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Abstract 
Estimating the price of a financial asset or any tradable product is a complex 
task that depends on the availability of a reasonable amount of data samples. 
In the Brazilian electricity market environment, where spot prices are cen-
trally calculated by computational models, the projection of hourly energy 
prices at the spot market is essential for decision-making, and with the parti-
cularities of this sector, this task becomes even more complex due to the sto-
chastic behavior of some variables, such as the inflow to hydroelectric power 
plants and the correlation between variables that affect electricity generation, 
traditional statistical techniques of time series forecasting present an addi-
tional complexity when one tries to project scenarios of spot prices on differ-
ent time horizons. To address these complexities of traditional forecasting 
methods, this study presents a new approach based on Machine Learning 
methodology applied to the electricity spot prices forecasting process. The 
model’s Learning Base is obtained from public information provided by the 
Brazilian official computational models: NEWAVE, DECOMP, and DESSEM. 
The application of the methodology to real cases, using back-testing with ac-
tual information from the Brazilian electricity sector demonstrates that the 
research is promising, as the adherence of the projections with the realized 
values is significant. 
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1. Introduction 

The use of computational techniques in time series forecasting is one of the most 
active fields in academic research. With the advent of machine learning tech-
niques, new algorithms have been developed and often made available through 
libraries for large-scale use. 

This study discusses some characteristics of electricity price formation for the 
spot electricity market in Brazil, also known as by the initials SPD (Settlement 
Price for the Differences), and its applications through a new methodology for 
time series forecasting, using Machine Learning techniques, more specifically the 
XGBoost algorithm.  

When XGBoost is compared to ARIMA [1], it is observed that XGBoost has 
advantages, such as the lack of a need to preprocess the data, a fast operation 
speed, complete feature extraction, a good fitting effect, and high prediction ac-
curacy. When XGBoost is compared to Deep Learning techniques [2], the main 
conclusion points out that boosting methods demand fewer data and features. 
Other studies [3], beyond time series scope, also point out that XGBoost is more 
suitable for tabular data, in the case of this study. The main reasons are specific 
features of tabular structure: irregular patterns in the target function, uninfor-
mative features, and non-rotationally-invariant data where linear combinations 
of features misrepresent the information.  

In this study, the time series features will be passed to the model as input va-
riables, allowing the representation of seasonality and time cycles. A variable 
representing the characteristics of the Brazilian Interconnected Electricity Sys-
tem (BSIN), from the official models NEWAVE, DECOMP, and DESSEM, is al-
so inserted in the model. Different forecast horizons will be provided, and espe-
cially for the very short and short term, the forecast performance will be meas-
ured [4] and presented. 

2. Characteristics of the Brazilian Electricity Price Definition 

The BSIN is characterized by the interconnection, through the Basic Power 
Transmission Network, of four of the country’s subsystems: Northeast, North, 
South, and Southeast, the latter together with the Center-West. The intercon-
nected system is operated centrally by the National Electric System Operator 
(ONS) and is integrated by different electricity generation and transmission 
companies, which may be public or privately owned. 

The Brazilian electricity generation profile makes the system predominantly 
hydrothermal; that is; most of the energy consumed is generated in hydroelectric 
powerplants, in addition to thermal plants (nuclear, natural gas, biomass, coal, 
and fuel oil) and renewables such as wind and solar plants.  

Data from ANEEL, published in January 2022, indicate that 60.12% of the 
electric energy demand is met by hydroelectric powerplants (HPP), 8.95% by 
thermal power plants (TPP) operating on natural gas, 5.02% by TPPs operating 
on liquid petroleum-derived fuels, and 1.97% by coal-fired TPPs. These Hydro 
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and Thermal sources meet about 76% of the energy demand [5]. 
Renewable sources, such as wind, small hydro, and solar power plants, play an 

important role in the composition of the electricity generation matrix, but in the 
operational optimization process, the expected renewable generation from these 
plants is deducted directly from the expected Gross Demand for electricity and is 
not explicitly considered in the centralized operation optimization process.  

