
Engineering, 2024, 16, 61-82
https://www.scirp.org/journal/eng

ISSN Online: 1947-394X
ISSN Print: 1947-3931

DOI: 10.4236/eng.2024.163007 Mar. 29, 2024 61 Engineering

Review on the Usage of Synchronous and
Asynchronous FIFOs in Digital Systems Design

Dongwei Hu1, Yuejun Lei2, Linan Wang1*

1The 54th Research Institute of CETC, Shijiazhuang, China
2MUC School of Information Engineering, Beijing, China

Abstract
First-Input-First-Output (FIFO) buffers are extensively used in contemporary
digital processors and System-on-Chips (SoC). There are synchronous FIFOs
and asycnrhonous FIFOs. And different sized FIFOs should be implemented
in different ways. FIFOs are used not only for the pipeline design within a
processor, for the inter-processor communication networks, for example
Network-on-Chips (NoCs), but also for the peripherals and the clock domain
crossing at the whole SoC level. In this paper, we review the interface, the
circuit implementation, and the various usages of FIFOs in various levels of
the digital design. We can find that the usage of FIFOs could greatly facilitate
the signal storage, signal decoupling, signal transfer, power domain separa-
tion and power domain crossing in digital systems. We hope that more atten-
tions are paid to the usages of synchronous and asynchronous FIFOs and more
sophististicated usages are discovered by the digital design communities.

Keywords
First-Input-First-Output, System-on-Chip, Network-on-Chip, Advanced
eXtensible Interface, Asynchronous

1. Introduction

First-Input-First-Output (FIFO) buffer is a traditional module in digital systems
[1]. It is extensively used in contemporary digital processors and SoCs. In digital
processor design, the pipeline stages are separated by one-slot FIFOs [2]. In
multi-core or many-core systems, the synchronous or asynchronous FIFOs are
used as mailing-box [3] for inter-processor communications, or router of Net-
work-on-Chips (NoCs) [4] [5]. At the SoC level, synchronous or asynchronous

*Corresponding author.

How to cite this paper: Hu, D.W., Lei, Y.J.
and Wang, L.N. (2024) Review on the Usage
of Synchronous and Asynchronous FIFOs
in Digital Systems Design. Engineering, 16,
61-82.
https://doi.org/10.4236/eng.2024.163007

Received: December 28, 2023
Accepted: March 26, 2024
Published: March 29, 2024

Copyright © 2024 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/eng
https://doi.org/10.4236/eng.2024.163007
https://www.scirp.org/
https://doi.org/10.4236/eng.2024.163007
http://creativecommons.org/licenses/by/4.0/

D. W. Hu et al.

DOI: 10.4236/eng.2024.163007 62 Engineering

are used to buffer the transmitted or received data. And asynchronous FIFOs are
used for clock-domain crossing bridges.

However, though extensively used, because of its simplicity, there is never a paper
or a textbook summarized the usage of synchronous or asynchronous FIFOs tho-
roughly, which leads to the neglect of its importance in digital design communities.

In recent years, the Advanced eXtensible Interface (AXI) bus is extensively
used in digital systems [6]. The interface signals of AXI bus could perfectly
match the signals of a FIFO. This leads to the resurgence of FIFO usages. This
paper summarizes the usage of FIFOs at all level of digital systems, aiming to at-
tract more attentions from the communities, and help people better understand
their usages and importance.

2. Synchronous and Asynchronous FIFO
2.1. The Interface of Synchronous and Asynchronous FIFO

In this paper, all the FIFOs are with the AXI-lite interface [6] [7]. The signals of
AXI-lite interface are shown in Figure 1(a). There are “Data” signals from the
master to the slave; a “Valid” signal indicating the “Data” are present, also from
the master to the slave; and a “Ready” signal indicating that the slave is ready to
accept the “Data” from the master. When both the “Valid and “Ready” are high,
the transfer, the “Data” go from the master to the slave, is accomplished.

FIFO is a kind of digital module with both the master and slave interfaces.
One side of the FIFO is presented as the slave, receiving “Data” in, and the other
side as the master, sending “Data” out. Figure 1(b) shows the block diagram

(a) AXI-lite Interface Signals (b) FIFO Interfaces

(c) FIFO Interfaces with Ints

Figure 1. AXI and FIFO Interfaces.

https://doi.org/10.4236/eng.2024.163007

D. W. Hu et al.

DOI: 10.4236/eng.2024.163007 63 Engineering

and interface signals of FIFO.
FIFOs only cache the “Data” temporally. They don’t modify the content of the

“Data”. In addition, they keep the order of the input and output “Data” streams.
That is, the data-slots coming into the FIFO earlier will go out off the FIFO ear-
lier—this is why we name it FIFO: First-Input-First-Output.

When big-sized data are transferred through the FIFOs, interrupt signals could
be used to facilitate the transfer. There are usually 2 interrupts, “Almost_empty”
and “Almost_full”, as shown in Figure 1(c). When the FIFOs are almost empty,
the signal “Almost_empty” interrupts the sending-side processor, and this pro-
cessor puts more data into the FIFOs. When the FIFOs are almost full, the signal
“Almost_full” interrupts the receiving-side processor, and that processor reads
data out. When the FIFOs are big enough, these processors could be adequately
alleviated from frequent interrupts.

2.2. The Implementation of Synchronous and Asynchronous
FIFOs

Figure 2(a) shows the schematic of synchronous FIFO. In Figure 2(a), there are
2 address registers, one at the input side and the other at the output side. When
the two address pointers are equal, the FIFO is either full or empty. A ‘FULL’
register, which should be cleared at reset (indicating empty but not full), could
be employed to differentiate and track the full and empty state.

