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Abstract 
Conventional vehicle suspension systems, often relying on integer-order mod-
els with fixed damping coefficients, struggle to deliver optimal performance 
across diverse and dynamic road conditions. This paper introduces a novel 
intelligent adaptive suspension framework that leverages fractional-order cal-
culus and real-time optimization. The core of the system is a damping model 
employing a Caputo fractional derivative of order ( )1,2α ∈ , where α  itself 
is dynamically tuned. This adaptation is driven by an Extremum Seeking Con-
trol (ESC) algorithm, which continuously adjusts α  to minimize a prede-
fined cost function reflecting ride comfort and road holding, based on fused 
sensor data (e.g., from IMUs and wheel encoders processed via a Kalman Fil-
ter). This model-free online optimization allows the suspension to adapt its 
fundamental damping characteristics to changing terrains without requiring 
explicit road classification models. Simulation results for a quarter-car model 
demonstrate the ESC’s ability to converge towards an optimal α , enhancing 
the suspension’s adaptability and performance across varying operating sce-
narios, thereby indicating a promising path for next-generation terrain-aware 
vehicle dynamics control. This model-free, online optimization allows the sus-
pension to adapt its fundamental damping characteristics to changing terrains 
without requiring explicit road classification models. Real-time feasibility is 
achieved through computationally efficient numerical approximations of the 
fractional derivative and the inherent filtering within the ESC loop, making 
the framework suitable for implementation on modern automotive control-
lers. Simulation results for a quarter-car model demonstrate the ESC’s ability 
to converge towards an optimal α, enhancing the suspension’s adaptability 
and performance across varying operating scenarios, thereby indicating a 
promising path for next-generation terrain-aware vehicle dynamics control. 
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1. Introduction 

The performance of a vehicle’s suspension system is critical for ensuring ride com-
fort, maintaining road holding, and guaranteeing stability. Traditional suspension 
designs are predominantly based on passive components (springs and dampers) 
and are modeled as second-order linear systems [1]. While semi-active and active 
suspensions offer improved adaptability by modulating damping forces or inject-
ing external energy [2], their underlying control strategies often rely on integer-
order models that assume instantaneous, memoryless damping. Such models may 
not fully capture the complex, frequency-dependent, and hereditary behaviors in-
herent in damper materials and tire-road interactions, especially over diverse ter-
rains. 

Fractional calculus, dealing with derivatives and integrals of non-integer order, 
provides a mathematically richer framework for describing systems with memory 
and hereditary properties [3] [4]. Its application to viscoelastic materials and me-
chanical systems has shown significant promise [5] [6]. In vehicle suspensions, 
fractional-order (FO) damping can offer a more nuanced control over energy dis-
sipation and vibration isolation by allowing the damping characteristic to inter-
polate between purely viscous behavior (order 1) and mass-like (inerter) behavior 
(order 2) [7]. 

While fixed-order fractional damping models have been explored, their optimal 
fractional order α  often depends on the specific road conditions and driving 
maneuvers. This paper proposes a significant advancement: an adaptive FO 
damping system where the fractional order α  of the damper model itself is dy-
namically optimized in real-time. This adaptation is achieved using Extremum 
Seeking Control (ESC), a model-free online optimization technique. ESC perturbs 
α  and observes the system’s response (e.g., body acceleration, tire load variation) 
to iteratively adjust α  towards a value that minimizes a predefined performance 
cost function. This approach eliminates the need for explicit road classification 
models, allowing the suspension to continuously adapt its fundamental damping 
characteristics to the prevailing conditions, inferred from onboard sensor data 
(e.g., IMU, wheel encoders) potentially fused via a Kalman Filter. 

The main contributions of this work are:  
• The proposal of a vehicle suspension system employing fractional-order 

damping where the fractional order α  is dynamically adaptive. 
• The application of Extremum Seeking Control for the real-time, model-free 

optimization of this fractional order α . 
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• A simulation framework demonstrating the feasibility and potential benefits 
of this adaptive FO damping strategy for a quarter-car model. 