Due to the stochastic nature of the Gross Demand and the renewable genera-
tion, this operation allows a single parcel to be presented to the hydrothermal 
optimization model, and this parcel is known as the Net Energy Demand, 
adopted as deterministic (single scenario) in the SPD calculation process. 

The system’s hydrothermal characteristic impacts the electricity generation’s 
price since the cost of generating electricity is a function of the optimal dispatch 
of the hydraulic and thermal sources to minimize the cost over an operation ho-
rizon. 

In pricing the SPD, the computer models used by ONS to operate the BSIN 
optimize the operation and calculate the Marginal Cost of Operation (MCO). 
These models take into account the constant changes in the operating condition 
of the system, especially related to meteorological issues—favorable or not of the 
Affluent Natural Energy (ANE) and Energy Stored (ES) in the reservoirs of the 
hydroelectric power plants—as well as the Unit Generation Costs (UGC) of each 
thermal power plant. 

2.1. Variable Related to the Hydrothermal System 

The chain of computer models, more specifically NEWAVE, DECOMP, and 
DESSEM, are used by both ONS, the system operator, and the Chamber of Elec-
tric Energy Commercialization (CCEE), the market operator but for different 
purposes. ONS seeks the best way to operate the power system to guarantee the 
supply of demand at the lowest cost. CCEE aims to determine the SPD, for each 
submarket with hourly granularity, which will be used in the short-term market 
accounting and financial settlement (i.e., spot market) [6]. 

To guarantee a connection between the results generated by the two institu-
tions, ONS runs the models first, and then CCEE uses these results and treats the 
electric constraints and the generating units under tests, processes the models 
again, and finally publishes the hourly prices. The coupling among the three 
models occurs through the so-called Future Cost Function (FCF). This function 
represents a cost associated with each of the several possible trajectories of the 
state variables and energy storage in the reservoirs of the hydroelectric power 
plants, together with the respective thermal complements, to satisfy the Net 
energy demand. Figure 1 below shows a relation of each model, using FCF as a 
coupling parameter. 

The hydrological scenario fluctuation is the main responsible for the FCF va-
riability, so it is mandatory to include a variable in the Machine Learning model 
that represents this oscillation between the various scenarios. In this research, it 
will be used a weekly version of the SPD—also called SPD Week Level—as this  
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Figure 1. Model coupling structure. 
 
independent input variable. It represents the electricity price level, divided into 
the blocks of heavy, intermediate, and low electricity consumption throughout 
the week, as follows: 
 Very Short and Short Term: 
 SPD Week Level from the MCO of the DESSEM and DECOMP output deck, 

specifically the deterministic part of the models. 
 Medium Term: 
 SPD Week Level from the MCO from the DECOMP output deck, specifically 

the stochastic part of the model. 
 Long Term 
 SPD Week Level from the MCO of the NEWAVE output deck, presenting a 

stochastic approach for longer-term hydrological scenarios. 

2.2. Temporal Variables 

The price forecast model considers and represents the patterns associated with 
the time profile of the various horizons considered. Thus, the following inde-
pendent variables were included, as shown in Table 1: 
 Hour, it can represent the hourly fluctuations (i.e., peak and valley hours of 

prices), essential for very short-term analysis;  
 Day of the Week and Day of the Month, which can represent oscillations 

within the same week and month, is suitable for short-term analysis (i.e., 
separation of weekdays and weekends, holidays, beginning of the month, 
etc.); 

 Month, to represent the effects of annual economic and meteorological 
events (i.e., dry season, rainy season, scholar vacations, year-end festivals, 
carnival, etc.).  

2.3. Hourly Pricing Variable (Hourly SPD) 

This is the dependent and target variable of the forecast. To obtain the correla-
tion of this variable with all the possible values assigned to the others, it is part of 
the database used in the learning process.  

The hourly SPD history used starts on April 17, 2018, and extends until July 
16, 2021, with daily updates, and the hourly SPD value started to be effectively 
used in CCEE’s accounting and financial settlement as of 1/1/2021. Between  
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Table 1. Southeast sub Market XGBoost model variables for April 17, 2018. 