Figure 2(b) shows the schematic of asynchronous FIFO. The difficulty of
asynchronous FIFO is that the address registers (read address, RA_ADDR, write
address, WR_ADDR) are at different clock domains, so they need to be gray en-
coded (RA_GRAY and WA_GRAY) and delayed by two clock cycles (RA_d1,
RA_d2 and WA_d1, WA_d2) at the other side (the other clock domain) before
being used [8]. In addition, a “FULL/EMPTY” register is used in each clock do-
main.

The main body of synchronous and asynchronous FIFOs is the memory array,
which is responsible for storing information. The memory array could be im-
plemented in a lot of ways. When it is small, it could be composed with D-flipflops.
When it is medium-sized, it could be realized with latches [4]. When the size is
large, it needs to be implemented with customized circuits.

However, in many circumstances, customized FIFOs are not provided but
Dual-Port Static Random-Access-Memories (DPRAM) are available. In these cas-
es, we need to construct FIFOs with DPRAMs. The main difference of FIFOs and
DPRAMs is that they are with different read timing. For DPRAMs, the output
data is one-clock delayed after the read command, while for FIFOs with AXI-lite
interfaces, the data are output at the same time with the “Ready” signal.

A pipelined architecture [9] [10] could be used to transform the read timing
of DPRAMs to that of FIFOs. Figure 3 shows this architecture. In Figure 3, a
small-sized synchronous FIFO (SyncFIFO) follows the DPRAM. The two clocks
of DPRAM could be synchronous or asynchronous. The “Empty” and “Full”
flags of DPRAM are generated in the same way as D-flipflop-based FIFOs, as

https://doi.org/10.4236/eng.2024.163007

D. W. Hu et al.

DOI: 10.4236/eng.2024.163007 64 Engineering

(a) Synchronous FIFO

(b) Asynchronous FIFO

Figure 2. Circuit implementation of synchronous and asynchronous FIFOs.

Figure 3. Constructing FIFOs with DPRAMs.

https://doi.org/10.4236/eng.2024.163007

D. W. Hu et al.

DOI: 10.4236/eng.2024.163007 65 Engineering

shown in Figure 2. As long as DPRAM is not empty and the following SyncFI-
FO is ready, the data in DPRAM are read out and put into the SyncFIFO. The
output of the SyncFIFO, whose timing aligns with that of AXI-lite interface,
serves as the top-level output of the pipelined architecture. In order to maximize
the throughput and minimize the latency of the reading, the SyncFIFO should be
implemented with a skip buffer (see following sections of this paper).

Due to the gray encoding and/or pipelined implementation, asynchronous
FIFOs are with larger latencies then synchronous FIFOs. For synchronous FIFO,
the minimum input-output latency is one-clock-tick. If we connect the two sides
of asynchronous FIFO with the clocks with the same clock frequency, the latency
of D-flipflop-based asynchronous FIFO would be 3 clock-ticks, while DPRAM-
based asynchronous FIFO is 4 clock-ticks. Table 1 summarizes the latencies of
synchronous and asynchronous FIFOs with different implementation styles.

2.3. Four Special Cases of Synchronous FIFO
2.3.1. One-Slot FIFO
If there is only one-slot data storage in the FIFO, we call the FIFO as One-slot
FIFO. The one-slot data storage is usually realized with a register stage. The in-
put “Data” always go into the register stage, and then go out. Therefore, the Va-
lid_out, Data_out and Valid_in, Data_in are cut by the register stage.

However, in order to make the one-slot FIFO’s throughput as high as possible,
when the “Data” in the register stage are going out, new “Data” could be loaded
in at the same time (the same clock cycle). This is to say, “Ready_out” would
enable “Ready_in”. Exactly we have

Ready_in = Ready_out or (not Valid_out).

“(not Valid_out)” indicates that the register stage is empty. Unlike the “Valid”
and “Data” signals, “Ready_in” is coupled with “Ready_out”, which leads to long
combinational logic.

The schematic of one-slot FIFO is shown in Figure 4.

2.3.2. Skip Buffer
Skip buffer is one way to cut the “Ready” signal of One-slot FIFO. Figure 5
shows the architecture of skip buffer. It is composed by a mux and an one-slot
FIFO. When the one-slot FIFO is empty and “Ready_out” is asserted, the “Data”
go directly from input to output, skipping the FIFO. When the one-slot FIFO is

Table 1. Latencies of different implementations of synchronous and asynchronous FI-
FOs.

Implementation Styles # of clock-ticks

Flip-flop-based Sync-FIFO 1

Flip-flop-based Async-FIFO 3

DPRAM-based Sync-FIFO 2

DPRAM-based Async-FIFO 4

https://doi.org/10.4236/eng.2024.163007

D. W. Hu et al.

DOI: 10.4236/eng.2024.163007 66 Engineering

Figure 4. One-slot FIFO.

Figure 5. Skip Buffer.

empty, but “Ready_out” is not ready (desserted), one-slot “Data” could still be ac-
cepted and stored into the FIFO. When the FIFO is full, input “Data” could not be
accepted until the “Data” in FIFO is gone first, thus keeping the order of the “Data”
stream. Obviously, “Ready_in” depends on either the FIFO is full or not, that is,

Ready_in = not FIFO_Valid_out

It’s decoupled from “Ready_out”. However, as there is a direct pathway from
the input to the output, skip buffer couldn”t decouple “Valid_out”, “Data_out”
from “Valid_in”, “Data_in”.

