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Abstract 
This research proposes a synergistic meta-heuristic algorithm for solving the 
extreme operational complications of combined heat and power economic 
dispatch problem towards the advantageous economic outcomes on the cost 
of generation. The combined heat and power (CHP) is a system that provides 
electricity and thermal energy concurrently. For its extraordinary efficiency 
and significant emission reduction, it is considered a promising energy pros-
pect. The broad application of combined heat and power units requires the 
joint dispatch of power and heating systems, in which the modelling of com-
bined heat and power units plays a vital role. The present research employs 
the genetic optimization algorithm to evaluate the cost function, heat and 
power dispatch values encountered in a system with simple cycle cogenera-
tion unit and quadratic cost function. The system was first modeled to deter-
mine the various parameters of combined heat and power units towards 
solving its economic dispatch problem directly. In order for modelling to be 
done, a general structure of combined heat and power must be defined. The 
test system considered consists of four units: two conventional power units, 
one combined heat and power unit and one heat-only unit. The algorithm 
was applied to test system while taking into account the power and heat units, 
bounds of the units and feasible operation region of cogeneration unit. Out-
put decision variables of 4-unit test systems plus cost function from Genetic 
Algorithm (GA), was determined using appropriate codes. The proposed al-
gorithm produced a well spread and diverse optimal solution and also con-
verged reasonably to the actual optimal solution in 51 iterations. The result 
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obtained compared favourably with that obtained with the direct solution al-
gorithm discussed in a previous paper. We conclude that the genetic algo-
rithm is quite efficient in dealing with non-convex and constrained combined 
heat and power economic dispatch problem. 
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1. Introduction 

Economic dispatch is basically concerned with the problem of determining the 
outputs of the generating units in service. The objective is to meet up with the 
total load demand while keeping the fuel cost at the barest minimum. Economic 
dispatch (ED) problems aim principally at computing the optimal schedule of 
online generating units to satisfy power demands at the least operating cost. The 
system and operating constraints necessary for this task are ramp rate limits [1]; 
and forbidden zones. The latter is a nonlinear characteristic of a machine due to 
distortion of magnetic field controlled by the power angle, the armature and ex-
cited currents respectively [2]. The fuel cost function of each generating unit 
is approximately represented by a quadratic cost function. Economic dispatch 
(ED) problems represent an important industrial class of optimization problems 
considered particularly difficult for conventional optimization techniques. The 
main problem in economic dispatch lies with the distribution of generator load 
to produce the measure of electricity required. Examples of economic dispatch 
problems could be economic load dispatch in the operation of power systems, 
dynamic or static dispatch, hydrothermal scheduling problems and others [3]. A 
significant amount of decision variables and non-linearity, ordinarily character-
ize Economic Load Dispatch problems (ELD), including non-linear constraints 
due to the characteristics of modern units. Improvements in solving this class of 
optimization problems have led to significant savings in costs. The emergence of 
modern computational intelligence algorithms—Genetic algorithms, Differential 
Evolution algorithm, Artificial Bee Colony algorithms, Whale Optimization al-
gorithm, Kho-Kho optimization algorithm etc., has paved the way for solutions 
to complex optimization problems. Genetic algorithm, based on principle of ge-
netics and natural selection, provides positive results when deployed to certain 
optimization problems. The constraint optimization problem encountered in this 
research while not considering any additional knowledge about the problems at 
hand is an instance. 

We begin with a brief overview and description of economic dispatch is pro-
vided in Section 3. Section 4 is the formulation of combined heat and power 
economic dispatch problem; Section 5 anatomized combined heat and power unit 
(Cogeneration unit); and lastly, Section 6 reviewed genetic algorithm for com-
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bined heat and power Economic dispatch (CHPED) problem. In Section 7, we 
discussed the GA results. Finally, conclusions resulting from the study are given 
in Section 8. 