Hourly SPD 
(R$/MWh) 

Weekly SPD 
(R$/MWh) 

Month Day 
Day of 

the Week 
Hour 

40.16 118.17 4 17 1 0 

40.16 118.17 4 17 1 1 

40.16 118.17 4 17 1 2 

40.16 118.17 4 17 1 3 

40.16 118.17 4 17 1 4 

40.16 118.17 4 17 1 5 

40.16 118.17 4 17 1 6 

40.16 125.33 4 17 1 7 

116.86 125.33 4 17 1 8 

119 125.33 4 17 1 9 

121.45 125.33 4 17 1 10 

121.45 125.33 4 17 1 11 

119.07 125.33 4 17 1 12 

121.41 125.33 4 17 1 13 

122.74 125.33 4 17 1 14 

123.81 125.33 4 17 1 15 

121.35 125.33 4 17 1 16 

119.11 125.33 4 17 1 17 

120.76 125.33 4 17 1 18 

119.16 125.33 4 17 1 19 

119.11 125.33 4 17 1 20 

119.1 125.33 4 17 1 21 

118.31 125.33 4 17 1 22 

114.26 125.33 4 17 1 23 

 
April 2018 and December 2020, the parameter was calculated on an experimen-
tal basis, known as “Shadow Operation”. 

3. XGBoost: A Decision Tree Based Algorithm 

Decision Trees are branching structures with three types of nodes used in data 
classification. The root node represents the entire data set. After it, there are in-
ternal nodes, which represent the variables in the data set and the decision crite-
ria for further branching. In summary, each internal node will contain a com-
parison of a given variable xi ∈ X—also called the independent or input variable 
of the model—against a specific value and criterion, such as: “is xi ≥ 23.7?” [7]. 
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From the answer to this comparison presented at this inner node, which can as-
sume “TRUE” or “FALSE” values, there will be a new branch to the left or right. 
This branching will continue until there is no more possibility to proceed, either 
because all variables have been entered into the model or because all samples 
have been correctly classified. The last node of the tree is called the leaf and con-
sists of the target variable of the prediction commonly called the dependent va-
riable and notated as yi. 

The most common and used structures are called CART (Classification and 
Regression Trees) because of their applicability in several classes of problems, 
which involve classification and regression. 

As advantages of using this type of structure, one can list, as presented by [7]: 
 Non-linearity, due to the possibility of representing complex data classifica-

tion boundaries through logical branching; 
 Support for categorical variables, which result in binary outcomes, TRUE or 

FALSE, for example; 
 Interpretability, due to the easily built of a self-explanatory structure; 
 Robustness, due to the possibility of exponential growth of new variables and 

possible tests; 
 Application in regression problems, in addition to the traditional classifica-

tion applications in the Data Science universe. This advantage is crucial to 
obtain a prediction of a numerical value, the target of this study. 

The XGBoost stands for Extreme Gradient Boosting and is a scalable and dis-
tributed gradient-boosted decision tree (GBDT) machine learning library. It is 
built upon distributed computing and parallel tree boosting, and the model uses 
the following concepts: supervised machine learning, decision trees, ensemble 
learning, and gradient boosting. 

In this study, two XGBoost model metrics will be assessed. The first is called 
Weight and represents the frequency of use of which variable to generate new 
branches. A higher value of Weight for a variable also indicates its greater im-
portance in the definition of the forecast model. A higher value of Weight for a 
variable indicates its greater importance in the definition of the forecast model. 

The second is called Gain split, based on Equation (1) and indicates the aver-
age Gain value of a variable used in the creation of new branches. A higher Gain 
value for a variable, relative to the others also means its greater importance in 
generating forecasts. 