2.3.3. Decoupling Skip Buffer
One-slot FIFO decouples “Data” and “Valid” signals, but fails in decoupling
“Ready” signal. Skip buffer decouples “Ready” but couldn’t decouple “Data” and
“Valid” signals. If we combine them together, all signals could be decoupled. We
name this kind of circuit as Decoupling Skip Buffer.

There are two types of decoupling skip buffer as shown in Figure 6. From the
application point of view, there are no differences for the two. Therefore, when
we refer to decoupling skip buffer, either type could be applied.

https://doi.org/10.4236/eng.2024.163007

D. W. Hu et al.

DOI: 10.4236/eng.2024.163007 67 Engineering

Figure 6. Decoupling Skip Buffer.

2.3.4. Two-Slot FIFO
There are two One-slot FIFOs in decoupling skip buffer, one to decouple the
“ready” signal, and the other to decouple “Valid” and “Data” signals. Actually we
could directly use a Two-slot FIFO for timing decoupling. The structure of Two-
slot FIFO is the same as that shown in Figure 2, with just 2 entries. In Figure 2,
the output “Valid”, “Data” and “Ready” signals are all generated from (read/
write address pointers and “full”) registers, so they are decoupled from the input
side of the FIFO.

3. The Usage of Synchronous FIFOs for Intra-Processor
Pipelines

Look into the pipeline design of a processor, we can find that synchronous FI-
FOs are extensively used.

3.1. Using Skip Buffer for Memory Reading Pipelines

Figure 7 shows the pipeline model of a digital processor [2]. There are two
memory reading blocks in the pipeline stages, one for instruction fetching and
the other for data reading. We only discuss the instruction fetching as an exam-
ple.

At the instruction fetching stage, Program Counter (PC) is issued out to the
program memory (PMEM) as address. In the meantime, the fetching command
is delayed to the next stage, that is, the instruction queue. If both the read-back
instruction, indicated by “RB_VLD” signal, and the fetching command, indi-
cated by “RC_VLD” signal, are available, the read-back instruction is captured
by the instruction queue. However, the PMEM is outside of the processor core
and the read-back delay is out of control. It may come much later than the fetch-
ing command. In this case, the instruction queue will wait until both “RB_VLD”
and “RC_VLD” are available.

https://doi.org/10.4236/eng.2024.163007

D. W. Hu et al.

DOI: 10.4236/eng.2024.163007 68 Engineering

Figure 7. Pipeline model.

There is another case that makes things even difficult. The pipeline maybe
blocked by later stages of the pipeline, e.g. by reading data memory blockage. In
this case, the instruction queue may become full. If both “RB_VLD” and “RC_
VLD” are coming at this time, the instruction queue cannot capture the read-
back instruction. However, the address has been issued out and the PC has
changed. In this case, the read-back data must be hold by the PMEM. This is to
say, the PMEM cannot accept new addresses, which leads to 2 shortcomings:
firstly there will be longer delay after the later stages recover; secondly the
PMEM cannot be read by other modules (e.g. the Direct Memory Access, DMA
module).

A skip buffer could be employed to overcome these shortcomings. As shown
in Figure 5, in normal conditions, the one-slot FIFO in skip buffer is empty, and
the read-back instruction bypasses the skip buffer and goes to the instruction
queue directly. When the later stages of the pipeline are blocked, the back-pressure
“RDY” signal from instruction queue will stop the PC being issued. However,
there will be one fetching command has been issued out and the read-back in-
struction is on the fly. In this case, when the read-back instruction becomes availa-
ble, it will be stored into the One-slot FIFO of the skip buffer and the PMEM will
be released. In this way, the previous shortcomings are overcome. Of course, a
two-slot FIFO could also serve this purpose [11].

3.2. Using Multiple One-Slot FIFO for Out-of-Order Issue

For high performance processors, there are lots of executive modules, e.g. integ-
er multiplier, integer divider, floating adder, floating multiplier, floating divider,
etc. Different modules may have different latencies (in clock cycles).

Refer to Figure 7 again, in order to improve the performance of the processor,
instructions could be issued out-of-order, and it is possible that more than one
instructions are issued simultaneously [12].

Figure 8 shows the implementation schematic of out-of-order issue circuits.
In Figure 8, instructions are orderly coming to a shifter FIFO, and are attached
with a sequential identity (ID). Each FIFO in Figure 8 is of one-slot. In the shif-
ter FIFO, instructions either go into the executive modules (below in Figure 8),

https://doi.org/10.4236/eng.2024.163007

D. W. Hu et al.

DOI: 10.4236/eng.2024.163007 69 Engineering

Figure 8. Out of order issue.

or go to the right slots. All the instructions in shifter FIFO are checked parallelly,
any instruction whose source registers are available will be issued. In this way,
instructions could be issued out-of-orderly and parallelly. After the execution of
these instructions, they are committed (that is, write back the results to the reg-
ister file) sequentially according to their ID.

3.3. Using Decoupling Skip Buffer or Two-Slot FIFO for Timing
Decoupling

As shown in Figure 7 and Figure 8, there are many stages/modules in the pipe-
line. If all the stages/modules are separated by One-slot FIFOs, all the “READY”
signals of every stage/module would be coupled together, which may lead to long
combinational logic and critical timing path.

To overcome this circumstance, some One-slot FIFOs could be replaced with
decoupling skip buffers or two-slot FIFOs. For example, it is highly recommended
that the depth of the instruction queue being at least 2 slots, thus not only cut-
ting both the forward “VALID” signal and the backward “READY” signal [11],
but also facilitating PMEM reading.

4. The Usage of Synchronous or Asynchronous FIFOs for
Inter-Processor Communications

In this section, the usage of synchronous or asynchronous FIFOs for inter-pro-
cessor communications is discussed.