2. Brief Literature 

Evolutionary algorithms include Genetic Algorithms (GA) [3], Evolutionary Pro-
gramming (EP) and Differential Evolution (DE) [4]. Another popular class of 
algorithms is Swarm Intelligence algorithms [5] [6] [7]. Although these tech-
niques can deliver an assurance of finding global optimum, the potency of ge-
netic algorithm is demonstrated using its codes. During such demonstration, it 
was found that genetic algorithm can find better solutions in terms of objective 
function value, convergence speed and number solutions in comparison with 
other evolutionary and meta-heuristic algorithms. The above reasons have ac-
corded genetic algorithm a remarkable attention span, compared with other op-
timization algorithms. The traditional form of energy system is restricted to a 
single electric/thermal energy source wherein the interaction and reciprocal ad-
vantages between varied energy sources cannot be fully utilized. A single form of 
energy can no longer guarantee green and systematic energy demand [8]. Hence, 
it is vital to map out a secure and inexpensive integration of heat and power sys-
tem. The CHP system or cogeneration assemble heat and electricity gained from 
a single energy source has a high-level efficiency compared with a single power 
generation system, since the heat from the power generation can be further 
reused. In today’s energy system, as well as the concerns of carbon emissions be-
lieved to make a significant contribution to the global climate change, combined 
heat and power systems are preferable [9]. Combined heat and power systems 
can also provide an economic advantage since such systems will lead to a reduc-
tion in fuel use and greenhouse gas emissions that in turn lead to certain tax 
exemptions and in many places receive incentives from governments [10]. A 
significant amount of research articles has in recent times been invested as proof 
to the vital benefits of the systems. Each literature has helped in gaining a better 
understanding as well as the optimization of the systems’ operations. In Com-
parison to laboratory-based scale research, case studies for real life combined 
heat and power systems provide more accurate results and insight into the sys-
tems’ characteristics and their optimization options. Case studies from past re-
searches at different global locations [11] suggest the importance of running the 
prime mover, usually an engine at its maximal efficiency to obtain cogeneration 
benefits. It also suggests that sizing the engine correctly according to demand is 
very important. The same suggestion holds that a properly constructed com-
bined heat and power (CHP) system can certainly foster cost minimization, the-
reby guarantying a return on investment. Emissions from combined heat and 
power (CHP) system have also been investigated in comparison with coal-fired 
power station or natural gas powered boilers and other systems [12]. The results 
suggested a considerable reduction of all the emissions regardless of the original 
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system. The objective of this research is to minimize input fuel cost while main-
taining bounds of the units and feasible operating region of the cogeneration 
unit alongside power and heat constraints. Our approach is to use genetic algo-
rithm in the evaluation of combined heat and power economic dispatch. 

3. Methodology 

The proposed problem is basically on Economic dispatch (ED), which is a con-
straint optimization problem whose objective is to find the most cost-efficient 
schedule of a generating unit while maintaining the operational constraints and 
load demand. It is obvious that at optimum point, all units (excluding those at 
their limit) would be operating at equal incremental costs. To achieve economic 
operation of generating units in a plant, economic dispatch is carried out. ED 
problem is one of the vital issues in power system operation and is commonly 
formulated as an optimization problem Hatziargyriou et al. [12]. It involves ac-
tive power allocations among power generators to minimize overall operating 
cost by maintaining power and heat balance constraints and other operational 
constraints Wen et al. [13]. Numerous conventional methods have been estab-
lished to solve the Economic Dispatch, for example the λ-iteration method, Lin 
et al. [14], the Lagrangian relaxation method Guo et al. [15], quadratic pro-
gramming, Fan and Zhang [16], the improved particle swarm optimization 
Chiang [17], differential evolution algorithm etc. However, all these optimiza-
tion algorithms are implemented in a centralizedform requiring central nodes to 
collect global information on all the generators, Guo et al. [18] and transmit 
command globally. In practice, collecting detailed information is usually costly 
in both communication and computation especially when the power system be-
comes more complex as explained in Pourbabak et al. [19]. Besides, such centra-
lized algorithms are unable to meet the plug-and-play requirements in the newly 
smart grid system. 

4. Formation of CHPED Problem 

Combined heat and power Economic dispatch problem is a constraint optimiza-
tion problem consisting of objective function, linear and nonlinear equality and 
inequality operational constraints. The objective function indicates the contribu-
tion of each decision variables to the function to be optimized in the optimiza-
tion problem. The objective function also represents the input fuel cost while the 
constraints could be inequality or equality constraints that match load and heat 
demands with power generation [20]. In this research, system transmission losses 
are neglected, leaving load, heat demand, and nonlinear equality and inequality 
constraints as the only available Constraints. The test system comprises four 
units: two conventional Power units, one co-generation or combined unit and a 
heat-only unit. The CHPED problem is to determine the optimal power and heat 
output decision variables while maintaining the system constraints. The cost 
function is minimized by deploying Genetic Algorithm. 
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4.1. Objective Function 

