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Abstract 
Understanding the relationship between rainfall anomalies and large-scale 
systems is critical for driving adaptation and mitigation strategies in socioe-
conomic sectors. This study therefore aims primarily to investigate the corre-
lation between rainfall anomalies in Rwanda during the months of September 
to December (SOND) with the occurrences of Indian Ocean Dipole (IOD) 
and El Nino Southern Oscillation (ENSO) events. The study is useful for early 
warning and forecasting of negative effects associated with extreme rainfall 
anomalies across the country, using Climate Hazards Group InfraRed Preci-
pitation with Station (CHIRPS), the National Centers for Environmental Pre-
diction (NCEP) National Center for Atmospheric Research (NCAR) reanaly-
sis sea surface temperature and ERA5 reanalysis datasets, during the period of 
1983-2021. Both empirical orthogonal function (EOF), correlation analysis 
and composite analysis were used to delineate variability, relationship and the 
related atmospheric circulation between Rwanda seasonal rainfall September 
to December (SOND) with Indian Ocean Dipole (IOD) and El-Nino South-
ern Oscillation (ENSO). The results for Empirical Orthogonal Function (EOF) 
for the reconstructed rainfall data set showed three modes. EOF-1, EOF-2 
and EOF-3 with their total variance of 63.6%, 16.5% and 4.8%, Indian ocean 
dipole (IOD) events resulted to a strong positive correlation of rainfall ano-
malies and Dipole model index (DMI) (r = 0.42, p value = 0.001, DF = 37) 
significant at 95% confidence level. The composite analysis for the reanalysis 
dataset was carried out to show the circulation patterns during four different 
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events correlated with September to December seasonal rainfall in Rwanda 
using T-test at 95% confidence level. Wind anomaly revealed that there was a 
convergence of south westerly winds and easterly wind over the study area 
during positive Indian Ocean Diploe (PIOD) and PIOD with El Nino con-
currence event years. The finding of this study will contribute to the en-
hancement of SOND seasonal rainfall forecasting and the reduction of vulne-
rability during IOD (ENSO) event years. 
 

Keywords 
Correlation, Rainfall Anomalies, Rwanda, Indian Ocean Dipole, El Nino 
Southern Oscillation 

 

1. Introduction 

Rainfall and its unpredictability are critical to agricultural activity in African 
countries including Rwanda, because the sector is rainfall-dependent. Agricul-
ture is an important economic sector, dependent on rainfall regimes that are 
mainly unpredictable, highly variable, and seasonal in character (Akpoti et al., 
2016; Ongoma et al., 2015; Wainwright et al., 2020). Rainfall variability in Africa 
has been seen to be seasonal, inter-annual, and decadal (Li et al., 2016; Nichol-
son, 2019). El Nino-Southern Oscillation (ENSO), a natural phenomenon con-
nected with sea surface temperatures in the Tropical Pacific, is the primary cause 
of this fluctuation in rainfall in the sub-region and the tropics in general. The 
term Southern Oscillation (SO) is commonly used to describe a planetary scale 
phenomenon that involves a seesaw in surface pressure between Indonesia and 
the southeast Pacific (Ogallo, 1988; Yang et al., 2018). El Nino is the strongest 
inter-annual climate variation in the tropical Pacific air-sea coupled system, oc-
curring at irregular intervals of two to seven years and lasting nine months to 
two years; it is well known for its association with natural disasters in far-flung 
parts of the world (Liang, 2014; Bayable et al., 2021). The term ENSO cycle de-
scribes how the air circulation and weather patterns change over a very large 
area together with the increase, peak, and decrease of sea surface temperature 
anomalies in the eastern and central Pacific (Mcgregor, 2018). Indian Ocean Di-
pole (IOD) on the other hand, is another air-sea coupled climate mode in the In-
dian Ocean, characterized by an aperiodic oscillation of sea surface temperature 
(SST). It has been linked to floods in East Africa, as well as droughts in Indonesia 
and parts of Australia. The Dipole Mode Index (DMI) is used to calculate Indian 
Ocean Dipole (IOD) (Moihamette et al., 2022). Indian Ocean Dipole is typically 
regarded as an independent mechanism of coupled ocean-atmosphere climate 
variability since it is largely driven by local ocean-atmosphere interactions rather 
than being a direct response to outside factors like El Nino Southern Oscillation 
(ENSO) (Saji et al., 1999). It has long been recognized that the tropical Indian 
and Pacific Oceans are interrelated on their Sea Surface Temperature anomalies 
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(Liang, 2014; Zhang et al., 2022; Marchant et al., 2007) indicated that the fre-
quency of El Nino and IOD convergence has increased significantly since the 
1980s. However, the frequency of La Nina and negative Indian Ocean Dipole 
(NIOD) convergence shows little variation. ENSO events can form in early 
summer, producing a lower-level anticyclone over the northwestern Indian 
Ocean, affecting the East African coast. However, if they begin in late summer or 
early fall, they create anomalous lower-level cyclones, limiting their ability to 
warm the western Indian Ocean (Fan et al., 2017). The Indian Ocean has a con-
siderable impact on East Africa’s precipitation regime during the “short rains” in 
September, October, November and December, with the amount of precipitation 
governed by the variability of the nearby ocean, namely the Indian Ocean dipole 
mode (Blau & Ha, 2020; Jiang et al., 2021; Liu et al., 2020). 

