s

tN
SG t
V N

ε
τ

τ
Ω

Ω

 
 
 =                           (7) 

with dτ  being the diffusion scale defined by 

( )2
02d Ddτ ε=                            (8) 
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And aLε =  is a small number with 0 < a < 1 and L the length of a voxel. 

4. Simulation Results and Discussion 
4.1. Memory Function GXMT 

First, the aim is to compare the memory function in section and volume from 
the sample presented in Figure 1. The residence time of the solute in the immo-
bile domain is computed, using the algorithm described in Section 3. All the pa-
rameters or the properties extracted from the samples (sub-volume V) are 
known except for the value of the porosity at the percolation φξ , and the tor-
tuosity in the immobile domain. The memory function has been computed for 
all sections ,xy yzS S  and xzS  in the sub-volume sample. Results are compared 
with the memory function computed from the total sub-volume V. Figure 2 
shows that the memory function G(t) slopes are similar, 1γ ≈  at early time 

210t < . However, longer diffusion time in three-dimensional computations is 
observed than in two-dimensions at late time. This might be linked to several 
factors. First, the particles in 3D walk a long path controlled by the effective val-
ue of the porosity at the percolation threshold. In terms of a continuous model, 
forming a connected voxel belonging to the immobile domain is equal to its 
cluster of pores and requires porosity above a given threshold φξ  (Gouze, 
2008). Also, the matrix block shape is integrated with the surface. Furthermore, 
the heterogeneity of the porosity is in different directions (x, y, z). 3D computa-
tions stretch the time axis because the diffusion paths are longer. The memory 
function computed from XMT images at three-dimensions provides a more ac-
curate definition rather than the two-dimensional, as the simulations results, 
shows a longer residence time of particles in the immobile domain. 

In this section, we present the simulation results of the memory function 

XMTG  in 3D heterogeneous matrix structure using the XMT images (microscale 
approach). Here, we quantify the roles of the porosity at the percolation thre-
shold φξ  on the behaviour of memory function curves. Results are compared 
(Figure 3) for different φξ  values (0, 0.4, 0.5 and 0.6) and show that the mem-
ory function slopes γ  and the late-time breakthrough are not similar. At early 
time, the memory function slopes decrease when φξ  increases. The diffusion 
path of the particles is controlled by the surface block shape (mobile-immobile 
interface geometry) of the matrix and by the heterogeneity of the porosity. For 

0.6φξ =  the slope of the memory function is very close to the value measured 
on the tracer test BTCs at intermediate time ad ct t t< <  ( adt  and 𝑡𝑡𝑐𝑐  are the 
advection and transition time respectively). In contrast, for a long time, the res-
idence time of the particles becomes longer when φξ  increases, according to the 
probability of displacements. In this context, we quantify the roles of the tor-
tuosity τ . This factor is certainly the most important parameter controlling the 
effective diffusion of the tracers without forgetting the mobile-immobile inter-
face geometry. A power law relationship, ~ n

imτ φ−  with different value of n = 
0, 2 and 4, is used in the numerical simulation. The influence of the tortuosity  
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Figure 2. Computed memory function G(t) in 2-D structure with 510 × 510 
pixels size along z direction versus G(t) in 3-D structure with 510 × 510 × 
510 pixels size. 

 

 
Figure 3. Memory function computed in cross sub-volume V for different value of

0,0.4,0.5φζ =  and 0.6A power law relationship n
imτ φ−∼  at different value of n = 0, 2 

and 4 is used in the numerical simulation. 
 
value on the memory function shape appeared on the late time breakthrough. It 
is clear that the residence time of the particles inside the matrix increase when 
the value of tortuosity increases. 