( ) ( ) ( )2 2 2

1
2

E D R

E D R

split E D R

i i ii I i I i I

i i ii I i I i I

g g g

h h h

γ

γ
λ λ λ

∈ ∈ ∈

∈ ∈ ∈

= + − −

 
 = + − − + + +  

∑ ∑ ∑
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         (1) 

4. Results 

To facilitate the presentation of graphs and results, only the Southeast submarket 
will be addressed, but the machine learning model can also be applied to other 
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electrical submarkets, with very similar results. The main metropolitan regions 
of Brazil are part of the Southeast submarket, making this chosen scenario a 
good example to discuss the proposed methodology.  

Additionally, the performances of the very short-term and short-term fore-
casts were evaluated with two metrics commonly used in linear regression as-
sessment, which are MAPE and RMSE (Mean Absolute Percentage Error and 
Root Mean Square Error, respectively).  

A third metric was specially created by the authors and was named TAI 
(Trend Accuracy Index), defined according to Equation (2). This index 
represents the adherence between the actual hourly SPD variation, verified 
between subsequent hours, with the forecasted variation in these same periods. 
To exemplify, consider that between 00:00 and 01:00 on a given day, an in-
crease in the SPD was predicted, and when verifying the actual SPD for the 
same period, it was found that the actual SPD also showed an increase. In this 
example, a score of 1 will be assigned for this hit, and if it is not similar, a score 
of 0 will be assigned.  

This metric aims to provide the decision-maker with the sensibility on what to 
expect from the price behavior in the analysis horizon, answering with certain 
accuracy the question: In this horizon will the SPD go up or down?  

After the analysis of all intervals, all scores are added up and the result is di-
vided by the maximum possible score, which is 24 (number of hours in a day). 
The result, multiplied by 100, will represent a percentage score of the adherence 
between the Forecast and the Realized, in the variation of the SPD.  

1 1 1 11, if and , or and
0,otherwise.

i

i i i i i i i i

score
For For Real Real For For Real Real+ + + +> > < <

= 


 

4
1

2

100
24

ii score
TAI == ×∑                      (2) 

where: 

iFor  = Variable of the predicted hourly SPD increase or decrease, for period i. 

iReal  = Variable of the real hourly SPD increase or decrease, for period i. 

iscore  = grade assigned for the forecast accuracy, for period i. 

4.1. Weight Criterion 

The first model indicator is called Weight, and Figure 2 shows an example ob-
tained for Southeast. As per the results, the SPD Week Level variable was the 
highlight, with a utilization varying from 607 times for the Northeast to 717 
times for the South. And with the worst performance in this aspect, the Day of 
the Week variable presented a usage varying from 86 for the Southeast to 108 for 
the North. 

The second variable of note here is Month for Southeast, where it was relevant 
to define new branches. The same result was obtained for South as well, but for 
Northeast and North, the variable Day was the second more relevant. 
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Figure 2. Importance of the variables (Weight Criterion)—Southeast submarket. 

4.2. Gain Criterion 

Figure 3 presents the results for the second metric called Gain, obtained for 
Southeast. It was verified that the SPD Week Level excels the other variables, just 
like the Weight criterion, with average Gain values ranging from 0.78 for the 
Northeast to 0.9 for the North. 

It is worth mentioning that the Gain values are normalized so that the sum of 
all the Gains equals 1. Additionally, in Figure 3, the model variables are represented 
by the acronyms f0 (SPD Week Level), f1 (Month), f2 (Day), f3 (Day of the 
Week), and f4 (Hour).  

The second variable of note here is Month, which was relevant to all submar-
kets. The third more relevant variable was Hour for Southeast and South models 
and Day for Northeast and North model. 

Concerning the Day of the Week, they presented the smallest gains Southeast, 
South and North. And as the model evolves, with the inclusion of new samples 
and other independent BSIN variables, this variable may be candidate to be re-
moved, depending on the improvement of two factors: accuracy and processing 
time. 

4.3. 1-Day Ahead Forecast Performance 

In this method of performance analysis, the one-day ahead forecast took into 
consideration the inclusion of the previous day in the Learning Base. This strat-
egy allowed keeping the model as up-to-date as possible regarding the correla-
tions of variables of the BSIN model, embedded in the SPD Week Level variable, 
with the hourly SPD to be predicted. 

