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Abstract 
This work deals with determining the optimum thickness of the base of an 
n+/p/p+ silicon solar cell under monochromatic illumination in frequency 
modulation. The continuity equation for the density of minority carriers 
generated in the base, by a monochromatic wavelength illumination (λ), with 
boundary conditions that impose recombination velocities (Sf) and (Sb) re-
spectively at the junction and back surface, is resolved. The ac photocurrent is 
deduced and studied according to the recombination velocity at the junction, 
to extract the mathematical expressions of recombination velocity (Sb). By 
the graphic technique of comparing the two expressions obtained, depending 
on the thickness (H) of the base, for each frequency, the optimum thickness 
(Hopt) is obtained. It is then modeled according to the frequency, at the long 
wavelengths of the incident light. Thus, Hopt decreases due to the low relaxa-
tion time of minority carriers, when the frequency of modulation of incident 
light increases. 
 

Keywords 
Silicon Solar Cell, Modulation Frequency, Recombination Velocity, Base 
Thickness, Wavelength 

 

1. Introduction 

Expressions of the recombination velocity of the minority carriers in the back 
(p/p+) from the base of the n+/p/p+ silicon solar cell [1] under constant monoch-
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romatic illumination [2] [3] were obtained through the study of the photocur-
rent versus the carrier’s recombination velocity at the junction [4]. These ex-
pressions are dependent on the minority carriers diffusion coefficient (D) [5] 
and diffusion length (L) [6] [7], as well as the monochromatic absorption coeffi-
cient α(λ) [8] in the silicon material. 

Earlier theoretical and experimental works, on semiconductors or on solar 
cells, using a frequency modulation signal [9]-[15], have helped to determine: 

1) phenomelogical parameters (lifetime, diffusion coefficient-mobility, surface 
recombination velocity) in different regions of the material taking into account 
the signal penetration depth [16], associated with the distribution of defects [17] 
[18] [19]. 

2) the parameters of the equivalent electrical model (conductance and capa-
citance) through Boode and Nyquist diagram technique [20] [21] [22] [23] [24]. 

This work is based on the ac technique, through new expressions of minority 
carrier recombination velocity (ac Sb) [25] [26] [27] [28] [29] at the back surface 
of the base under monochromatic illumination (α(λ)) in frequency modulation, 
depending on the complex parameters, such as D(ω) and L(ω) [11] [12] [13] 
[25] [26] [29]. 

The thickness of the different parts of the solar cell [30] [31] especially the base, 
has been the subject of theoretical and experimental investigations on samples of 
different thicknesses [32] [33] [34] [35] in order to optimize the efficiency of photo 
conversion [36], by the economy of material entering its industrial development. 

The technique of determining the optimum thickness of the base is applied in 
this study to an n+/p/p+ silicon solar cell [31] [34] [37] illuminated by the (n+) 
surface, and leads to a new expression of Hopt according to the frequency. 

2. Theoretical Model 

The structure of the n+-p-p+ silicon solar cell [1] under modulated monochro-
matic illumination on the (n+) side is represented by Figure 1. 

The excess minority carriers’ density ( ),x tδ  generated in the base of the so-
lar cell obeying to the continuity equation under modulated monochromatic il-
lumination, is then given by [38] [39]: 

 

 
Figure 1. Structure of n+/p/p+ silicon solar cell. 
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The expression of the excess minority carrier’s density is written, according to 
the space coordinates (x) and the time t, as: 

( ) ( ), e j tx t x ωδ δ −= ⋅                          (2) 

The modulated carrier generation rate ( ), , ,G x tα ω  is given by the relation-
ship: 

 ( ) ( ), , , , e j tG x t g x ωα ω α −= ⋅                      (3) 

with the coordinate dependent generation rate: 

( ) ( ) ( ) ( )( ) ( )
0, 1 e xg x I R α λα α λ λ λ − ⋅= ⋅ ⋅ − ⋅                (4) 

where:  
­ I0(λ) is the incident monochromatic light intensity. 
­ R and α are respectively the reflection coefficient and absorption coefficient 

for silicon material at wavelength (λ) [3] [7] [8]. 

( )D ω  is the complex diffusion coefficient of excess minority carrier in the 
base. Its expression is given by the relationship [9] [11] [12] [13] [29]:  

( )
( )

2 2

0 2

1
1

jD D ω τω
ωτ

 − ⋅ ⋅ = ×
 + 

                    (5) 

D0 is the excess minority carrier diffusion in the base under steady. 
By replacing Equation (2) and Equation (3) in Equation (1), the continuity 

equation for the excess minority carriers’ density in the base is reduced to the 
following relationship: 

( ) ( )
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( )L ω  is the complex diffusion length of excess minority carriers in the base 
given by: 

( ) ( )
1
D

L
j
ω τ

ω
ωτ

=
+

                       (9) 

τ  is the excess minority carriers lifetime in the base. 
The solution of Equation (8) is: 

( ) ( ) ( )
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And ( )( )2 2 1L ω α⋅ ≠                       (11) 

Coefficients A and B are determined through the boundary conditions: 
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■ At the junction (x = 0) 
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■ On the back side in the base (x = H) 

( ) ( ) ( )
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δ ω δ ω

ω
ω

= =

∂
= − ⋅

∂
             (13) 

Sf and Sb are respectively the recombination velocities of the excess minority 
carriers at the junction and at the back surface. The recombination velocity Sf 
reflects the charge carrier velocity of passage at the junction, in order to partici-
pate in the photocurrent. It is then imposed by the external load which fixes the 
solar cell operating point [2] [29]. It has an intrinsic component which represents 
the carrier losses associated with the shunt resistor in the solar cell electrical 
equivalent model [39] [40]. The excess minority carrier recombination velocity 
Sb on the back surface is associated with the presence of the p+ layer which ge-
nerates an electric field for throwing back the charge carrier toward the junction 
[2] [41]. 