To implement the adaptive control, real-time information about the vehicle’s 
state is required. This is typically obtained from onboard sensors such as IMUs 
(accelerometers, gyroscopes) mounted on the sprung mass, and wheel encoders. 
Suspension deflection sensors, if available, provide direct measurement of  

s usz z− . A Kalman Filter (KF) or an Extended Kalman Filter (EKF) is commonly 
employed to fuse data from these multiple noisy sensors to provide robust esti-
mates of key states like sz , sz , sz , usz , usz , and suspension deflection 
( s usz z− ) and velocity ( s usz z−  ). These estimated states form the basis for calcu-
lating the performance cost function used by the ESC. The real-time implementa-
tion of this framework is entirely feasible with current automotive-grade hardware. 
The primary computational challenges are the sensor fusion and the fractional 
derivative calculation: Sensor Fusion: Kalman Filters and their variants are well-
established in the automotive industry for applications like navigation and stabil-
ity control. They are computationally efficient and designed to run in real-time 
on microcontrollers. Fractional Derivative Calculation: The fractional derivative 
(4) is not computed analytically. Instead, a numerical approximation like the 
Grünwald-Letnikov (GL) scheme (5) is used. The GL scheme calculates the cur-
rent derivative value as a weighted sum of the system’s past states. While this re-
quires storing a history of state variables, the memory footprint and computa-
tional cost (a single convolution at each time step) are manageable for modern 
processors, especially when implemented efficiently with a fixed-size memory 
buffer. 

The remainder of this paper is organized as follows: Section II reviews relevant 
literature. Section III details the fractional-order suspension model and the ESC-
based α -adaptation algorithm. Section IV presents the simulation setup and re-
sults. Section V discusses potential future research directions. Finally, Section VI 
concludes the paper. 

2. Literature Review 

The design of vehicle suspension systems has evolved significantly. Classical pas-
sive systems, modeled as second-order oscillators [1], offer a fixed compromise 
between conflicting objectives. Semi-active and active suspensions aim to over-
come these limitations by modulating damping or applying active forces, often 
guided by control strategies like skyhook, groundhook, or LQR [2]. However, 
these typically operate within integer-order control frameworks. 

Fractional calculus (FC) has emerged as a powerful tool for modeling systems 
with memory and hereditary effects [3] [8]. Its application in mechanics, particu-
larly for viscoelastic materials which share characteristics with hydraulic dampers, 
has been well-documented [5] [6] [9]. Several studies have explored applying FC 
to vehicle suspensions by introducing fractional-order dampers or fractional-or-
der PID (FOPID) controllers. For instance, [7] [10] demonstrated that FOPID 
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controllers can enhance active suspension performance. Others have investigated 
passive or semi-active dampers with fixed fractional orders, showing potential 
benefits in vibration isolation by carefully selecting the fractional order α  [11] 
[12]. These works typically assume a fixed α , often optimized offline for specific 
road profiles. 

Adaptive control strategies aim to adjust controller parameters online. Road 
classification using sensor data (e.g., IMUs, GPS) and machine learning has ena-
bled suspensions to switch between discrete control laws or tune integer-order 
parameters based on estimated terrain [13]-[15]. However, adapting the funda-
mental order α  of the damping characteristic itself is a less explored area. 

Extremum Seeking Control (ESC) is a model-free online optimization tech-
nique that can find and track the extremum of a performance function by per-
turbing system parameters and observing the output [16] [17]. ESC has been ap-
plied in various engineering domains, including automotive applications like en-
gine control [18] and ABS [19]. Its model-free nature makes it attractive for com-
plex systems where an accurate model for gradient calculation is unavailable. 
Some works have explored adaptive FOPID controllers where the controller’s 
fractional orders ( ,λ µ ) are tuned using ESC or other adaptive methods [20] [21]. 