Rwanda’s natural resource systems, particularly lakes, marshes, and rivers, 
have been significantly impacted by rainfall changes. Rainfall is bimodal over 
much of East Africa (EA), with rainy seasons from March to May (MAM) and 
September to December (SOND), mitigated by coastal and topography effects 
(Conway et al., 2005). With increasing distance from the equator, the bimodal 
regime progressively transforms into a single season. Both the MAM and SOND 
rainfall regimes, as well as the transitional phase, indicate varied degrees of in-
fluence from the Atlantic, Indian, and Pacific Oceans. The SOND season in East 
Africa is heavily influenced by the intricate interaction of the Indian and Pacific 
oceans and has greater internal variability than the MAM. Periodic circulation 
dipole episodes in the Indian Ocean are connected with above-average and occa-
sionally excessive rainfall from SOND (Webster et al., 1999). In comparison to 
the MAM, commonly termed “long rains” in EA, the SOND, commonly termed 
“short rains” in EA, have less rainfall but higher inter-annual variability and 
more spatial coherence of rainfall anomalies across a substantial portion of the 
region (Clark et al., 2003). We picked the SOND sub-season for analysis not only 
because it coincides with the peak period of Indian Ocean Dipole (IOD) activity, 
but also because it has a higher impact on communities due to changes in the 
regional hydrological cycle. Because of its increased variability, it is also less re-
liable. As a result, gaining a better knowledge of its decadal to multi-decadal va-
riability may improve long-term forecasting of this season (Manatsa et al., 2012; 
Nyenzi, 1988). The objective of this study is to explore the correlation between 
rainfall anomalies in Rwanda during the months of September to December 
(SOND) and the occurrences of Indian Ocean Dipole (IOD) and El Niño South-
ern Oscillation (ENSO) events. 

Study Area  

Rwanda is located in central Africa, immediately south of the equator between 
latitudes 1˚4' and 2˚51'S and longitude 28˚63' and 30˚54'E. It has a surface area 
of 26,338 square kilometers and is bordered by Uganda to the north, Tanzania to 
the east, the Democratic Republic of the Congo to the west, and Burundi to the 
south. It is dominated topographically by the volcanic highlands in the north 
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and west, and the lowlands in the Savannah region in the east and southeast 
(Figure 1). The highland region receives substantial rainfall, with a long-term 
mean of more than 1300 mm per year, but the savannah zone receives just ≤1000 
mm per year. The country has two rainy seasons, the longer of which lasts from 
March to mid-May and the shorter of which lasts from mid-September to 
mid-December (Jonah et al., 2021). Subtropical anticyclones, tropical cyclones, 
Indian Ocean Dipole, monsoons, the El Nino Southern Oscillation (ENSO), sig-
nificant water bodies, and terrain are all known to influence rainfall in Rwanda 
(Ngarukiyimana et al., 2017). These features expose Rwanda to unpredictable 
meteorological conditions, including frequent extreme rainfall occurrences. 