3. Results and Discussions 
3.1. Ac Excess Minority Carrier Density 

Excess minority carrier density is plotted versus depth in the base, for given il-
lumination modulated frequency (ω) with large wavelength (giving rise to weak 
α(λ) for silicon), while the solar cell is under short circuit condition (large Sf 
values) (Figure 2). 

3.2. Photocurrent Density 

From the density of minority carriers in the base, the ac photocurrent density at 
the junction is given by the following expression: 

( ) ( ) ( )
0

, , ,
, ,ph

x

x Sf Sb
J Sf Sb qD

x
δ ω

ω ω
=

∂
=

∂
          (14) 

where q is the elementary electron charge. 
Figure 3 shows ac photocurrent versus the junction surface recombination 

velocity for different frequency. As junction’s recombination velocity indicates 
solar cell operating point, ac photocurrent is weak for low Sf values i.e. open 
circuit. And at large Sf values, the ac photocurrent reaches flat region assimilate 
to short circuit current which decrease decreases with frequency. 

3.3. Back Surface Recombination Velocity 

Photocurrent density versus minority carriers recombination velocity at the 
junction, shows a bearing sets up and corresponds to the short-circuit current 
density (Jphsc), for very large Sf. For this junction recombination velocity inter-
val, it then comes [2] [27] [39] [41]:  
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Figure 2. Excess minority carrier density versus base depth for different frequencies (D0 = 
35 cm; α = 6.2 cm−1). 
 

 
Figure 3. Module of photocurrent density versus recombination velocity for different 
frequency (D = 35 cm; α = 6.2 cm−1). 
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The solution of Equation (15) gives the ac recombination velocity expressions in 
the back surface through Equation (16) and Equation (17): 
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3.4. Optimum Thickness Determination Technique 

This technique is based on the results of the calculation of the photocurrent 
through the two emitters of a parallel vertical junction silicon solar cell [42]. 

Figure 4 gives the representation of the two back surface recombination ve-
locities versus thickness of the base of the solar cell for different frequency, in 
order to determine the optimum thickness of the base. 

Figure 5 allows us to model the optimum thickness through the following 
mathematical expression, for a low value of α(λ): 

( ) ( )13 2 8 1cm 3 10 2.9 10 rad s 0.015opH ω ω− − −= − × × − × × ⋅ +  

For the large wavelengths of incident light, corresponding to the low values of 
the silicon absorption coefficient α(λ), minority carriers are generated in depth 
from the base [7] [8]. The optimum thickness (Hopt) obtained in static (low 
modulation frequency, i.e. 1ωτ  ) is therefore large. As the modulation fre-
quency increases, the density of the generated carriers decreases and is folded 
back to the junction [27], the optimum thickness (Hopt) decreases (in dynamic 
state, i.e. 1ωτ  ). Figure 6 gives the optimum thickness of the base according 
to the diffusion coefficient D(ω) Equation (5) [9] [10] [11] [13]  

The optimum thickness is a growing right according to the diffusion coeffi-
cient, modeled by the following relationship: 

( ) ( )4 2cm 3.1 10 cm s 0.004opH D− −= × × ⋅ +               (19) 

Several works have produced a relationship giving Hopt thickness, depending 
on the D coefficient, which in turn can be expressed according to external para-
meters. These are the works giving Hopt variations with: 

 

 
 

ω (rad∙s−1) 102 103 104 2.104 3.104 4.104 5.104 6.104 7.104 8.104 9.104 105 

Hop (cm) 0.015 0.015 0.015 0.0146 0.0141 0.0136 0.0129 0.0122 0.0115 0.0108 0.0101 0.0095 

Figure 4. Sb1 and Sb2 versus depth in the base for different frequency (D = 35 cm; α = 
6.2 cm−1). 
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Figure 5. Optimum thickness versus pulsation.  

 

 
Figure 6. Optimum thickness versus diffusion coefficient.  

 
- The base’s doping rate (Nb) [43]. 
- The magnetic field applied to vertical junction series silicon solar cell [44]. 
- The magnetic field applied to front illuminated (n+-p-p+) silicon solar cell 

[45]. 
- The magnetic field and temperature applied to front illuminated (n+-p-p+) 

silicon solar cell [46]. 
- The temperature [47]. 
- The flow of electrical charge particles irradiating the (n+-p-p+) silicon solar 

cell [48] [49]. 
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- The monochromatic absorption coefficient of the material (Si) [50]. 
Each value of the diffusion coefficient must correspond to an elaborated sili-

con solar cell, with Hopt its base optimum thickness. The diffusion coefficient of 
the minority carriers then imposes the thickness to be chosen for the manufac-
ture of a high-performance solar cell. Thus low diffusion coefficients require low 
thicknesses to produce an important photocurrent, therefore a better efficiency. 

4. Conclusions 

The ac recombination velocity at the back surface of the n+/p/p+ silicon solar cell 
was used to determine the optimum thickness of the base for long wavelengths 
of modulated incident light. 

The light penetration depth at low monochromatic absorption coefficient 
values reduced the relaxation effect of photogenerated carriers, resulting in a 
small decrease of Hopt with frequency, through the expression of its modeling. 
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