4.1. Using Synchronous or Asynchronous FIFOs as
Inter-Processor mailing-box

Figure 9 shows the schematic that synchronous or asynchronous FIFO is used as
inter-processor mailing-box. In Figure 9, there are 2 processors, Central Processing
Unit 0 (CPU 0) and CPU 1, and a mailing-box. The mailing-box is implemented
by synchronous or asynchronous FIFO, depending on the 2 CPUs are driven by
the same or different clocks. CPU 0 writes data into the FIFO, the write enable
signal is used as the “Valid_in” signal. When the FIFO is not empty, the “Va-
lid_out” signal interrupts CPU 1. When CPU 1 reads out the data entry in FIFO,
the reading command clears the interrupt signal simultaneously.

https://doi.org/10.4236/eng.2024.163007

D. W. Hu et al.

DOI: 10.4236/eng.2024.163007 70 Engineering

Figure 9. Mailing box.

It should be noted that mailing-box could be used not only between CPUs, but
also between any master processing units (e.g. Finite-State-Machine, FSMs), or
mixed CPU and other kind masters.

Figure 10 shows an example for inter-processor communications with asyn-
chronous FIFOs. This is a baseband chip for satellite communications. In this
chip, there are two CPUs, CPU 1 and CPU 2, CPU 1 controls the Transmitter
(Tx), and CPU 2 controls the Receiver (Rx). There is a “Sync” signal from Rx to
Tx, controlling the timing of sending signals according to the timing of the re-
ceived signals. In Figure 10, the traffic interface is Gigabit Media Independent
Interface (GMII). The received packets of GMII are stored into off-chip Syn-
chronous Dynamic Random Access Memory (SDRAM) and CPU 1 is notified by
interrupt signal “Eth_rx_int”. On the other side, the Rx demodulated signals are
stored into SDRAM and sent out through GMII interface. The interrupt signal
“Eth_tx_int” of GMII to CPU 2 asks for more packets to be sent out.

This chip is for satellite communications. In satellite communication systems,
Adaptive Modulation and Coding (AMC) is extensively employed to maximize
the throughput of the wireless link. With AMC, the Rx side needs to measure the
state (e.g. rain fading, length of buffered packets, etc.) of the wireless link, and
returns this state to the Tx side through reverse link. Then the Tx side selects the
best AMC scheme and processes the sending signals. With this mechanism,
there are a few short messages from Rx module fed to the Tx module in every
frame in the baseband chip. These messages are for link maintenance, not for
traffic. It is called signalling. In Figure 10, these signalling messages are trans-
ferred from CPU 2 to CPU 1.

There are two properties for these signalling messages. Firstly, the lengths of
these signalling messages are short; the average length of every message is 32
bytes in our case. Secondly, the number of these signalling messages is high. If
every message interrupts CPU 1, the interrupt would be too frequent and there
will be severe overhead in CPU 1 for context switch. As CPU 1 controls the Tx
module and needs to be real-time, severe overhead would be dangerous.

In our implementation, an asynchronous FIFO based mailing-box is employed
to transfer these short messages, as shown in Figure 10. The size of the asyn-
chronous FIFO is of 1KX64, which can accommodate about 256 messages. In
order to decrease the frequency of interrupt, two signals are employed as inter-
rupt signals, one is “Vld” of the FIFO, which indicates the non-empty of the
FIFO, and there are messages needing to be read, the other is the “Almost_full”

https://doi.org/10.4236/eng.2024.163007

D. W. Hu et al.

DOI: 10.4236/eng.2024.163007 71 Engineering

Figure 10. Example of using Mailing Box for inter-processor communications.

signal, which indicates the FIFO is almost full, and the messages should be read
out emergently. Therefore, the “Almost_full” interrupt is of high priority. In out
implementation, the “Almost_full” signal indicates that 75% of the FIFO is oc-
cupied. And every time it interrupts CPU 1, the CPU 1 reads all the messages in
the mailing-box out.

In this implementation, the signalling bandwidth is 1 Mega-bits-per-second
(Mbps), there are 4000 messages on average within one second. If there is no
mailing-box, the messages need to be stored in SDRAM, and every message in-
terrupts CPU 1, which means 4000 interrupts within one second on average, the
average time interval between two interrupts is 0.25 minisecond. However, with
this mailing-box and only “Almost_full” signal is interrupting CPU 1, there is
only 21 interrupts within one second, and the interrupt interval is 48 minisecond
on average. From this example, we can see that the usage of FIFO greatly de-
creased the frequency of interrupts and thus facilitated inter-processor commu-
nications.

4.2. Using Synchronous or Asynchronous FIFOs as
Inter-Processor Packet Router

Figure 11 shows the architecture of a many-core processor [4] [13] [14]. In Fig-
ure 11, every 4 Processing Elements (PEs) are clustered together, called Quad PE
(QPE). 32 QPEs are connected together with a Network-on-Chip (NoC) of 6 by
6 mesh topology. Every QPE is connected to a NoC Router, which is indicated as
“R” in Figure 11. The links between every two NoC Routers are called L1. The
links between PEs and NoC Routers are called L2, and the links between every
two PEs within a QPE are called L3. In the center of the mesh NoC, there are
synchronizers and shared memories facilitating on-chip inter-processor com-
munications. At the 4 corners of the chip, 4 Double Data Rate (DDR) controllers

https://doi.org/10.4236/eng.2024.163007

D. W. Hu et al.

DOI: 10.4236/eng.2024.163007 72 Engineering

Figure 11. The architecture of a many-core processor.

are integrated to connecting to off-chip SDRAMs, each at one corner. In Figure
11, 128 PEs are integrated in a chip with this mesh topology. Obviously this ar-
chitecture could be extended to integrate more PEs within a die, and if neces-
sary, more DDR controllers could be employed to even increase memory access
bandwidth.