2. Methodology and Data  
2.1. Data 

This study uses seasonal anomalies sourced from different dataset, UCSB-Chirps 
v2p0 (0.05˚ × 0.05˚) monthly global precipitation data, the IOD index (DMI) 
constructed by the SST anomalies (SSTA) gradient between the western (10˚S - 
10˚N, 50˚E - 70˚E) and the eastern (10˚S - 0˚N, 90˚E - 110˚E) regions of Indian 
Ocean for the period from 1983-2021 was sourced from NOAA ERSSTv5 (2˚ × 
2˚) resolution (Shi and Wang, 2021), the Nino-3.4 SST index is a sea surface  

 

 

Figure 1. (a) Map of Africa showing where Rwanda is located, (b) East Africa map and (c) September to December seasonal mean 
rainfall (mm) over Rwanda. 
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temperature anomaly averaged over the region bounded by 5˚N to 5˚S and 
170˚W to 120˚W in the eastern central equatorial Pacific (Stern & Cooper, 2011; 
Piao et al., 2020) Sourced:  
(https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_
v5.php) and atmospheric circulation data sourced from ERA5 (0.25˚ × 0.25˚) 
reanalysis dataset. All dataset used in this study will be analyzed for the period 
1983-2021 using seasonal anomaly data. 

Sea Surface Temperatures Index (SST’s Index) 
El Nino and La Nina years are defined according to the value of the Nino-3.4 
index averaged over the season of interest. It is important to mention that El 
Nino can be explained as follows: The Nino-3.4 SST index is a sea surface tem-
perature anomaly averaged over the region bounded by 5˚N to 5˚S and 170˚W 
to 120˚W in the eastern central equatorial Pacific (Stern & Cooper, 2011; Chen 
et al., 2018; Piao et al., 2020). It is one of several standard SST indices associated 
with El Nino/Southern Oscillation, which is an interaction between the atmos-
phere and ocean in the tropical pacific that results in variations between be-
low-normal and above-normal conditions over the year in different parts of the 
World (Ntirenganya, 2016). The Nino 3.4 index will be considered when the in-
dex value is great or less than (−1) 1. Source:  
(https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_
v5.php). 

The IOD index (DMI) constructed by the SST anomalies (SSTA) gradient be-
tween the western (10˚S - 10˚N, 50˚E - 70˚E) and the eastern (10˚S - 0˚, 90˚E - 
110˚E) regions of Indian Ocean (Shi & Wang, 2021), Because an IOD event often 
develops in the summer, peaks in the autumn, and rapidly declines in the winter 
(Saji et al., 1999). In this study the years with a typical positive and Negative In-
dian Ocean Dipole, PIOD (NIOD) will be considered when the normalized DMI 
is great (less) 1 (−1). 

2.2. Methodology  

To assess the variability in the precipitation dataset, the empirical Orthogonal 
Function (EOF) was used to determine several purposes that designate most of 
the variance in the data and which can separate the leading modes from the re-
maining variability data (Gallaudet & Simpson, 1994).  

In this study the Pearson linear correction coefficient was performed to ana-
lyses the relationship between the Rwanda September to December termed as 
“short rain” season (SOND) anomalies with Indian Ocean Dipole (IOD) and 
El-Nino Southern Oscillation (ENSO) events, during Positive Indian Ocean Di-
pole (PIOD) with El-Nino years, PIOD years, Negative Indian Ocean Dipole 
(NIOD), and NIOD with La-Nina years. Coefficient of correlation measures the 
intensity or degree of linear relationship between two variables. It was given by 
British Biometrician Karl Pearson (1867-1936) (Asuero et al., 2006).  

To investigate how the Indian-Pacific Sea surface temperatures influence Sep-
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tember to December seasonal rainfall in Rwanda. The wind anomalies are sub-
jected to the composite analysis to assess the moisture transport during IOD and 
ENSO events. The classification of one or more classes of fields of a variable 
based on their suggestion with main conditions is included in composite analy-
sis. The composite results are then used to generate hypotheses for patterns that 
may be related to the individual scenarios (Gunta et al., 2022). This explains 
why, if the mean value of the data is calculated in some ingenious way in relation 
to the event, the event signal continues and all other impacts tend to average out 
for a climate composite, this can be accomplished by combining the weather 
over a large area over many years using an index such as the IOD, ENSO index 
or the Precipitation Index to study the variation of weather phenomena such as 
precipitation, wind, or temperature. The first critical step is to choose a compo-
siting basis (time basis), such as an hour of the day or a month of the year, and 
to define cyclic phenomena (categories). The mean and statistics for each cate-
gory are then computed. Lastly, arithmetical significance is determined by using 
a two-tailed student’s t-test then organizes and displays the results to which they 
are validated for their significance. 