This paper differentiates itself by proposing the use of ESC to directly adapt the 
fractional order α  of the physical damping model component in the suspension 
system ( ( )C

d tc D x tα⋅ ), rather than just tuning parameters of an FOPID controller 
or switching between fixed integer-order models. This allows for a more funda-
mental adaptation of the damping behavior in response to real-time conditions. 
To the best of our knowledge, the direct online optimization of the primary frac-
tional damping order α  using ESC for vehicle suspension systems, driven by 
sensor-fused data, is a novel approach. 

3. Proposed Model and Algorithm 
3.1. Fractional-Order Quarter-Car Model 

We consider a quarter-car model as shown conceptually in Figure 1. The sprung 
mass sm  (vehicle body portion) is connected to the unsprung mass usm  (wheel 
assembly) via a primary suspension consisting of a linear spring sk  and an adap-
tive fractional-order damper. The tire is modeled as a linear spring tk  and a lin-
ear damper tc . The equations of motion are: 

 ( ) 0s s d s s usm z F k z z+ + − =  (1) 

 ( ) ( ) ( ) 0us us d s s us t us r t us rm z F k z z k z z c z z− − − + − + − =   (2) 

where sz  and usz  are the vertical displacements of the sprung and unsprung 
masses, respectively, and rz  is the road profile displacement. The adaptive frac-
tional-order damping force dF  is given by: 

 ( ) ( )0
C

d d t s us s usF c D z z c z zα= ⋅ − + −   (3) 

Here, dc  is the fractional damping coefficient, 0c  is a small conventional vis-
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cous damping coefficient (for stability or to represent inherent system damping), 
and  C tDα  denotes the Caputo fractional derivative of order α  with respect to 
time t . The key innovation is that α  is not fixed but is dynamically adapted in 
real-time, typically within the range 1 2α< < . This range allows the damper to 
exhibit characteristics between a pure viscous damper ( 1α = ) and an ideal inerter 
( 2α = , related to acceleration). 

The Caputo fractional derivative of order α  for a function ( )f t  is defined 
as:  

 ( ) ( ) ( ) ( ) ( )1

0

1 d
Γ

t m mC
tD f t t f

m
αα τ τ τ

α
− −= −

− ∫  (4) 

where m α=    . For 1 2α< < , 2m = . Numerically, we often use approxima-
tions like the Grünwald-Letnikov (GL) or L1/L2 schemes. For our simulation, the 
GL approximation for the Caputo derivative (assuming zero initial conditions for 
the relative displacement for the fractional part) is used: 

 ( ) ( ) ( )
0

1 
k

C
t k j k

j
D y t w y t jh

h
αα

α
=

≈ −∑  (5) 

where h  is the time step and ( )
jw α  are coefficients: ( )

0 1w α = ,  
( ) ( )( ) ( )

11 1j jw j wα αα −= − +  for 1j ≥ . 

 

 
Figure 1. Conceptual diagram of a quarter-car model 
with primary suspension (spring sk  and adaptive 
fractional damper dF ) and tire model ( ,t tk c ). 

3.2. Sensor Fusion and State Estimation (Conceptual) 

To implement the adaptive control, real-time information about the vehicle’s state 
is required. This is typically obtained from onboard sensors such as IMUs (accel-
erometers, gyroscopes) mounted on the sprung mass, and wheel encoders. Sus-
pension deflection sensors, if available, provide direct measurement of s usz z− . 
A Kalman Filter (KF) or an Extended Kalman Filter (EKF) is commonly employed 
to fuse data from these multiple noisy sensors to provide robust estimates of key 
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states like , , , , ,s s s us us usz z z zz z    , and suspension deflection ( )s usz z−  and velocity 
( )s usz z−   [22]. These estimated states form the basis for calculating the perfor-
mance cost function used by the ESC. 

3.3. Extremum Seeking Control for α  Adaptation 

The core of the adaptive strategy is the online optimization of the fractional order 
α  using ESC. The goal is to adjust α  to minimize a cost function J  that 
quantifies desired suspension performance. 