Figure 12(a) shows the interface of NoC Router, and Figure 12(b) shows the
architecture of NoC Router [4]. In Figure 12(a), there are 8 input ports, 4 for
PEs and another 4 for {East, South, West and North} L1 links. Correspondingly,
there are 8 output ports for the NoC Router, also 4 for PEs and 4 for L1 links. In
Figure 12(b), the input ports are firstly buffered by FIFOs. The output of the
inputting FIFOs are then arbitrated and routed (by MUX) to the outputting FI-
FOs, thus sending packets to the next stage.

In Figure 12(b), the FIFOs in NoC Router could be synchronous or asynchron-
ous FIFOs. Synchronous FIFOs are with less latencies thus quicker communica-
tion (especially reading) response time. Asynchronous FIFOs are with better power
efficiency and could alleviate the difficulty of clock tree routing for big chips [5].
For low power embedded many-core processors, where power is more cared about
than performance, asynchronous-FIFO-based NoC is recommended [5] [13].
However, for big chips aiming at applications in High-Performance-Computers
(HPCs), where latency is the main concern, synchronous-FIFO-based NoC is pre-
ferred as long as the timing is allowed [15] [16].

https://doi.org/10.4236/eng.2024.163007

D. W. Hu et al.

DOI: 10.4236/eng.2024.163007 73 Engineering

(a) Interface of NoC Router

(b) Architecture of NoC Router

Figure 12. Interface and architecture of NoC router.

5. The Usage of Synchronous or Asynchronous FIFOs for
System-on-Chips

5.1. Usage of Synchronous or Asynchronous FIFOs for Peripherals

Figure 13 shows a picture in which synchronous or asynchronous FIFOs are
used for peripherals. In Figure 13, data are put into tx_FIFOs and the peripher-
als take data out and transmit them out. When the tx_FIFOs are almost empty, it
interrupts the CPU and asks for more data. For the receiving direction, the data
from peripherals are put into rx_FIFOs. When the rx_FIFOs are almost full, it
interrupts the CPU and CPU takes data out from it.

https://doi.org/10.4236/eng.2024.163007

D. W. Hu et al.

DOI: 10.4236/eng.2024.163007 74 Engineering

Figure 13. Using FIFOs for peripherals.

In Figure 13, the tx_FIFOs and rx_FIFOs could be synchronous or asynchron-
ous FIFO. When the peripherals and the bus use the same clock, the tx_FIFOs and
rx_FIFOs are synchronous, when the peripherals and the bus use different clocks,
tx_FIFOs and rx_FIFOs are asynchronous.

5.2. Usage of Synchronous FIFOs for Interleaved AXI Reading and
Writing

For AXI bus [7] [16], there could be multiple masters issuing reading commands
or writing commands, and the commands from different masters are inter-
leaved. Each command requests multiple reading or writing data packets. The
data packets belonging to one command is called a burst. The last data packet
within a burst is always indicated by a “last_data” flag. The length of the burst
means the number of packets within a burst. To differentiate these masters, these
masters are with different Master IDentities (MIDs). For AXI bus, the timing of
the address channel and data channel are independent, which enables outstand-
ing reading or writing. With outstanding reading, multiple reading commands
could be issued before their corresponding reading-data are back. With out-
standing writing, multiple writing commands could be issued before the corres-
ponding writing-data are sent out.

However, as AXI is an in-order bus, that is, it must keep the order of data in
reading and writing, it is very dangerous in implementing outstanding reading
and writing. For example, if multiple reading commands with MID 2 following
MID 1 are sent out, but there are not enough data buffer in MID 1, the read-
back data belonging to MID 1 will be blocked at the read-data channel of the
slave, thus blocking the read-back data belonging to MID 2 coming back to the
master. For writing, if multiple writing commands with MID 2 following MID 1
are sent out, but there are not enough data buffer for MID 1 in the slave, the
writing-data of MID 1 will be blocked at the writing-data channel of the slave,
thus blocking writing-data belonging to MID 2 going to the slave. If this read-
ing-blockage or writing-blockage occurs, the efficiency of the AXI bus will be

https://doi.org/10.4236/eng.2024.163007

D. W. Hu et al.

DOI: 10.4236/eng.2024.163007 75 Engineering

greatly deteriorated.
Figure 14(a) shows the idea to avoid reading blockage. In Figure 14(a), there

is a flag “Almost_full” showing the status of read-back data buffer in each MID,
which indicates how many slots are available to store incoming packets in the
read-back data buffer. When a reading command (indicated by addr_vld MID x)
is sent out, it is ANDed with its corresponding read-data buffer status. The “Al-
most_full” flag is inverted and ANDed with it. If we design that the “Almost_full”
to be no less than the length of one AXI burst, the resulted “addr_vld_out MID
x” will make sure that when the reading command is sent to the slave, the read-
back data will always be accepted by the corresponding master “MID x”. After
the reading command is sent out, the status of the read-data buffer is updated.
On the other side, when the data are taken out from the data buffer by the mas-
ter, the status is updated again to release the buffer for reading more data.

In Figure 14(a), multiple valid “addr_vld_out MID x” are arbitrated, and one
is selected to the slave. At the slave, the selected MID are stored in a FIFO, and
attached to the read-back data. The “last_data” flag in a burst is used to pop out
the MID from the FIFO. At the masters, the MID attached with the read-back
data are used to recognize which master the data are belonging to. This recogni-
zation is realized by “Classification” module in Figure 14(a).