4.2. Comparison of GXMT Versus GMIM 

Figure 4(a) shows the Breakdown Curve (BTC) obtained from the plotting ex-
periment and the fitted curves of the MIM model (Gouze et al., 2008). Concen-
tration, C, is normalized by dividing it by C0, the concentration of the injected 
tracer, and the injection duration, t∆ . The unusual shape at the end of the  
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Figure 4. (a) Best fit of the SWIW tracer test BTC; (b) Memory function GXMT computed 
using the XMT cross section S4 compared to the memory function (GMIM) (Gouze et al., 
2008). 

 
curve is modeled by an MIM mass transfer model using the CTRW approach 
with a double slope transition time distribution (Le Borgne & Gouze, 2008). 
Figure 4 (right), shows the GMIM corresponding to the SWIW tracer tests, such 
as the memory function best fits of BTC, is obtained by a trial-and-error method 
(Carrera et al., 1998). The GMIM is compared to GXMT computed from a section. 
The two memory functions are similar at the beginning ( ( )310t < , which em-
phasizes that the scaling of the memory function GMIM is well explained by pore 
scale diffusion processes for the shortest diffusion times. However, the value of 
the transition time between ( ) 1G t t−∼  behavior and ( ) 0.5G t t−∼  behavior is 
noticeably smaller (almost one decade) for the pore-scale computed memory 
function GXMT. Similarly, the cutoff time is about two decades less than the 
minimum cutoff time required to fit the tracer test data and the effective value of 
the porosity at the percolation threshold should be different (Gouze et al., 2008). 

In this section, we compare the memory function GMIM obtained from the 
SWIW tracer tests with that computed in the subvolume V and cross section S 
(Figure 5). The computed slope for GXMT at 0.6φξ =  and n = 6 in 2D and 3D is 
similar to the value measured on the tracer test BTCs at an early time 
( ) 1G t t−∼  for t < 103. However, for 103 <t < 104 the ( ) 0.5G t t−∼ . At a late time 

t > 104 the adjusted value of n = 6 corresponds to a Higher tortuosity imτ  in the 
matrix, the memory GXMT computed from 3D subvolume provides a more accu-
rate definition as mention before. Considering that both the dual slope beha-
viour is controlled by both the matrix block shape and the heterogeneity of the 
porosity control the dual slope behaviour, 3D computations stretch the time axis 
because the diffusion paths are longer. The value of n can be estimated, based on 
the tortuosity mτ  in the mobile domain. Accordingly, when im mτ τ>  the best 
value of n that fits the tracers test is equal to 6. For instance, the tortuosity of the 
diffusion paths, as well as the variability and the spatial correlation of the diffu-
sivity along the paths are probably imperfectly modelled by a relation of the 
form n

imd φ∼ . 
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Figure 5. Memory function GMIM from the best fit of the SWIW tracer test BTC 
compared to the memory function GXMT computed using the XMT cross 
sub-volume (3D) and cross section (2D) in sample S94_1_1. 

5. Conclusion 

In this paper, we determine the memory function to characterize the diffusion in 
the matrix (i.e., the immobile domain). This study gives a deep understanding 
on the large-scale non-Fickian dispersion that is, controlled by the microscale 
properties of the matrix. The XMT technique appears to be a promising tool to 
capture the properties of the immobile domain at 3D and then compute the 
memory function using the time domain random walk. The variation of the 
memory function at late time is controlled by the tortuosity of the diffusion path 
and the value of the porosity at the percolation threshold. Using the empirical 
relation n

im imτ φ−∼  and 0.6φξ =  for n = 6 the memory function computed 
from XMT images at three-dimensional provides a more accurate definition ra-
ther than the two-dimensional, as the simulations results, show a longer resi-
dence time of particles in the immobile domain. Using 3D computation of the 
memory function can provide insights on the delay of the tracer’s arrival time 
caused by the matrix structure parameter. Furthermore, the simulation results 
obtained in this study is coherent with those measured from the tracer test. A 
diffusion mobile-immobile mass transfer model appears to be valid for the re-
servoir rock studied, and the atypical non-Fickian dispersion measured from the 
tracer test well explained by the microscale diffusion processes in the immobile 
domain. Finally, it is interesting to determine the memory function in another 
type of reservoir rock. 
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