3.3.1. Cost Function J  
The cost function J  is a weighted sum of terms representing conflicting objec-
tives, e.g., ride comfort and road holding: 

 ( ) c comfort h handling s travelJ w J w J w Jα = ⋅ + ⋅ + ⋅  (6) 

where: 
• comfortJ : Quantifies ride comfort, typically related to sprung mass vertical ac-

celeration sz . E.g., ( )RMScomfort sJ z=   over a recent time window. 
• handlingJ : Quantifies road holding, often related to tire load variation or tire de-

flection ( )us rz z− . E.g., ( ) ( )( )RMShandling t us r t us rJ k z z c z z= − + −   or RMS 
of tire deflection. 

• travelJ : Penalizes excessive suspension travel. E.g., ( )RMStravel s usJ z z= − . 
The weights , ,c h sw w w  are tuning parameters that define the desired trade-off. 

The RMS values are calculated over a sliding window of recent data. 
Remark 1. The core of the adaptive strategy is the online optimization of the 

fractional order α  using Extremum Seeking Control (ESC). The goal is to adjust 
α  to minimize a cost function J  that quantifies desired suspension perfor-
mance. 

a) Cost Function J: Justification and Formulation: The cost function J  is a 
crucial element that defines the control objective. It must encapsulate the conflict-
ing goals of suspension design. A weighted-sum approach is used to balance these 
objectives: 

 ( ) comfort handling travelc h sJ w J w J w Jα = ⋅ + ⋅ + ⋅  (7) 

The terms are justified as follows: 
• comfortJ : This term quantifies ride comfort. It is directly related to the vertical 

acceleration of the vehicle body (sprung mass), as this is what passengers ex-
perience. The Root Mean Square (RMS) of the sprung mass acceleration, 

( )RMS sz , is a widely accepted, ISO 2631-standard metric for ride comfort 
evaluation. Minimizing this term leads to a smoother, more comfortable ride. 

• handlingJ : This term quantifies road holding and vehicle stability. It is related to 
the variation in the normal force between the tire and the road. Large varia-
tions can lead to a loss of traction, impacting steering and braking effectiveness. 
This is often represented by the RMS of the dynamic tire load,  

( ) ( )( )RMS t us r t us rk z z c z z− + −  , or more simply by the RMS of the tire deflec-
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tion, ( )RMS us rz z− . Minimizing this term ensures the tire remains in firm 
contact with the road. 

• travelJ : This is a practical constraint to penalize excessive suspension travel, 
( )RMS s usz z− . Large suspension deflections can cause the system to hit its 

physical limits (bottoming or topping out), resulting in harsh impacts and po-
tential component damage. 

The weights ,c hw w , and sw  are positive tuning parameters that define the 
desired trade-off. Their selection depends on the vehicle class and desired perfor-
mance characteristic. For instance, a luxury sedan would use a high cw  to prior-
itize comfort, whereas a sports car would use a high hw  to prioritize handling. 

The frequencies must be chosen such that lpf hpf pω ω ω< < . The perturbation 
frequency pω  should be slower than the dominant system dynamics but faster 
than the rate at which the optimal *α  changes. 

3.3.2. ESC Algorithm 
The standard single-parameter ESC scheme is employed. A block diagram is 
shown conceptually in Figure 2.  
 

 
Figure 2. Block diagram of the Extremum Seeking Con-
trol loop for α  adaptation. 

 
The ESC algorithm iteratively adjusts nomα , the nominal value of α , as fol-

lows: 
1) Perturbation Signal: A small sinusoidal dither signal ( ) ( )sinp pp t A tω=  is 

added to the current nominal ( )nom tα  to get the perturbed  
( ) ( ) ( )pert nomt t p tα α= + . This ( )pert tα  is used in the fractional damper model 

(3). pA  is the perturbation amplitude and pω  is the perturbation frequency.  
2) System Output & Cost Evaluation: The suspension operates with ( )pert tα . 