Objective function is a mathematical term that describes how different decision 
variables contribute to a certain value that is sought to be optimized. The goal of 
economic dispatch is to decrease fuel input cost by satisfying the constraint of all 
the units (Power and Heat constraints) and other operational constraints. By this 
we mean that at low power and heat demands, each unit has to operate at mini-
mum power and heat bounds (limits) [21]. For k unit system, the total fuel cost 
(TFC) is used as the cost or objective function for economic dispatch. The objec-
tive function of the combined heat and power economic dispatch problem is 
modeled as follows: 

( ) ( ) ( ), , ,Min ,e i i c j j j h k k
i e j c k h

C c p c p q c q
∈ ∈ ∈

= + +∑ ∑ ∑           (1) 

h and pare the heat and electrical power output of respective units:. ( ),e i ic p ,
( ), ,c j j jc p q  and ( ),h k kc q  constitute the fuel cost function of ith power-only 

unit, fuel cost function of jh cogeneration unit and fuel cost function of kth 
heat-only unit, respectively. Given the quadratic fuel cost function of power-only 
units in Naira we have: 

( ) 2
,e i i i i i i ic p p pα β γ= + +                     (2) 

where, ,i iα β  and iγ  are the cost coefficients of ith power-only unit, the produc-
tion cost of cogeneration and heat-only units are given in Equations (3) and (4). 

( ) 2 2
, ,c j j j j j j j j j j j j j j jc p q p p q q p qα β γ δ ε ζ= + + + + +          (3) 

( ) 2
,h k k k k k k kc q q qα δ ε= + +                     (4) 

where, , , , ,j j j j jα β γ δ ε  and jζ  are the cost coefficients for the jh cogeneration 
unit, ,k kα δ  and kε  represent the coefficients of kth heat-only unit. The objec-
tive function of the CHPED problem is to be minimized total cost of serving the 
heat and power demand subject to equality and inequality constraints. 

4.2. Equality Constraints; Heat and Power Balance Constraints 

Real power created by power unit plus the real power generated by cogeneration 
unit is equivalent to the real power demand of power systems neglecting power 
loss, and this is modeled mathematically in Equation (5) below: 

D
i j

i e j c
p p P

∈ ∈

+ =∑ ∑                        (5) 

Comparably, the total heat generated by boilers plus the active heat generated 
by cogeneration unit is equal to the heat demand neglecting heat loss and is 
modeled using Equation (6): 

D
j k

j c k h
q q Q

∈ ∈

+ =∑ ∑                        (6) 

where DP  and DQ  are the total heat and power demand of system respec-
tively. In the heat equality constraint, heat losses are postulated to be zero be-
cause no research work about heat losses during process of transmitting heat to 
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heat loads has been carried out [22]. For clarity, that postulation was employed 
in this research. Therefore, heat losses are negligible. Furthermore, if heat losses 
are a function of heat outputs similar to power loss function, the Karush-Kuhn- 
Tucker (KKT) Lagrange multiplier for the dispatch problem given is 

( ) ( )

( )

2 2 2

2      

i i i i i j j j j j j j j j j j j

D D
k k k k k p i j p i j

i e j c j e k h

L p p p p q q p q

q q p p P q q Q

α β γ α β γ δ ε ζ

α δ ε λ λ
∈ ∈ ∈ ∈

= + + + + + + + +

   
+ + + − + − − + −   

   
∑ ∑ ∑ ∑

 (7) 

4.3. Inequality Constraints; The Capacity Limits Constraints 

The inequality constraints for the above problem are given as: 
min max
i i ip p p≤ ≤                         (8) 

,   1, ,ij i ij i ji ia p b q c j n∗ + ∗ ≥ =                   (9) 
min max
k k kq q q≤ ≤                        (10) 

where, min
ip  and max

ip  represent the minimum and maximum power outputs 
of ith power plant units in MW, the output of the jth cogeneration unit is pre-
sumed to lie in a region in the Pi-Qi plane bounded by in  lines, min

kq ; and 
max
kq  are the minimum and maximum heat output of the kth heat-only unit. The 

power production limits of combined heat and power unit are dependent to the 
unit heat production and vice versa [23]. The heat-power Feasible Operation 
Region (FOR) of a combined heat and power unit is illustrated in Figure 1 be-
low. Note that the lower and upper bounds of heat-only and power-only units 
are constricted by their own generation limits. 