3. Results  
3.1. Climatology of Rwanda 

Figure 2 represents the country’s rainfall pattern, with “long rains” occurring 
from March to May (MAM) and “short rains” occurring from September to De-
cember (SOND) (Jonah et al., 2021; Uwimbabazi et al., 2022). The yearly rainfall 
ranges from 700 mm to 1600 mm, with the southwest and northwest of Rwanda 
receiving the most. The eastern region of the nation experienced less annual 
precipitation. The central region of the country experiences moderate rainfall, 
averaging between 1000 to 1300 mm. The eastern region of the country expe-
rienced the least quantity of rainfall throughout both monthly, season and an-
nual. In conclusion, the country’s rainfall distribution has a southwest to north-
east inclination. The temporal distribution of monthly rainfall (mm) from 
CHIRPS is depicted in Figure 2(c); April and November show the largest 
amounts of rainfall. The driest months throughout the study period were June, 
July, and August. The months with the most rainfall in the nation are March, 
April, May, October, November, and December. This research and Previous re-
search such as (Nicholson, 2019; Camberlin et al., 2009; Camberlin & Philippon, 
2002) can be used to establish atmospheric circulations related to seasonal rain-
fall climatology over Rwanda and east Africa in general. 

3.2. The Spatial the Temporal Distribution Characteristics of  
Rainfall in Rwanda during SOND 

The empirical orthogonal function was estimated as a kind of eigenvector that is 
situated so the dominant EOF reports the spatially rational pattern that enlarges 
its alteration. Applying EOF helped to identify the first leading mode of altera-
tion, reflecting mainly variations in strength and the latitudinal circulations  
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Figure 2. (a) The monthly average rainfall cycle (mm/month), (b) The standard deviation of September to December 
rainfall in Rwanda (mm/season) and (c) The climatological mean of the September to December rainfall in Rwanda 
(mm/season). 

 

linked to wet and dry years. Figure 3 below shows the spatial and temporal 
rainfall anomalies for the first three modes of empirical orthogonal function 
from deterrent observational data. The results from the analysis brought out 
63.6%, 16.5%, and 4.8% of variance in the first, second, and third modes corres-
pondingly. The mode with the highest percentage variance of EOF and its cor-
respondent principal component (first mode of EOF1 and PC1 in (Figure 3)) 
was utilized to select the number of wet and dry years). The area with positive 
factor loading indicates most variability of rainfall and the area with negative 
loading represents less variability of rainfall in the country (Martinson, 2018).  

3.3. Atmospheric Circulation Anomalies of September to  
December Rainfall during Abnormal Year 

Abnormal Rainfall Years 
Figure 4, the standardized principal component (PC1) and standardized rainfall 
anomalies showed five wet years for a threshold of +1 (1997, 2001, 2011, 2012 
and 2020) and five dry years for a threshold of −1 (1993, 1996, 1998, 2007 and 
2008). Therefore, the above mentioned wet and dry years were analyzed to cap-
ture the rainfall patterns during September to December Abnormal rainfall, 
Figure 5 shows that during wet years Rwanda experiences abnormal rainfall 
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over most parts of the study area with high significance over eastern, central and 
south east of the country (doted) while during dry years south western and 
western highland shows high significance (doted) of receiving less rainfall dur-
ing September to December season.  
 

 

Figure 3. Empirical Orthogonal Function Analysis of rainfall in Rwanda during SOND: EOF patterns (left panel) and their prin-
cipal components (right panel).  

 

 

Figure 4. (a) September to December area average rainfall standardized anomaly, (b) The standardized PC1. 
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Figure 5. Rainfall (mm/season) anomalies during abnormal (a) wet and (b) dry years, the 
dotted areas are significant at 95% confidence level.  