The cost function ( )J t  is calculated based on the system’s response (e.g., esti-
mated sz , etc.).  

3) High-Pass Filter (HPF): ( )J t  is passed through a high-pass filter  
( )HPFH s  to remove its DC component and slow variations, resulting in ( )hpfJ t . 

This helps isolate the variations in J  caused by the perturbation. The cutoff fre-
quency is hpfω . 
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4) Demodulation: The filtered cost ( )hpfJ t  is multiplied by a demodulation 
signal, typically ( ) ( )sin pd t tω=  (or related to ( )p t ). This yields  

( ) ( ) ( )demod hpfJ t J t d t= ⋅ . 
5) Low-Pass Filter (LPF) & Gradient Estimation: ( )demodJ t  is passed 

through a low-pass filter ( )LPFH s  with cutoff frequency lpfω . The output, 
( )estg t , is an estimate proportional to the gradient J α∂ ∂ .  

6) Integration & Update: ( )nom tα  is updated by integrating the negative of 
the estimated gradient: 

 ( ) ( )nom ESC estt k g tα = − ⋅  (8) 

where ESCk  is the adaptation gain. 
7) Saturation & Rate Limiting: The updated ( )nom tα  (and ( )pert tα ) is satu-

rated to stay within the predefined bounds [ ],min maxα α  (e.g., [ ]1.05,1.95 ). A rate 
limiter maxdα  may also be applied to nomα  for smoother transitions. 

 ( ) ( )nom ESC estt k g tα = − ⋅  (9) 

where ESCk  is the adaptation gain. 
The frequencies must be chosen such that lpf hpf pω ω ω< . The perturbation 

frequency pω  should be slower than the dominant system dynamics but faster 
than the rate at which the optimal *α  changes. 

The ESC algorithm is summarized in Algorithm 1. 
 

 

4. Simulation Setup and Results 

To validate the proposed adaptive fractional-order damping system, a compre-
hensive simulation was conducted using a quarter-car model implemented in Py-
thon with the Numba library for performance acceleration. The simulation was 
designed to test the system’s ability to not only converge to an optimal fractional 
order on a consistent road surface but also to adapt in real-time to a significant 
change in road characteristics. 
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4.1. Simulation Model and Parameters 

The quarter-car model from Section III was simulated using a Forward Euler in-
tegration scheme. To ensure numerical stability with the stiff tire dynamics and 
the fractional derivative term, a small time step and a physically reasonable frac-
tional damping coefficient were chosen. The key simulation parameters are listed 
in Table 1. 
 
Table 1. Simulation parameters. 

Parameter Symbol Value 

Sprung Mass sm  250.0 kg 

Unsprung Mass usm  30.0 kg 

Suspension Stiffness sk  18000.0 N/m 

Tire Stiffness tk  180000.0 N/m 

Fractional Damping Coeff. dc  500.0 Nsα/m 

Base Viscous Damping 0c  10.0 Ns/m 

Adaptation Gain ESCk  0.25 

Perturbation Amplitude pA  0.05 

Perturbation Frequency pω  0.5 × 2π rad/s 

Time Step dt  0.0005 s 

Total Simulation Time simT  80.0 s 

4.2. Advanced Road Scenario 

A single, comprehensive road profile was generated to test both convergence and 
adaptation. The 80-second scenario is divided into two distinct phases:  
• 0 - 40 seconds (Smooth Road with Bumps): This phase simulates a well-

paved road. It consists of low-amplitude continuous random noise combined 
with sparse, randomly occurring larger bumps. This provides enough excita-
tion for the ESC to find an initial optimum. 

• 40 - 80 seconds (Rough Road): At t = 40 s, the road character changes ab-
ruptly to simulate hitting a patch of rough terrain or gravel. This phase consists 
of high-amplitude, high-frequency continuous random noise, representing a 
significant challenge to the suspension system. 