4.4. Data Set for the New CHP Dispatch Problem 
Table 1. Power units-cost. 

Units PGmax PGmin α  β  γ  
1 250 10 1000 13.5 0.0345 

2 200 20 1245 13.1 0.033 

 
Table 2. (Unit 3) cogeneration unit-cost coefficients. 

Units α  β  γ  δ  ε  ζ  
1 2650 14.5 0.0345 4.2 0.03 0.011 

 
Table 3. (Unit 4) heat unit cost coefficients. 

Units α  δ  ε  Qmax Qmin 

1 1200 4.2 0.02 250 20 

 
Table 4. Coordinate of the corners of the feasible regions of co-generation units. 

Corners (p1, q1) (p2, q2) (p3, q3) (p4, q4) 

Unit 3 (20, 0.1) (200, 0.5) (195, 120) (15, 110) 
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4.5. Combined Heat and Power Generation (CHP) 

Cogeneration is a system that provides electricity and thermal energy concur-
rently. It consists of a generator, a heat recovery system and electrical intercon-
nections. The thermal power is constructively reprocessed from the heat secured 
from combustion in the prime mover of the system. Cogeneration systems ap-
plication increases the effectiveness of energy production from 35% up-to 85%. 
This economic viability has propelled people to install the systems, knowing that 
the production of electricity and heat is on site. Recent researches on cogenera-
tion have concentrated on novel configurations of cogeneration plants using fuel 
as source energy [24] [25]. The increasingly severe requirements for carbon IV 
oxide, Sulphur dioxide (SO2), Nitrogen Oxides (NOx) and other greenhouse gas-
es reduction led to a more universal promotion of distributed energy systems. 
One of the most effective methods facing the energy saving challenges happens 
to be the use of cogeneration systems. Furthermore, combined heat and power 
(CHP) generation is significantly more methodical than the distinct production 
of heat and power because of its reduction of overall fuel utilization which leads 
to low emission of greenhouse gases [26]. These greenhouse gases pollute the air 
in the environment, generate acid rain, and are also the major contributors to 
global warming. To obtain optimal utilization of combined heat and power 
units, combined heat and power is integrated into Economic dispatch problem 
to form the combined heat and power economic dispatch as an optimization 
problem. Cogeneration units have power and heat outputs which show that the 
operating orbit of cogeneration plants is more complex than either a heat only or 
power only unit. The recent shift shows that combined heat and power is one of 
the techniques to decentralize energy. It does not only ensure minimal loss on 
transmission system, but also boosts the system’s competence while also provid-
ing energy either directly or near to end users. For effective application of coge-
neration units, the economic dispatch of combined heat and power was estab-
lished. The fundamental objective of the combined heat and power economic 
dispatch is to evaluate the most economic loading points of the combined heat 
and power generation units such that both heat and power demands are utilized 
within the bounded region in the heat versus power dimensional surface. 

5. Feasible Operating Region for CHP Units 

The feasible operating region (FOR) of a cogeneration unit includes both heat 
and power demand for which both are functions of each other. Figure 1, the en-
closed area of the quadrilateral ABCD indicates the feasible operation region of 
the combined heat and power unit of this research paper. At point O—feasible 
region—the unit is not bounded by any constraints hence, the operating point is 
positive. For a point to be feasible it should be above line AB, below line CD, 
right of AD and left of BC and anything contrary to these is infeasible operating 
region. Output decision variables of cogeneration unit could be inside, on the 
line segment or outside the polyhedron. When output decision variable is on the  
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Figure 1. Feasible operation region of a cogeneration (CHP) unit. 

 
line segment, its value is zero. It is however negative when output is neither in-
side nor on the line segment of polyhedron that is outside the polyhedron. Pow-
er generation limits of CHP units are specified by combined functions incorpo-
rating the unit’s heat generation, and vice versa. The closed area surrounded by 
the curve ABCD indicates the feasible region of the cogeneration units. 