3.4. Wind Anomaly during Wet and Dry Years 

The composite of wind vectors for the wet and dry years at 925 hPa, 850 hPa, 
500 hPa and 200 hPa were shown in Figure 6, Figure 7 below where by the 
shaded areas were significant under statistical test over 95% confidence levels. 
During the wet years at the low level (925 hPa, 850 hPa) (Figure 6), the easterly 
winds anomalies were dominated which converge with the south westerly over 
the study area. These winds originated from Indian Ocean and Congo which 
normally warm and moist. The remarkable cyclonic circulation of wind anoma-
lies was observed in southern part of the study area which adverting moist wind 
from the Indian Ocean towards the study area for convection and later favors 
rainfall also influence the system nearby the coastal area of east Africa. The sig-
nificant region of 95% confidence level was located within southern, eastern and 
central of study area.  

3.5. The Correlation between the Principal Component (PC1) with  
Indian Ocean Dipole (IOD) and El-Nino Southern Oscillation  
(ENSO) Events 

Spatial and temporal correlation analysis 
The correlation analysis of the precipitation anomaly series with the norma-

lized dipole index (DMI) and the Nino 3.4 index showed that the rainfall in 
Rwanda from September to December was positively correlated with the Nino 
3.4 index (r = 0.15, p value = 0.3, DF = 37), and rainfall was strongly positively 
correlated with the DMI index (r = 0.43, p value = 0.001, DF = 37). In order to 
give more insights to the correlation results, the space and time characteristics of 
PC1 during the various IOD (ENSO) events are presented in this section. Corre-
lation results indicated positive linkages between IOD and seasonal rainfall dur-
ing the positive Indian Ocean Dipole (PIOD) and Negative Indian Ocean Dipole 
(NIOD) events over Rwanda (Figure 8).  
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Figure 6. Wind anomalies (m/s) during wet and dry years at 925 hPa and 850 hPa, wind arrows show wind direction 
while shaded areas show significance at 95% confidence level. 

 

 

Figure 7. Wind anomalies (m/s) during wet and dry years ((a) & (b)) at 500 hPa and ((c) & (d)) at 200 hPa, wind arrows 
show wind direction while shaded areas show significance at 95% confidence level. 
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Figure 8. Spatial and temporal correlation analysis between IOD (ENSO) events and PC1, 
dotted areas are significant at 95% confidence level. 

3.6. The Relationship between the Rainfall Anomaly and  
ENSO/IOD Events 

Spatial correlation analysis 
Figure 9(a), Figure 9(b) were used to select the El Nino Southern Oscillation 

(Nino 3.4) and Indian Ocean Dipole (DMI) events from 1983-2021, which were 
then analyzed through correlation and composite analysis in this study, the spa-
tial correlation coefficient at 95% confidence level was carried out to examine 
the relationship between September to December rainfall season in Rwanda with 
September to November Indian Ocean Dipole (IOD) event year and El Nino 
Southern Oscillation (ENSO) event years. The result therefore shows that, Fig-
ure 10(a), there is a strong positive spatial correlation coefficient of precipitation 
with IOD (DMI) event years and strongly significant at 95% over eastern low 
land, central plateau and south eastern parts of the country during September to 
December rain season in Rwanda, the rest of the country exhibits positive corre-
lation coefficient, insignificant. The spatial correlation of the ENSO (Nino 3.4) 
event years with precipitation in Rwanda Figure 10(b) shows weak positive cor-
relation, insignificant for the September to December rainfall season (1983-2021). 

3.7. The Abnormal Circulation Features during Rainfall Abnormal  
Years 

The composite analysis of September to December precipitation anomalies in six 
kinds of different events are shown in Figure 11. Based on Table 1, single Posi-
tive Indian Ocean Dipole (PIOD), Negative Indian Ocean Dipole (NIOD), El 
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Nino, La Nina, PIOD with El Nino and NIOD with La Nina is plotted. The pur-
pose of the composite is to examine the relationship of Indian Ocean Dipole (IOD) 
El Nino Southern Oscillation (ENSO) event years and September to December 
precipitation in Rwanda. The dashed areas Figure 11 are significant at 95% confi-
dence level. The effect of six different events is then easily identified. The rainfall 
distribution for the IOD (ENSO) events is also shown to easily capture the abnor-
mal rainfall anomaly during September to December rainfall season. 
 