Figure 14(b) shows the idea to avoid writing blockage. In Figure 14(b), mul-
tiple masters with different MIDs are issuing writing commands. These writing
commands may request writing multiple data packets. Firstly the “Writing Sin-
gle MID x” module transforms the writing commands into multiple “Writing
Single” commands, which only request writing single data packet. Then the “Ar-
bitration & MUX” module selects one “Writing Single” command from multiple
MIDs, and sends this command to the salve. In the mean time, one data packet
corresponding to the selected MID is also selected out and sent to the slave. In
order to avoid the case when a “Writing Single” command is sent out, but the
corresponding data packet is not yet ready (that is, the “data_vld” is not as-
serted), the “vld” signal of the “Writing Single” command is ANDed with the
“vld” signal of the corresponding data packet before going to the arbitrator.

It is worth noting that the priority of the arbitrator must be free-rotating, see
Figure 14(a) and Figure 14(b) the “Free-Rotating Priority” module. If MID x is
selected by the arbitrator, however, the data buffer for MID x in slave is full, the
transfer from MID x to the slave cannot be accomplished. At this time, if the
priority of the arbitrator is free-rotating, other MIDs will be selected and tried.
In this way, the AXI bus will never be blocked by any one master, thus the band-
width of the bus is sufficiently utilized. On the contrary, if the priority-rotating
depends on the accomplishment of a transfer, blockages may occur.

Figure 14(a) and Figure 14(b) could be used to combine multiple AXI master
ports into one AXI master port. In this case, in Figure 14(a) and Figure 14(b),
after the AXI slave receives a reading or writing command, it will initiate a new
reading or writing command to the next stage, acting as a new AXI master.

https://doi.org/10.4236/eng.2024.163007

D. W. Hu et al.

DOI: 10.4236/eng.2024.163007 76 Engineering

(a) Interleaved Reading

(b) Interleaved Writing

Figure 14. AXI interleaved Reading and Writing.

https://doi.org/10.4236/eng.2024.163007

D. W. Hu et al.

DOI: 10.4236/eng.2024.163007 77 Engineering

5.3. Usage of One-Slot-FIFO-Based Circular Buffer for AXI Bus
Data Alignment

AXI bus supports unaligned data transfers. If the width of data channel is W
bytes, but the reading or writing address is not W-byte aligned, unaligned trans-
fer occurs. In unaligned transfer, the first data packet transfers the non-aligned
part of the data stream, so that all the addresses of following packets are W-byte
aligned. Figure 15 shows the data on read/write data channel of unaligned trans-
fer. The numeric digits in Figure 15 are the addresses of the valid bytes. In Fig-
ure 15, the reading/writing address starts at 0x0003, the width of the data chan-
nel is 64-bit (8 bytes), the first data packet is of 5 bytes (address 0x0003 to
0x0007), and all the addresses of the following data packets are 8-byte aligned.
Because of the length of the data stream, only 6 bytes in the last packet are valid.
For writing, these valid bytes are indicated by “w_strb” signal of the write data
channel. For reading, the master knows the valid bytes in the last packet by itself.

Referring to Figure 16, there is a DMA controller, who moves data between
memory addresses. The DMA controller is composed of a top-level controller
module “DMA Controller Top”, a memory reading controller “DMA Reading”,
a memory writing controller “DMA writing”, and a “Data Alignment” module.
We assume it reads data starting from address “addr_r”, and writes data starting
from “addr_w”, both “addr_r” and “addr_w” are unaligned with W bytes, and
the reading and writing are with different sized first packet, e.g., “addr_r” starts
at 0x0003 while “addr_w” starts at 0x0002, we therefore need to decompose and
re-assemble every data packet so that the data packets on the read/write data
channels of the bus are in accordance with the AXI specification. This decompo-
sition and re-assembly process is called data alignment.

Figure 17 shows the implementation of this data alignment. In Figure 17, D

Figure 15. The data on read/write data channel of unaligned transfer.

https://doi.org/10.4236/eng.2024.163007

D. W. Hu et al.

DOI: 10.4236/eng.2024.163007 78 Engineering

Figure 16. Data alignment in DMA controller.

Figure 17. Using circular one-slot-FIFOs for data alignment.

One-slot-FIFOs, denoted as B[0], B[1], ..., B[D − 1], are circularly connected
and form a circular buffer. Every One-slot-FIFO is of one-byte width. There are
two address pointers, one for writing data into the circular buffer, named as
“Writing_Pointer”, and one for reading data from the circular buffer, named as
“Reading_Pointer”. The length between “Writing_Pointer” and “Reading_Pointer”
indicates the number of slots (that is, number of bytes) being occupied, this is
denoted as “Len_used”. The length of buffer which is available for incoming data
is denoted as “Len_available”, which is the total length of the circular buffer mi-
nus the length being occupied, that is,

Len_used = (Writing_Pointer − Reading_Pointer) % D

Len_available = D − Len_used

In the above equation, “%” means modulo.
At reset, both “Writing_Pointer” and “Reading_Pointer” point to One-slot-

FIFO B[0]. When a data packet is read out from memory by the DMA control-

https://doi.org/10.4236/eng.2024.163007

D. W. Hu et al.

DOI: 10.4236/eng.2024.163007 79 Engineering

ler, it is written into this circular buffer, and the “Writing_Pointer” is updated.
After that, when a new packet is read out by the DMA controller, the length of
the packet is compared with “Len_available” of the circular buffer. Whenever
“Len_available” is bigger than the length of the packet, this packet is put into the
circular buffer, and the “Writing_Pointer” is updated.