Generator Limits 

The dispatch gained based on the lambdas computed using equations may some-
times not be as feasible. The reason being the capacity constraints have not been 
taken into account in deriving this relation. The basic idea in handling these 
constraints is to identify the units that violate the constraints and set the violat-
ing quantities at their appropriate limit. The system demand is modified to re-
flect the fact that their outputs are fixed and known. 

6. Genetic Algorithm (GA) 

Various techniques have recently been proposed for solving the multimodal op-
timization problems. They can be divided into two main categories: determinis-
tic and stochastic (meta-heuristic) methods. Deterministic methods, for exam-
ple: gradient descent method or quasi Newton method, when they solve complex 
multimodal optimization problems, may easily get trapped in some local opti-
mum as a result of deficiency in exploiting local information. They depend 
mainly on a-priori information about the objective function which can lead to 
fewer reliable results. Stochastic algorithms on the other hand combine ran-
domness as well as rules mimicking several phenomena. These phenomena in-
clude physical processes—simulated annealing proposed by Kirkpatrick [27]; 
evolutionary processes—evolutionary algorithm put forward by Koza [28], de 
Jong [29], and Fogel [30]; genetic algorithms (GAs) suggested by Goldberg [31] 
and Holland [32]); and immunological systems (e.g. Artificial immune systems 
put forward by de Castro [33]); electromagnetism-like (put forward by Birbil 
[34]) and gravitational search algorithm (put forward by Rashedi [35]). Darwin’s 

https://doi.org/10.4236/epe.2022.149023


D. N. Ohaegbuchi et al. 
 

 

DOI: 10.4236/epe.2022.149023 451 Energy and Power Engineering 
 

theory of biological evolution as an optimization technique birthed Genetic al-
gorithms. Its principal objective is obtained from natural evolution, hence, bio-
logical operators such as crossover, mutation and selection play significant role 
in Genetic Algorithms. Genetic algorithm has three randomly created phases: 
original population of chromosomes, crossover operator and mutation operator 
[36]. Respective chromosomes constitute unique solution to the problem and its 
quality is determined by the value of fitness function. Genetic algorithm com-
mences by creating some random solutions denoted as the initial population. In 
the next phase, random crossovers give rise to a new successor and in step three; 
with random value of mutation a few of genes in chromosome are adjusted or 
replaced. The new generation of solutions is then used in the next iteration of 
the algorithm. Traditional GAs usually function well for unique optimum prob-
lems but unsuccessful if they have to find multiple solutions. However, GA coin-
cides often with a local optimum after a certain number of generations. This is 
due to a low variety in the population or by the incapacity of the mutation 
process to avoid local optima. 

6.1. Five Components for the Sequential Execution of Genetic  
Algorithm 

• A worthy genetic representation for individual (chromosomes). 
• A technique to create the initial population. 
• A fitness function to calculate the quality of each potential solution. 
• Genetic operators that adjust the genetic configuration of parents to produce 

a new offspring. 
• The choice of the values of the various genetic algorithm parameters (popu-

lation size, cross over rate, mutation rate, stopping criteria... etc.) 

6.2. Genetic Operators Initial Population 

As genetic algorithm begins its search process for the optimal solution by acting 
on the initial population which is a set of potential candidates, the initialization 
method is a very important step since it alters the efficiency of the genetic algo-
rithm. Hence, the choice of an efficient initial population method enhances the 
genetic algorithm’s search effectiveness. The initial population is usually created 
randomly in the standard genetic algorithm. However, the use of a random 
process causes invalid solutions which increase the algorithm’s convergence 
time. Thus, coupled with proposing new constructive methods that permit only 
valid solutions in the initial population, researchers have also used a combina-
tion of random and constructive methods to construct the initial population of 
genetic algorithm. Population size is a generally fixed parameter during genetic 
algorithm execution. But there are modified versions of genetic algorithm where 
the size is dynamic. The choice of the value of this parameter is an influential 
factor for determining the quality of genetic algorithm convergence [37]. In this 
research, a random approach was used for creation of initial population with a 
fixed population size throughout the algorithm execution. This is because the 
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generated solution satisfied the underlying constraints (power and heat) of the 
combined heat and power problem. It explored the operating bounds and then 
generated several feasible solutions capable of constituting the initial population 
of genetic algorithm. 