The forecast period was divided into hourly discretizations from 00:00 AM on 
July 17, 2021, to 11:00 PM on July 23, 2021, Figure 4 shows the forecasted hour-
ly SPD and the actual one for July 19th and the MAPE, RMSE, and TAI partials 
for the whole week forecast is shown in Table 2. 
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Table 2. 1-day ahead forecast results. 

 

Southeast South 

MAPE 
(%) 

RMSE 
(R$/MWh) 

TAI 
(%) 

MAPE 
(%) 

RMSE 
(R$/MWh) 

TAI 
(%) 

July 17, 2021 Saturday 1.67 11.73 65.22 3.04 20.79 56.52 

July 18, 2021 Sunday 5.92 40.32 82.61 4.49 30.75 73.91 

July 19, 2021 Monday 1.25 10.6 73.91 1.06 8.06 73.91 

July 20, 2021 Tuesday 1.09 7.08 73.91 0.92 6 60.87 

July 21, 2021 Wednesday 2.38 15.52 82.61 2.19 16.52 65.22 

July 22, 2021 Thursday 1.21 8.25 65.22 1.26 8.65 56.52 

July 23, 2021 Friday 0.81 5.15 60.87 0.85 5.67 78.26 

Average 2.05 11.3 72.05 1.97 13.78 66.46 

 

Northeast North 

MAPE 
(%) 

RMSE 
(R$/MWh) 

TAI 
(%) 

MAPE 
(%) 

RMSE 
(R$/MWh) 

TAI 
(%) 

July 17, 2021 Saturday 1.33 10.81 47.83 2.18 14.53 60.87 

July 18, 2021 Sunday 5.08 32.12 69.57 4.72 30.38 69.57 

July 19, 2021 Monday 1.30 9.69 69.57 1.48 12.65 73.91 

July 20, 2021 Tuesday 1.49 10.94 73.91 0.56 4.1 73.91 

July 21, 2021 Wednesday 2.48 16.63 52.17 1.84 14.97 73.91 

July 22, 2021 Thursday 1.67 11.13 47.83 0.81 7.23 65.22 

July 23, 2021 Friday 1.86 16.31 69.57 1.00 6.66 73.91 

Average 2.17 15.38 61.49 1.80 12.93 70.19 

 

 

Figure 3. Importance of the variables (Gain Criterion) – Southeast submarket. 
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Figure 4. 1-day ahead forecast example, for Southeast submarket. 

4.4. 7-Days Ahead Forecast Performance 

In this method, an hourly SPD forecast was performed with a horizon of seven 
days ahead. The model was trained only at the beginning of the process; that is, 
as the days evolved within the horizon, there were no new model updates. At the 
end of the seven days, its assertiveness was measured based on the initial view. 
Figure 5 shows the results obtained for the Southeast submarket. 

Table 3 shows the results of the forecast performed on July 16, 2021, for the 
period from July 17 to July 23, 2021. 

4.5. 1-Month Ahead Forecast Performance 

Like the seven-day ahead forecast and performance analysis, in this method, the 
model update occurs only on the day the forecast is calculated, and the model is 
not updated during the next 30 days. The model’s performance is measured at 
the end of the first month period. For the analysis, a one-month forecast limit 
was set, however, this analysis can be extended to a period up to two months, 
according to public files provided by CCEE. From the third month on, the fore-
cast acquires an informative character of conjectural trends in the sector. 

For this horizon, the publication date coincides with the Monthly Operation 
Programming (MOP), held by ONS monthly on the last Friday of the month 
before the validity of this programming. In the case of the forecast below, the 
MOP date was June 25, 2021, for the programming of July 2021. Figure 6 shows 
how the forecast and real SPD movement behaved on this horizon. 

The results indicate that the short-term forecast presents higher volatility than 
the very short-term forecast due to the updates of the SPD Week Level that oc-
cur between the availability of the short-term study, known as revision 0 or rv0  
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Table 3. 7-days ahead forecast results. 