The cost function for the ESC was the Root Mean Square (RMS) of the sprung 
mass vertical acceleration, sz , calculated over a 2-second sliding window. 

4.3. Simulation Code 

The core Python code implementing the quarter-car model, the Grünwald-Let-
nikov fractional derivative, and the ESC loop is provided in Listing 1. It uses the 
Numba library to accelerate the main simulation loop. 

4.4. Results and Discussion 

The results of the advanced road scenario simulation are presented in Figure 3. 
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The plots provide clear evidence of the system’s successful convergence and ad-
aptation capabilities. 
 

 
Figure 3. Simulation results for the advanced scenario. The system demonstrates convergence on the smooth road (0 - 40 s) and 
successful adaptation after the road condition changes to rough at t = 40 s (indicated by the red dashed line). 

 
The behavior of the system can be analyzed by observing the four panels of the 

figure: 
• System Excitation (Panels 3 & 4): The bottom two panels confirm that the 

road scenario was successfully implemented. The road profile rz  is visibly 
smoother with sparse bumps before t = 40 s and becomes significantly rougher 
afterward. This directly translates to the sprung mass acceleration sz , which 
is moderate in the first phase and much larger and more erratic in the second. 

• Performance Cost (Panel 2): The cost function J  reflects the vehicle’s ride 
comfort. In the first 40 seconds, the cost is relatively low, indicating good per-
formance. At the 40-second mark, the cost immediately jumps, signifying a 
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sharp degradation in comfort due to the change in road texture. This cost in-
crease is the essential trigger for the ESC’s adaptive mechanism. 

• Fractional Order Adaptation (Panel 1): This top panel is the key result of the 
paper. Starting from an initial guess of 1.5nomα = , the ESC algorithm correctly 
identifies the gradient and drives the fractional order downwards, converging 
to an optimal value of approximately 1.45 for the smooth-road-with-bumps 
condition. When the road becomes rough at t = 40 s, the ESC detects the new 
system dynamics and reverses course, driving nomα  towards a new, lower op-
timum around 1.35. This clearly demonstrates that the system can autono-
mously find and track the optimal fractional damping order in real-time.  

Conclusion from Simulation 
The simulation results strongly support the paper’s thesis. They demonstrate that 
Extremum Seeking Control is a viable and effective method for creating a truly 
adaptive fractional-order suspension system. The model-free nature of ESC allows 
it to optimize the fundamental damping characteristic (α ) without any prior 
knowledge or explicit classification of the road type. The system’s ability to con-
verge to an optimum on a consistent surface and, more importantly, adapt to a 
significant change in that surface, highlights its potential for improving vehicle 
ride comfort and handling across a wide and unpredictable range of real-world 
driving conditions. The non-intuitive discovery that a lower α  was optimal for 
the rougher road further underscores the value of a model-free optimization ap-
proach. 

4.5. Limitations and Robustness Considerations 

While the simulation results are promising, it is important to acknowledge the 
limitations of the current framework and address potential robustness issues. 
• Model Simplification: The quarter-car model neglects the crucial roll, pitch, 

and yaw dynamics of a full vehicle. Future work should extend this study to a 
full 14-DOF vehicle model to assess the impact on handling and coordinated 
control between suspensions. 

• Ideal Damper Assumption: The simulation assumes an ideal actuator that can 
perfectly generate the calculated fractional-order damping force. In practice, 
implementing this with a physical device, such as a magnetorheological (MR) 
damper, would involve its own dynamics, bandwidth limitations, and control 
errors, which must be considered. 