6.3. Fitness Function 

Once the initial population is created, genetic algorithm must determine the 
performance of each individual by using an adaptive function which assigns to 
each possible solution, a fitness value that reflects its quality. Fitness function 
must consider several criteria, such as distance, safety, smoothness etc. The defi-
nition of a suitable fitness function is a crucial task since genetic algorithm uses 
the information generated by this function to choose the individuals for repro-
duction, mutation, and at the end of the process, it selects the best solution in 
the final population according to its fitness value. 

6.4. Selection Operator 

Selection is a genetic operator used to choose parents likely to survive to produce 
the next generation. Parents with the best fitness values are more likely to be se-
lected for mating. There are different selection methods that can be used: Elit-
ism, Tournament, Roulette Wheel, Stochastic Universal Sampling, Linear Rank, 
Exponential Rank, and Truncation Selections. The main objective of the selec-
tion operator is promoting individuals with high adaptability to be selected for 
the next generation. The selection pressure is an important criterion which 
strongly influences the performance of genetic algorithm. Where selection pres-
sure is high, genetic algorithm converges quickly without exploring every availa-
ble search space. On the other hand, a low selection pressure produces random 
solutions. In our approach, Elitist and Truncation Selection methods are used to 
control the pressure selection. Elitist which has high pressure selection is used to 
keep the fittest solutions throughout generations, and Truncation Selection is 
used to create an avenue for weak chromosomes to be selected from the last 
generation for reproduction in the current one, and to avoid the dominance of 
the best individual [20]. 

6.5. Crossover Operator 

After selecting individuals using the selection operator, the crossover is applied. 
Crossover is a genetic operator that blends the genetic information (genes) of two 
selected chromosomes (parents) to yield new chromosomes (offspring/child) for 
population heterogeneity, and to boost the fitness value of the candidate solu-
tions. The main idea behind crossover is that new chromosomes inherit the best 
characteristic of their parents. Thus, the result is having a better child that per-
forms better than its parents. The crossover rate is the probability of performing 
crossover. Different crossover operators have been introduced: the Partial-
ly-Mapped, the Order Crossover, the Cycle Crossover, and Same Point crossov-
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er. Same point crossover seems to be the most used mechanism. Munemoto [21] 
in his work has used the standard crossover mechanism, same point crossover 
which holds two crossover strategies: the one-point and the two-point crossovers 
are applied if there are at least two identical genes between the parents. Same 
point crossover was applied because it provided a better solution than the rest. 

6.6. Mutation Operator 

Mutation is an intrinsic part of the genetic algorithm. It is a genetic operator ap-
plied to improve diversity and prevent premature convergence of algorithms. 
Generally, this operator randomly selects a position (gene) and replaces it with a 
new, non-existing gene on the path. Yet, as mentioned in Alajlan et al. [22], 
random mutations could generate invalid paths. Even if a solution is valid before 
the application of the mutation operator, the new gene altered can contain an 
obstacle and as well create an inappropriate path. In this study, we adopt ran-
dom mutation. Mutation is performed by randomly choosing a cell from an in-
dividual and trying to replace same with one of its neighboring cells on the grid 
map. Figure 2 below depicts the algorithmic structure of the genetic algorithm 
and the pseudo-code is provided in the Appendix. 

7. Discussion of Genetic Algorithm Result 

The proposed GA has been applied for CHPED problem for 4 generating units. 
Cost function parameters along with feasible region coordinates of combined 
heat and power unit are taken from Tables 1-4 respectively. The system consists 

 

 
Figure 2. Flow chart of the GA-Based CHP optimization problem. 

https://doi.org/10.4236/epe.2022.149023


D. N. Ohaegbuchi et al. 
 

 