 MAPE (%) RMSE (R$/MWh) TAI (%) 

Southeast 1.77 15.10 73.81 

South 2.14 17.22 69.64 

Northeast 2.08 17.32 60.71 

North 1.84 14.56 72.62 

 

 

Figure 5. 7-days ahead forecast example, for Southeast submarket. 
 

 

Figure 6. 1-month ahead forecast result, for Southeast. 
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until the actual disclosure of the SPD Week Level that will be in effect for the 
week in question. The results for all submarkets can be seen in Table 4. 

4.6. Medium-Term Projection 

The medium-term forecast starts from the end of the horizon defined by the 
short-term analysis; in other words, it starts in the third month and extends until 
the 14th month. It represents a prospective study carried out by CCEE, based on 
the Market Operator view of SPD Week Level for the horizon. 

In the forecasting strategy without coupling short-term results, the Learning 
Base included only the actual values of the Hourly SPD, published at the time of 
this study. 

In Figure 7, it is possible to visualize the behavior of the Hourly SPD along 
the period, specific for working days. For comparison purposes, the SPDs Week 
Level used in the input was included in the graphics. 

In this forecasting strategy with the coupling of short-term results, the Learn-
ing Base incorporated the short-term predicted results, so the predicted results 
for the first and second months were incorporated into the model. 

In Table 5, it is possible to visualize the effect of the Average variation of the 
Hourly SPD after this coupling. 
 
Table 4. 1-month ahead forecast results. 

 
MAPE (%) RMSE (R$/MWh) TAI (%) 

Southeast 14.00 87.27 60.08 

South 13.00 81.97 46.64 

Northeast 9.06 63.94 46.24 

North 13.16 82.41 54.03 

 

 

Figure 7. 12-month ahead forecast result, for Southeast. 
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Table 5. Hourly SPD with and without short-term coupling for Southeast. 

Month 
Average Hourly SPD with 

coupling (R$/MWh) 
Average Hourly SPD without 

coupling (R$/MWh) 
Variation 

(%) 

Sep-21 573.95 500.85 14.60 

Oct-21 528.11 547.98 −3.63 

Nov-21 291.72 301.59 −3.27 

Dec-21 284.59 293.05 −2.89 

Jan-22 320 306.88 4.28 

Feb-22 267.51 269.03 −0.56 

Mar-22 238.6 236.2 1.02 

Apr-22 42.63 41.93 1.67 

May-22 45.65 48.12 −5.13 

Jun-22 45.84 46.84 −2.13 

Jul-22 110.21 111.2 −0.89 

Aug-22 165.91 166.24 −0.20 

Averages 242.89 239.16 0.24 

4.7. Long-Term Projection 

The long-term forecast starts at the end of the horizon defined by the me-
dium-term analysis, that is, at the 15th month. However, it is possible to start the 
long-term horizon as early as the third month, thus dispensing the me-
dium-term prospective study made available by the CCEE or another source.  

Given the uncertainty inherent to this horizon, NEWAVE’s official input files 
make available 2000 synthetic series, each representing a possible hydrological 
scenario, and with this, the series were grouped to create three possible scenarios 
for the SPD Week Level in each month of this horizon: 
 Pessimistic scenario: 

Comprised of 20% of the largest weighted average MCOs, calculated from the 
range between the 80th percentile and the highest MCO value found, 
 Probable scenario: 

Comprised of 60% of the weighted averages of MCOs, calculated from the 
range between the 20th percentile and the 80th percentile, 
 Optimistic scenario: 

Comprised of 20% of the lowest weighted average MCOs, calculated from the 
range between the 20th percentile and the lowest MCO value found. 

As a result, Figure 8 presents the three scenarios for the projection of Hourly 
SPD. The Probable scenario was represented by the black lines, the Optimistic 
scenarios by the blue lines, and finally, the Pessimistic scenarios by the red lines. 

The coupling technique, using medium-term horizon results, was also applied 
in the long-term study. And to understand the impact of this strategy, Table 6  
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Table 6. Variation of Hourly SPD with and without medium-term coupling for South-
east. 