At the other side, when the DMA controller is trying to write a data packet
into the memory, it requests data from this circular buffer to form the data
packet. If the length of the requested data packet is smaller than “Len_used”, the
data in circular buffer are taken out to form this data packet, and the “Reading_
Pointer” is updated. After that, when forming a new packet, new data are re-
quested from this circular buffer. Whenever “Len_used” is bigger than the re-
quested length, the data are taken out and “Reading_Pointer” is updated. How-
ever, if “Len_used” is smaller than the requested length, we have to wait until
new data packets are put into the circular buffer, and “Len_used” is updated.

There are two points worth of noting:
1) When writing or reading the circular buffer, it is possible that multiple

bytes are written into or taken out from the circular buffer simultaneously, and
the number of bytes being written or reading is changing. Therefore, one Static
Random Access Memory (SRAM) macro block doesn’t work; we therefore form
the circular buffer with multiple One-slot-FIFOs of one-byte width.

2) The minimum depth of the circular is 2*W − 1, that is,

Min {D} = 2*W − 1

If the depth of circular buffer is less than 2*W − 1, it is possible that there are
not enough data to form the requested data packet, while new data packet can’t
be put into the circular buffer because there are not enough buffer for this in-
coming data packet, thus the circular buffer can’t either be read or written, and
therefore deadlock occurs.

5.4. Usage of Asynchronous FIFOs for Clock-Domain Crossing
5.4.1. Usage of Asynchronous FIFOs for AXI Bus Bridge
As mentioned in the previous section, for AXI bus, the read address channel, the
read data channel, the write address channel, the write data channel and the
write response channel are independent. And as shown in section II.A, the data
flow of FIFO is unidirectional. Therefore, an asynchronous FIFO could be used
for every channel for clock domain crossing. In this way, clock domain could be
easily separated.

5.4.2. Usage of Asynchronous FIFOs for AHB Bus Bridge
For Advanced High Performance Bus (AHB bus), the timing of address and data
are tightly coupled. When an address is issued for a writing, the data should
tightly follow it with one-clock-tick delay. Therefore, we use an one-slot FIFO to
delay the address, so that it is aligned with the data. Then the aligned address
and data are put into an asynchronous FIFO to cross the clock domain. At the
other side, an one-slot FIFO is used again to delay the data for one-clock-tick after

https://doi.org/10.4236/eng.2024.163007

D. W. Hu et al.

DOI: 10.4236/eng.2024.163007 80 Engineering

Figure 18. Using asynchronous FIFOs for AHB clock bridge.

the address.

For AHB reading, only address is put into the asynchronous FIFO, and after
the FIFO, the read-back data are put into another asynchronous FIFO whose
data flows in another direction. After the reading data cross the asynchronous
FIFO, the “Valid_out” signal serves as the “hready” signal of the AHB reading
command.

The block diagram of AHB clock bridge is shown in Figure 18.

6. Conclusions

Synchronous FIFOs and asynchronous FIFOs are extensively used in contem-
porary digital systems. In this paper, we addressed the various implementations
of synchronous and asynchronous FIFOs. We also addressed the four special
cases of synchronous FIFOs: One-slot FIFO, Skip Buffer, Decoupling Skip Buf-
fer, and Two-slot FIFO. We showed their sophisticated usage in the pipeline de-
sign of processors. For inter-processor communication networks, we showed
that synchronous and asynchronous FIFOs could be used as mailing-box, and in
NoCs, asynchronous FIFOs could not only undertake inter-processor commu-
nications, but also facilitate clock-domain-crossing. At the whole SoC level, syn-
chronous and asynchronous FIFOs are not only used in peripherals, but also
used for AXI masters combining, and for AXI and AHB clock-domain crossing.
From the review of this paper, we can find that FIFOs play an important role in
digital design, and are used at all levels of nowadays digital systems. Therefore,
we should pay more attentions to the usage of FIFOs in our future work.

In the future, more design patterns will be explored and more advanced de-
sign methodologies will be proposed.

https://doi.org/10.4236/eng.2024.163007

D. W. Hu et al.

DOI: 10.4236/eng.2024.163007 81 Engineering

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Mano, M.M. and Ciletti, M.D. (2017) Digital Design: With an Introduction to the

Verilog HDL, VHDL, and SystemVerilog. 6th Edition, Pearson, New York.

[2] Hennessy, J.L. and Patterson, D.A. (2017) Computer Architecture: A quantitative
Approach. 6th Edition, Morgan Kaufmann, Cambridge, MA.

[3] Gordon-Ross, A., Abdel-Hafeez, S. and Alsafrjalni, M.H. (2019) A One-Cycle FIFO
Buffer for Memory Management Units in Manycore Systems. IEEE Computer So-
ciety Annual Symposium on VLSI (ISVLSI), Miami, FL, 15-17 July 2019, 265-270.
https://doi.org/10.1109/ISVLSI.2019.00056

[4] Hu, D., Shang, D., Zhang, Y., et al. (2022) Timing and Area Optimized Re-Confi-
gurable Network-On-Chip Router. Journal of Xidian University, 49, 125-134.

[5] Hoppner, S., Yan, Y.X., Dixius, A., et al. (2021) The SpiNNaker 2 Processing Ele-
ment Architecture for Hybrid Digital Neuromorphic Computing.
https://arxiv.org/pdf/2103.08392.pdf

[6] (2017) ARM, Amba axi 5.0.
https://developer.arm.com/architectures/system-architectures/amba/amba-5

[7] Jiang, Z., Audsley, N., Shi, D.Y., et al. (2021) Brief Industry Paper: AXI-InterconnectRT:
towards a Real-Time AXI-Interconnect for System-on-Chips. IEEE 27th Real-Time
and Embedded Technology and Application Symposium (RTAS), Nashville, TN,
18-21 May 2021, 437-440. https://doi.org/10.1109/RTAS52030.2021.00046

[8] Wang, S., Xu, Y., Tang, J., et al. (2021) Design of Asynchronous FIFO Controller
Based on FPGA. International Core Journal of Engineering, 7, 153-159.