 

Figure 9. (a) NINO 3.4 and (b) Dipole mode Index (DMI) sea surface anomalies for September to November Months from 
1983-2021. 

 

  

Figure 10. The spatial distribution of correlation coefficient between IOD (ENSO) events and SOND standardized rainfall ano-
maly in Rwanda, (a) The spatial correlation coefficient of IOD events and precipitation, (b) The spatial correlation coefficient of 
ENSO events and precipitation, dotted areas are significant at 95% confidence level. 
 
Table 1. IOD (ENSO) event years (1983-2021). 

IOD (ENSO) Event years 

El-Nino 1987 (S) 1997 (PIOD) 2002 (PIOD) 2009 (S) 2015 (PIOD) 

La_Nina 1988 (NIOD) 1995 (NIOD) 1998 (NIOD) 1999 (S) 2007 (S) 2010 (NIOD) 2011 (S) 2020 (S) 

PIOD 1986 (S) 1994 (S) 1997 (E) 2002 (E) 2006 (S) 2015 (E) 2018 (S) 2019 (S) 

NIOD 1984 (S) 1988 (L) 1989 (S) 1990 (S) 1992 (S) 1995 (L) 1996 (S) 1998 (L) 2001 (S) 2005 (S) 2010 (L) 2016 (S) 

S = single event; E = El Nino; L = La Nina. 
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Figure 11. The composite analysis of September to December and spatial precipitation 
anomaly (mm/season) during IOD (ENSO) years 1983-2021: (a) PIOD, (b) NIOD, (c) 
PIOD with El Nino concurrent, (d) NIOD with El Nino concurrent (e) El Nino, (f) La 
Nina. The shaded areas in ((d)-(f)) are statistically significant at 95% confidence level. 

3.8. The Mechanisms of the Effect of SSTA Patterns on the Rainfall  
Anomalies in Rwanda 

September to December seasonal rainfall during PIOD, PIOD with El-Nino events 
Figure 12(a), Figure 12(e) at 850 hPa and Figure 12(c), Figure 12(g) at 200 hPa 
tropical region is dominated by strong easterlies and southerlies at the surface 
which allows moisture transport from Indian ocean and westerly wind flow at the 
upper level, convergence occurs over the study area at the surface. While, during 
NIOD, NIOD with La-Nina event years Figure 12(b), Figure 12(f) at 850 hPa 
southerlies area weakened by near equatorial trough which result into the diver-
gence at the surface and convergence Figure 12(d), Figure 12(h) at 200 hPa 
upper level resulting into downward motion. 

3.9. Indian Ocean Walker Circulation during IOD (ENSO) Events 

The structure of the vertical velocity (omega) component of the Indian Ocean 
Walker circulation during IOD (ENSO) events can be seen. The core ascending 
region over east Africa is strongest during positive Indian Ocean Dipole (PIOD), 
PIOD with El-Nino events (−0.4 Pa∙s−1) and weak during negative Indian Ocean 
Dipole (NIOD), NIOD with La Nina (0.6 Pa∙s−1). 

The Indian Ocean Walker Circulation, which is frequently characterized by 
low-level zonal winds over the equatorial central Indian Ocean, has been con-
nected to East African September to December rains. Similar relationships have 
been discovered with rainfall-related variables such as lake levels and rainfall. 
Changes in vertical motion, low-level divergence, and precipitable water volumes 
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over East Africa and the western Indian Ocean accompany an abnormal Walker 
Circulation, favoring anomalies of the Rwanda September to December (SOND) 
seasonal rainfall (Zhao & Cook, 2021). Figure 13(a) & Figure 13(c) show the in-
fluence of Indian ocean walker circulation between 20˚E and 60˚E during PIOD 
(PIOD with El Nino) events there is a persistence of upward motion over western 
Indian Ocean and east Africa with downward motion over maritime and Austria. 

 

 
 

 

Figure 12. Composites of the wind anomalies (m/s), ((a), (c)) PIOD event years, ((b), (d)) NIOD event 
years, ((e), (g)) PIOD with El Nino event years, ((f), (h)) NIOD with La Nina event years at 850 hPa and 
at 200 hPa respectively, shaded areas show significance at 95% confidence level (X and Y axis represent 
latitude and longitude respectively). 
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Figure 13. Differences of the Indian walker circulation (vectors) and vertical velocity av-
eraged over 150S (150N), ((a), (c)) PIOD, (PIOD with El Nino) event years, ((b), (d)) 
NIOD (NIOD with La Nina) event years. The units are (m/s) for zonal wind component 
and (pa/s) for vertical velocity. 