DOI: 10.4236/epe.2022.149023 454 Energy and Power Engineering 
 

of two conventional power units: one cogeneration unit and a heat-only unit. 
The heat-power feasible operation region of the cogeneration unit is illustrated 
in Figure 1. As explained in the research paper, combined heat and power eco-
nomic dispatch has been formulated with the objective of minimizing fuel cost. 
Table 5 shows power generation and heat generation output result of four-unit 
test system with power demand PD = 520 MW and heat demand QD = 300 MWh. 
The result in Table 5 shows that using the above heat and power loads, only unit 
two reached its capacity limit when proposed algorithm was deployed to solve 
the combined heat and power economic dispatch problem and the minimum 
objective function value was obtained after 51 iterations, with cost function va-
lueN21120.0. The obtained output decision variables (P1, P3, Q3 and Q4) were sa-
tisfactory for all the available constraints (equality and inequality constraints) 
associated with the combined heat and power economic dispatch problem in this 
research while output decision variable of unit 2 is infeasible. The global optimal 
solution obtained in this 4-unit test system, confirms the applicability of the 
proposed (genetic algorithm) for dealing with optimization problems of this 
class compared to existing techniques, improvements in the result are significant 
as shown with (particle swarm optimization and artificial bee colony algorithm). 
It is equally observed that the proposed genetic algorithm can converge to pro-
duce far reaching, diversified and extreme solutions due to its effective search 
capability. We therefore conclude that proposed algorithm provides a reasonable 
assessment of global solutions and better convergence speed. Genetic algorithm, 
being a probabilistic search technique, is known to be computationally more ef-
ficient for problems that permit probability solution similar to the one proposed 
in this research. Figure 3 below depicts the combined heat and power output  

 

 
Figure 3. GA-Output with respective values of the independent variables.  
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decision variables computed using genetic algorithm in the form of bar chart. 
Each bar represents an output decision variable (power or heat). Power and Heat 
Output decision variables of units 1, 3 and 4 operate within the required (feasi-
ble) bound, whereas unit-2 output decision variable is infeasible. 

The result implies that simulated output decision variables—heat and pow-
er—at respective 520 MW and 300 MW loads have global minima on units 1, 3 
and 4. They satisfy all available constraints, unlike unit 2 that could not find the 
optima in the specified maximum number of cycles. The proposed algorithm 
produced results quite close to the global optima with minimum objective func-
tion value. 

The convergence characteristic of the proposed method for this case is de-
picted in Figure 4. It is observed that the proposed GA algorithm converges 
quickly in early iterations i.e. 51 lines and hence, the number of maximum runs 
can be decreased to save the solution time. Convergence of genetic algorithm is 
generally difficult to obtain due to the fact that evolutionary computations  

 

 
Figure 4. After 51 iterations we get minimum value of the fitness function; z = 21,120. 

 
Table 5. Summary of results obtained from direct solution, genetic; particle swarm opti-
mization algorithms. 

 
Direct solution  

(Lagrangian multiplier method) 
Genetic Algorithm (GA) 

P1 (MW) 155.9 102.3 

P2 (MW) 169.1 345.6 

P3 (MW) 195.0 70.1 

Q3 (MWth) 120.0 158.2 
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incorporate complex nonlinear stochastic processes. 
In comparison with the results obtained with the direct method [23], it ap-

pears reasonable to conclude that the proposed algorithm (GA) has good prom-
ise. However this result still needs to be compared with other meta-heuristic al-
gorithms such as Particle Swarm Optimization and Artificial Bee Colony. This is 
subject for a future research paper. 

8. Conclusion 

A new perspective based on genetic algorithm was deployed in this paper for 
coherent solution of combined heat and power economic dispatch (CHPED) 
problem encountered in a simple cycle cogeneration system. Different attributes 
and constraints such as heat and power demands, feasible operation region of 
CHP units, and capacity limits of the units were taken into consideration in the 
formulation of combined heat and power economic dispatch (CHPED) problem. 
The efficacy of the GA was established using genetic algorithm codes. Our re-
sults have shown that GA can realize optimal solutions of the objective function 
value with good convergence characteristics. However, direct solution algorithm 
has less objective function but requires length recalculations when any of the 
units violates the constraints as experienced in unit three. Also, the effectiveness 
of direct solution algorithm when deployed in large units is not known. The 
formulation of the combined heat and power dispatch problem considered here 
is in conformity with the prevailing practice of using quadratic cost functions for 
the units. The possibility of extending genetic algorithm solution for cases where 
the cost function is not quadratic is currently being investigated. 
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Appendix 

The Pseudo-code for the Genetic Algorithm flowchart in Figure 2 is given. 
Input: N: Population size; cP : Crossover rate; mP : Mutation rate. 
Output: Best Chromosome. 

0t ←  

Initialize arbitrarily the initial population ( )P t . 
While (not termination condition) do 
Evaluate ( )P t  using a fitness function 
Select ( )P t  from ( )1P t −  
Recombine ( )P t  
Mutate ( )P t  
Evaluate ( )P t  
Replace ( )1P t −  by ( )P t  

1t t← +  
End 
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