[9] Wielage, P., Marinissen, E.J., Altheimer, M., et al. (2021) Design and DFT of a High-
Speed Area-Efficient Embedded Asynchronous FIFO. International Core Journal of
Engineering, 7, 153-159.

[10] Shibata, N., Watanabe, M., Tanabe, Y., et al. (2002) A Current-Sensed High-Speed
and Low-Power First-In-First-Out Memory Using a Wordline/Bitline-Swapped
Dual-Port SRAM Cell. IEEE Journal of Solid-State Circuits, 37, 735-750.
https://doi.org/10.1109/JSSC.2002.1004578

[11] https://github.com/openhwgroup/cv32e40p/blob/master/rtl/cv32e40p_prefetch_buf
fer.sv

[12] Moreshet, T. and Iris Bahar, R. (2004) Effects of Speculation on Performance and
Issue Queue Design. IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems, 12, 1123-1126. https://doi.org/10.1109/TVLSI.2004.834226

[13] Yu, Z.Y., Meeuwsen, M.J., Apperson, R.W., et al. (2008) AsAP: An Asynchronous
Array of Simple Processors. IEEE Journal of Solid-State Circuits, 43, 695-704.
https://doi.org/10.1109/JSSC.2007.916616

[14] Abdelhadi, A.M.S. and Li, H. (2021) Enabling Mixed-Timing NoCs for FPGAs: Re-
configurable Synthesizable Synchronization FIFOs. International Conference on
Field-Programmable Logic and Applications, 43, 312-318.
https://doi.org/10.1109/FPL53798.2021.00062

[15] Fariborz, M. and Ben Yoo, S.J. (2022) High Throughput Memory with Silicon Pho-
tonics in Chiplet-Based Architectures for Irregular Workloads. 27th OptoElectron-

https://doi.org/10.4236/eng.2024.163007
https://doi.org/10.1109/ISVLSI.2019.00056
https://arxiv.org/pdf/2103.08392.pdf
https://developer.arm.com/architectures/system-architectures/amba/amba-5
https://doi.org/10.1109/RTAS52030.2021.00046
https://doi.org/10.1109/JSSC.2002.1004578
https://github.com/openhwgroup/cv32e40p/blob/master/rtl/cv32e40p_prefetch_buffer.sv
https://github.com/openhwgroup/cv32e40p/blob/master/rtl/cv32e40p_prefetch_buffer.sv
https://doi.org/10.1109/TVLSI.2004.834226
https://doi.org/10.1109/JSSC.2007.916616
https://doi.org/10.1109/FPL53798.2021.00062

D. W. Hu et al.

DOI: 10.4236/eng.2024.163007 82 Engineering

ics and Communications Conference (OECC) and 2022 International Conference
on Photonics in Switching and Computing (PSC), Toyama, 3-6 July 2022, 1-3.
https://doi.org/10.23919/OECC/PSC53152.2022.9849864

[16] Fischer, T., Rogenmoser, M., Cavalcante, M., et al. (2023) FlooNoC: A Multi-Tb/s
Wide NoC for Heterogeneous AXI4 Traffic. IEEE Design & Test, 40, 7-17.
https://doi.org/10.1109/MDAT.2023.3306720

https://doi.org/10.4236/eng.2024.163007
https://doi.org/10.23919/OECC/PSC53152.2022.9849864
https://doi.org/10.1109/MDAT.2023.3306720

	Review on the Usage of Synchronous and Asynchronous FIFOs in Digital Systems Design
	Abstract
	Keywords
	1. Introduction
	2. Synchronous and Asynchronous FIFO
	2.1. The Interface of Synchronous and Asynchronous FIFO
	2.2. The Implementation of Synchronous and Asynchronous FIFOs
	2.3. Four Special Cases of Synchronous FIFO
	2.3.1. One-Slot FIFO
	2.3.2. Skip Buffer
	2.3.3. Decoupling Skip Buffer
	2.3.4. Two-Slot FIFO

	3. The Usage of Synchronous FIFOs for Intra-Processor Pipelines
	3.1. Using Skip Buffer for Memory Reading Pipelines
	3.2. Using Multiple One-Slot FIFO for Out-of-Order Issue
	3.3. Using Decoupling Skip Buffer or Two-Slot FIFO for Timing Decoupling

	4. The Usage of Synchronous or Asynchronous FIFOs for Inter-Processor Communications
	4.1. Using Synchronous or Asynchronous FIFOs as Inter-Processor mailing-box
	4.2. Using Synchronous or Asynchronous FIFOs as Inter-Processor Packet Router

	5. The Usage of Synchronous or Asynchronous FIFOs for System-on-Chips
	5.1. Usage of Synchronous or Asynchronous FIFOs for Peripherals
	5.2. Usage of Synchronous FIFOs for Interleaved AXI Reading and Writing
	5.3. Usage of One-Slot-FIFO-Based Circular Buffer for AXI Bus Data Alignment
	5.4. Usage of Asynchronous FIFOs for Clock-Domain Crossing
	5.4.1. Usage of Asynchronous FIFOs for AXI Bus Bridge
	5.4.2. Usage of Asynchronous FIFOs for AHB Bus Bridge

	6. Conclusions
	Conflicts of Interest
	References