Month 
variation of 

Probable scenario (%) 
variation of 

Optimistic scenario (%) 
variation of 

Pessimistic scenario (%) 

Sep-22 4.59 3.53 2.55 

Oct-22 12.94 14.13 −1.81 

Nov-22 −1.78 −1.78 −2.15 

Dec-22 1.65 1.65 0.83 

Jan-23 −11.19 −11.19 2.92 

Feb-23 4.79 4.79 0.78 

Mar-23 1.31 1.31 1.69 

Apr-23 1.12 1.12 3.49 

May-23 7.64 7.64 1.80 

Jun-23 5.01 5.01 4.08 

Jul-23 −2.58 −2.58 0.30 

Aug-23 −1.48 −1.48 −0.26 

Sep-23 3.59 3.59 1.16 

Oct-23 12.24 12.24 9.07 

Nov-23 −1.61 −1.61 −0.83 

Dec-23 4.02 4.02 1.88 

Jan-24 −11.84 −11.84 −16.73 

Feb-24 5.03 5.03 −6.45 

Mar-24 2.85 2.85 2.37 

Apr-24 −0.33 −0.33 4.55 

May-24 8.17 8.17 1.72 

Jun-24 5.62 5.62 1.52 

Jul-24 −3.72 −3.72 −0.03 

Aug-24 −0.92 −0.92 0.47 

Sep-24 2.56 2.56 4.50 

Oct-24 11.09 11.09 3.84 

Nov-24 −0.07 −0.07 −1.78 

Dec-24 2.02 2.02 0.86 

Jan-25 −10.72 −10.72 −8.36 

Feb-25 5.64 5.64 −4.74 

Mar-25 2.57 2.57 −1.19 

Apr-25 −0.79 −0.79 −4.60 
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Continued 

May-25 8.91 8.91 6.12 

Jun-25 4.71 4.71 1.44 

Jul-25 −3.07 −3.07 0.03 

Aug-25 −0.63 −0.63 1.42 

Sep-25 2.47 2.47 7.44 

Oct-25 12.31 12.31 −7.37 

Nov-25 −1.12 −1.12 −2.96 

Dec-25 −0.64 −0.64 −0.76 

Averages 2.01 2.01 0.17 

 

 

Figure 8. Long-term forecast for Southeast. 
 
displays the differences between the average hourly SPD for a specific month 
with coupling, minus the average hourly SPD without coupling. Additionally, 
this strategy was applied to three scenarios created. 

In both approaches, it is possible to see that the Probable and Optimistic sce-
narios are practically the same in most of the months of this horizon. This hap-
pens because of the low values of MCO, pointing to a well-known characteristic 
of the official models: optimism about the future inflows of the rivers. This op-
timism points to a favorable scenario of rains in the future, thus reducing the 
CMO by favoring the use of hydraulic sources in energy generation. 

It is important to mention that if the values in both scenarios are lower than 
the floor allowed for the hourly SPD; this value must be discarded and replaced 
by this minimum value defined by CCEE. 

5. Conclusions 

This study presented the XGBoost model as an interesting tool in the projection 
of multivariate time series, with a relevant application in the hourly projection of 
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the SPD for the Brazilian electricity market. 
This projection encompassed different forecast horizons and proved to be 

flexible when incorporating temporal and BSIN variables, dealing satisfactorily 
with tabular-type information. 

As shown in this study, the official models have an optimistic bias in the me-
dium and long term, so there is much to evolve in the strategy presented of bas-
ing the creation of scenarios on a group of series of the SPD Week Level. Poten-
tial new studies can be developed to anticipate this bias more consistently by in-
cluding other variables that can translate potential water crises ahead, such as 
ANE and ES. Although the official models include these indicators in the SPD 
Week Level, the inclusion of specific variables for this purpose may be a prom-
ising field for further studies. 

From a model robustness point of view, with the increase of samples inserted 
into the Learning Base, the XGBoost model will gradually become more com-
prehensive, serving as an important decision-making support tool.  
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