4. Discussion and Conclusion  

This study elucidates the intricate relationship between September to December 
rainfall in Rwanda and the climatic drivers of Indian Ocean Dipole (IOD) and El 
Niño Southern Oscillation (ENSO) events. Through comprehensive analysis of 
precipitation data and atmospheric circulation patterns, it is evident that these 
climate phenomena significantly influence rainfall variability in the Rwanda. 
The findings highlight the positive correlation between Indian Ocean dipole 
events and September to December (SOND) seasonal rainfall, as well as the im-
pact of ENSO occurrences, particularly El Niño events, on precipitation patterns. 
Moreover, the study underscores the importance of considering SSTs and circu-
lation dynamics in forecasting SOND rainfall, with implications for water and 
agriculture management in Rwanda. By enhancing our understanding of these 
relationships, this research contributes valuable insights to climate science and 
informs decision-making processes for mitigating the impacts of climate varia-
bility on vulnerable sectors. In addition to elucidating the complex interplay 
between climatic drivers and SOND rainfall in Rwanda, this study provides crit-
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ical insights into the implications for future climate projections and adaptation 
strategies. By highlighting the distinct responses of SOND rainfall to positive 
and negative phases of Indian Ocean Dipole and El Nino events, the research 
underscores the need for tailored forecasting models to anticipate potential shifts 
in precipitation patterns. These findings have profound implications for water 
resource management, agricultural planning, and disaster preparedness in 
Rwanda, particularly in light of projected changes in rainfall regimes due to cli-
mate change. Furthermore, the study emphasizes the importance of continued 
monitoring and research efforts to better understand the evolving dynamics of 
regional climate systems and their impact on socio-economic development. By 
bridging the gap between scientific knowledge and practical applications, this 
research serves as a valuable resource for policymakers, stakeholders, and com-
munities striving to build resilience and adapt to a changing climate landscape. 
Ultimately, the insights gleaned from this study pave the way for informed deci-
sion-making and proactive measures to mitigate the adverse effects of climate 
variability on Rwanda’s ecosystems and livelihoods. The study establishes a clear 
link between September to December (SOND) rainfall in Rwanda and Indian 
Ocean Dipole (IOD) and El Niño Southern Oscillation (ENSO) events, shedding 
light on the underlying atmospheric circulation patterns influencing this rela-
tionship. 

1) Previous research, such as (Akpoti et al., 2016; Asuero et al., 2006; Black, 
Slingo, & Sperber, 2003), has highlighted the impact of Sea Surface Temperature 
(SST’s) on East Africa Rainfall, reinforcing the significance of considering ocea-
nic conditions in rainfall analysis. 

2) Specifically, the findings of this study underscore a strong positive correla-
tion between Indian Ocean dipole events and September to December (SOND) 
seasonal rainfall in Rwanda, with notable associations with the Nino 3.4 index, 
indicating El Nino Southern Oscillation (ENSO) influence. 

3) Seven out of twenty Indian Ocean dipole events were found to coincide 
with El Niño Southern Oscillation occurrences, further emphasizing the inter-
connectedness of these climate phenomena. Significant positive correlations ob-
served between Indian Ocean Dipole and SOND rainfall in various regions of 
Rwanda at a 95% confidence level affirm the robustness of the relationship. 

4) Composite analysis using student T-test demonstrates the substantial im-
pact of Indian Ocean Dipole and El-Nino Southern Oscillation occurrences on 
SOND rainfall, with PIOD and PIOD with El Nino event year’s corresponding to 
above-normal rainfall and NIOD and NIOD with La Nina event years resulting 
in below-normal rainfall. 

5) Examination of circulation processes during IOD and ENSO events eluci-
dates the atmospheric dynamics driving variations in SOND rainfall, offering 
valuable insights for forecasting and management strategies in water and agri-
culture sectors in Rwanda. 

The results contribute to the forecasting of the September to December rain-
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fall season in Rwanda in relation to the IOD and ENSO occurrence.  
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