• Sensor Noise and Delays: The ESC loop’s performance is sensitive to noise 
and time delays. While the simulations include conceptual noise, real-world 
sensor data contains biases, drift, and outliers that are more challenging. The 
low-pass filter in the ESC gradient estimation path (see Figure 2) is critical for 
attenuating high-frequency noise. However, significant sensor noise or delays 
in the cost function calculation (e.g., from the RMS windowing) can degrade 
the gradient estimate, potentially slowing convergence or even leading to in-
stability. A rigorous stability analysis, considering these non-ideal factors, is a 
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necessary next step. 
• Cost Function Sensitivity: The shape of the ( )J α  performance map is un-

known and time-varying. If the map is very flat or contains multiple local min-
ima, the ESC algorithm may struggle to converge to the true global optimum.  

5. Possible Future Research 

This work opens several avenues for future research: 
• Full Vehicle Model Simulation: Extend the study to full-vehicle models in-

corporating roll, pitch, and yaw dynamics, potentially adapting α  individu-
ally for each corner or axle, or coordinating them. 

• Advanced ESC Schemes: Investigate multi-parameter ESC if other damping 
parameters (like dc ) are also adapted, or Newton-based ESC for faster con-
vergence. Explore methods to mitigate the effect of noise and delays on ESC 
performance. 

• Hardware-in-the-Loop (HIL) and Experimental Validation: Implement the 
proposed adaptive fractional damper on a HIL test rig and subsequently on an 
experimental vehicle. This would involve developing or utilizing dampers ca-
pable of real-time α  modulation (e.g., magnetorheological dampers con-
trolled to emulate fractional behavior). 

• Sensor Fusion Robustness: Develop more sophisticated sensor fusion algo-
rithms (e.g., unscented Kalman filter, particle filter) for robust state estimation 
under challenging conditions, critical for accurate J  calculation.  

• Machine Learning Integration: While ESC is model-free, ML could be used 
to: 

- Provide a better initial guess for nomα  based on broad road classification.  
- Adapt ESC tuning parameters ( , ,ESC p pk A ω ) based on operating conditions.  
- Learn the ( )J α  surface offline to speed up online adaptation or provide a 

supervisory layer. 
• Alternative Optimization Algorithms: Explore other online optimization 

techniques, such as reinforcement learning, Bayesian optimization, or iterative 
learning control, for adapting α .  

• Stability Analysis: Perform a rigorous stability analysis of the closed-loop sys-
tem comprising the vehicle dynamics, fractional damper, and the ESC loop, 
especially considering time delays in cost evaluation.  

6. Conclusions 

This paper has proposed a novel adaptive fractional-order damping system for 
intelligent vehicle suspensions. By employing Extremum Seeking Control (ESC), 
the fractional order α  of the Caputo derivative in the damping model is dynam-
ically tuned in real-time to minimize a performance cost function. This model-
free online optimization approach allows the suspension to continuously adapt its 
fundamental damping characteristics based on sensor-inferred operating condi-
tions without requiring explicit road classification. 
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A conceptual simulation framework demonstrated the ESC’s ability to adjust 
α  towards an optimal value when faced with changing conditions (represented 
by a time-varying optimal α  in the cost function). This indicates the potential 
for significant improvements in suspension adaptability, ride comfort, and road 
holding across a wide spectrum of terrains. The proposed system offers a promis-
ing direction for the development of next-generation intelligent, terrain-aware ve-
hicle suspension systems that can more fundamentally tailor their response to the 
environment. Future work will focus on implementation within a more detailed 
vehicle dynamics simulation, experimental validation, and exploring advanced 
ESC schemes. 
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Appendix 
Python Simulation Code (Conceptual) 

The core Python simulation code implementing the fractional oscillator with GL 
approximation and the ESC loop is provided below. 
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Listing 1. Python simulation for adaptive fractional damping with ESC. 

 
Note: The Python code provided is a conceptual demonstration of the ESC mechanism adapting α  towards a 
time-varying optimum. A full quarter-car model simulation with the fractional damper would require a numer-
ical ODE solver incorporating the Grünwald-Letnikov approximation for the fractional derivative term within 
the force calculation at each time step. The cost J would then be derived from the simulated vehicle states (e.g., 
RMS of sprung mass acceleration). 
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