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Abstract 
As a thin film solar cell absorber material, antimony selenide (Sb2Se3) has be-
come a potential candidate recently because of its unique optical and electric-
al properties and easy fabrication method. X-ray photoelectron spectroscopy 
(XPS) was used to determine the stoichiometry and composition of electro-
less Sb2Se3 thin films using depth profile studies. The surface layers were ana-
lyzed nearly stoichiometric. But the abundant amount of antimony makes the 
inner layer electrically more conductive. 
 

Keywords 
Sb2Se3, Electroless, Depth Profiling, Thin Film, X-Ray Photoelectron  
Spectroscopy 

 

1. Introduction 

Innovative photovoltaic (PV) technologies with excellent power conversion effi-
ciency (PCE) and inexpensive mass production costs are required to expand so-
lar energy utilization [1]. Huge research interest is developed in thin-film pho-
tovoltaic (TFPV) technologies due to the advantages of scalable flexibility, lesser 
material usage and greater power generation [2] [3] [4]. Important successes 
have been achieved in the representative cadmium telluride (CdTe) [5], copper 
indium gallium selenide (CIGS) [5] [6], cadmium telluride (CdTe) [7] and pe-
rovskites [8] [9] among various types of thin-film solar cells. However, the main 
disadvantages of these solar cells are the toxicity of cadmium (Cd), the scarcity 
of tellurium(Te) and indium (In) and the problem of achieving a stoichiometric 
ratio. As a result, different novel earth-abundant materials, such as CuSbSe2 [10], 
Cu2SnS3 [11], Cu2ZnSnSe4 [12], SnSe [13], CuSbS2 [14], Sb2S3 [15] and Sb2Se3 [16] 
have been suggested as a substitute for the low cost and eco-friendly of thin film 
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solar cells. 
Among those, antimony selenide (Sb2Se3) has emerged as a promising candi-

date for next-generation solar absorber material. It is a compound semiconduc-
tor belonging to the group V-VI with a suitable band gap of 1.1 - 1.2 eV and finds 
widespread applications in optoelectronic, thermoelectric photoconducting tar-
gets, infrared spectroscopy and television camera [17] [18]. It was used in the 1950s 
[19] in mineral anti-monselite [20]. It exhibits good photovoltaic and thermoelec-
tric properties which allow possible usage for thermophotovoltaic, thermoelec-
tric [21] [22] [23] [24] and solar cells [25]. Sb2Se3 also finds usage in batteries, 
photodetectors, and memory gadgets [26]. Tremendous research has been focused 
on Sb2Se3 for hybrid solar cell fabrication as light absorber materials [21] [27] 
due to its low cost, narrow band gap, non-toxic and comparatively earth-abundant 
[28]. In the present work, electroless deposition of Sb2Se3 thin films was done 
and examination of stoichiometry of Sb2Se3 thin films using X-ray photoelectron 
spectroscopy (XPS) depth profiling was carried out. 

2. Experimental Details 

All the glassware in our experiment has been cleaned by first washing and 
scrubbing with Alconox, followed by a 20 min. sonication in acetone, and me-
thanol, and then washed with isopropanol and DI water. Afterward, the glassware 
was dried using N2 gas. An aqueous solution of 0.227 g Sb2Se3, 0.259 g Na2SeO3, 3 
ml hydrazine hydrate and 50 ml water have been used for precursor solution 
electroless deposition. The substrate temperature was controlled by a hot plate 
with which a thermocouple was attached. The substrate temperature was main-
tained within ±1˚C of 40˚C for 50 min. 

The composition of the Sb2Se3 thin film was studied using XPS. The XPS spectra 
were obtained by using monochromatic Al Kα radiation (1486.6 eV). through a 
Kratos AXIS Ultra DLD XPS system at a base pressure of 5 × 10−10 Torr, equipped 
with an electronic neutralization gun to eliminate the charge effect on the sam-
ple surface. The sample was firstly pressed to a 1 × 13 mm disc and fixed to the 
sample holder, and then it was degassed in the load lock chamber overnight. Af-
ter that, it was removed to the test chamber for XPS study. All binding energy 
values were calibrated by using the value of contaminant carbon (C 1s 284.6 eV) 
as a reference. The sample was then ion sputtered with Ar+ at 4000 eV and 15 
mA for 1 min and 10 min.  

XPSPeak software version 4.1 was used to obtain all the spectra. The spectra 
were deconvoluted using a mixture of Lorentzian-Gaussian type peaks. 

3. Results and Discussion 

The chemical purity and the composition of Sb2Se3 thin films were investigated 
by XPS analysis. The typical XPS survey spectrum Sb2Se3 is shown in Figure 
1(a). The peaks arising from Sb 3p, 3d, Sb Auger, Na 1s, Na Auger, C 1s, Se 3p and 
3d are clearly seen in the spectrum. Carbon contamination is present in almost 
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all the preparations. All other peaks that arise due to energy loss features on the 
major peaks are weak and broad. The Se 3d intensity is very large compared to 
the Se 3p intensity, and that is why we have reported just the Se 3d spectra of Se 
compounds. High-resolution spectra of the Sb 3d core level and Se 3d core level 
are shown in Figure 1(b) and Figure 1(c) respectively. The two peaks at 530.1 
eV and 539.4 eV can be assigned to the binding energy of Sb 3d5/2 and 3d3/2 re-
spectively. The separation of Sb 3d doublet is by 9.3 eV. These binding energy 
values of Sb 3d are characteristic of antimony tri-selenide [18]. No oxygen peak 
was observed in this hydrazine-processed Sb2Se3 thin film in the high-resolution 
spectra of the Sb 3d core level. The binding energy value of 54.96 eV of Se 3d is 
characteristic of antimony tri-selenide [18].  

The XPS survey spectrum of Sb2Se3 thin film after 1 min. Ar+ ion sputtering is 
shown in Figure 2(a). The peaks arising from Sb 3p, 3d, Sb Auger, Na 1s, Na 
Auger, C 1s, Se 3p and 3d are clearly seen in the spectrum. Carbon contamina-
tions on the surface were reduced significantly after 1 min. Ar+ ion sputtering. 
High resolution spectra of Sb 3d core level and Se 3d core level are shown in the  
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(c) 

Figure 1. (a) XPS survey spectrum of as-deposited Sb2Se3 film. (b) High resolution XPS 
spectra of the Sb 3d core level of as-deposited Sb2Se3 film. (c) High resolution XPS spectra 
of the S 2p core level of as-deposited Sb2Se3 film. 
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(c) 

Figure 2. (a) XPS survey spectrum of Sb2Se3 film after 1 min. Ar+ ion sputtering. (b) High 
resolution XPS spectra of the Sb 3d core level of Sb2Se3 film after 1 min. Ar+ ion sputter-
ing. (c) High resolution XPS spectra of the Se 3d core level of Sb2Se3 film after 1 min. Ar+ 
ion sputtering. 
 
Figure 2(b) and Figure 2(c) respectively. The two peaks at 530.1 eV and 539.4 
eV can be assigned to the binding energy of Sb 3d5/2 and 3d3/2 respectively. The 
separation of Sb 3d double is by 9.3 eV. These binding energy values of Sb 3d are 
characteristic of antimony tri-selenide [18]. No oxygen peak was observed in this 
hydrazine-processed Sb2Se3 thin film in the high-resolution spectra of the Sb 3d 
core level. The binding energy value of 54.96 eV of Se 3d is characteristic of an-
timony tri-selenide [18]. No chemical shift was observed in Sb 3d and Se 3d core 
levels after 1 min. of Ar+ ion sputtering.  

The XPS survey spectrum of Sb2Se3 thin film after 10 min. Ar+ ion sputtering 
is shown in Figure 3(a). The peaks arising from Sb 3p, 3d, Sb Auger, Na 1s, C 
1s, Se 3p and 3d are clearly seen in the spectrum. Carbon contaminations and 
the peak corresponding to Na 1s core level were reduced to a low level after 10 
min. Ar+ ion sputtering. High-resolution spectra of the Sb 3d core level and Se 
3d core level are shown in Figure 3(b) and Figure 3(c) respectively. The two 
peaks at 530.2 eV and 539.5 eV can be assigned to the binding energy of Sb 3d5/2 
and 3d3/2 respectively. The separation of Sb 3d double is by 9.3 eV. These binding 
energy values of Sb 3d are characteristic of antimony tri-selenide [18]. No oxy-
gen peak was observed in this hydrazine-processed Sb2Se3 thin film in the 
high-resolution spectra of the Sb 3d core level. The binding energy value of 54.96 
eV of the Se 3d is characteristic of antimony tri-selenide [18]. The binding ener-
gy value of the Sb 3d core level is increased by 0.1 eV and no chemical shift was 
observed in the Se 3d core level after 10 min. of Ar+ ion sputtering. 
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(a) 

 
(b) 

 
(c) 

Figure 3. (a) XPS survey spectrum of Sb2Se3 film after 10 min. Ar+ ion sputtering. (b) 
High resolution XPS spectra of the Sb 3d core level of Sb2Se3 film after 10 min. Ar+ ion 
sputtering. (c) High resolution XPS spectra of the Se 3d core level of Sb2Se3 film after 10 
min. Ar+ ion sputtering. 
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4. Conclusion 

The device performance deteriorates due to the presence of recombination cen-
ters created by oxygen impurity [18]. Oxygen can be present in Sb2Se3 thin films 
as it is air-sensitive. So X-ray photoelectron spectroscopy (XPS) was used to in-
vestigate the composition of Sb2Se3 thin film. Almost stoichiometric composition 
of Sb2Se3 thin films close to the surface is observed using the XPS depth profile 
result in this work. The peak intensity of C(1s) becomes smaller at the deeper 
surface as sputter time is increased. No oxygen peak was observed in this hydra-
zine-processed Sb2Se3 thin film in the high-resolution spectra of the Sb 3d core 
level which is good for device performance. The peak corresponding to Na 1s core 
level decreased significantly with Ar+ ion sputtering time. The Sb 3d core level 
binding energy is increased by 0.1 eV after 10 min Ar+ ion sputtering. No chem-
ical shift was observed in the Se 3d core level during Ar+ ion sputtering. 
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