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Abstract 
First-Input-First-Output (FIFO) buffers are extensively used in contemporary 
digital processors and System-on-Chips (SoC). There are synchronous FIFOs 
and asycnrhonous FIFOs. And different sized FIFOs should be implemented 
in different ways. FIFOs are used not only for the pipeline design within a 
processor, for the inter-processor communication networks, for example 
Network-on-Chips (NoCs), but also for the peripherals and the clock domain 
crossing at the whole SoC level. In this paper, we review the interface, the 
circuit implementation, and the various usages of FIFOs in various levels of 
the digital design. We can find that the usage of FIFOs could greatly facilitate 
the signal storage, signal decoupling, signal transfer, power domain separa-
tion and power domain crossing in digital systems. We hope that more atten-
tions are paid to the usages of synchronous and asynchronous FIFOs and more 
sophististicated usages are discovered by the digital design communities. 
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1. Introduction 

First-Input-First-Output (FIFO) buffer is a traditional module in digital systems 
[1]. It is extensively used in contemporary digital processors and SoCs. In digital 
processor design, the pipeline stages are separated by one-slot FIFOs [2]. In 
multi-core or many-core systems, the synchronous or asynchronous FIFOs are 
used as mailing-box [3] for inter-processor communications, or router of Net-
work-on-Chips (NoCs) [4] [5]. At the SoC level, synchronous or asynchronous 
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are used to buffer the transmitted or received data. And asynchronous FIFOs are 
used for clock-domain crossing bridges. 

However, though extensively used, because of its simplicity, there is never a paper 
or a textbook summarized the usage of synchronous or asynchronous FIFOs tho-
roughly, which leads to the neglect of its importance in digital design communities. 

In recent years, the Advanced eXtensible Interface (AXI) bus is extensively 
used in digital systems [6]. The interface signals of AXI bus could perfectly 
match the signals of a FIFO. This leads to the resurgence of FIFO usages. This 
paper summarizes the usage of FIFOs at all level of digital systems, aiming to at-
tract more attentions from the communities, and help people better understand 
their usages and importance. 

2. Synchronous and Asynchronous FIFO 
2.1. The Interface of Synchronous and Asynchronous FIFO 

In this paper, all the FIFOs are with the AXI-lite interface [6] [7]. The signals of 
AXI-lite interface are shown in Figure 1(a). There are “Data” signals from the 
master to the slave; a “Valid” signal indicating the “Data” are present, also from 
the master to the slave; and a “Ready” signal indicating that the slave is ready to 
accept the “Data” from the master. When both the “Valid and “Ready” are high, 
the transfer, the “Data” go from the master to the slave, is accomplished. 

FIFO is a kind of digital module with both the master and slave interfaces. 
One side of the FIFO is presented as the slave, receiving “Data” in, and the other 
side as the master, sending “Data” out. Figure 1(b) shows the block diagram  

 

       

(a) AXI-lite Interface Signals                (b) FIFO Interfaces 

 

(c) FIFO Interfaces with Ints 

Figure 1. AXI and FIFO Interfaces. 
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and interface signals of FIFO. 
FIFOs only cache the “Data” temporally. They don’t modify the content of the 

“Data”. In addition, they keep the order of the input and output “Data” streams. 
That is, the data-slots coming into the FIFO earlier will go out off the FIFO ear-
lier—this is why we name it FIFO: First-Input-First-Output. 

When big-sized data are transferred through the FIFOs, interrupt signals could 
be used to facilitate the transfer. There are usually 2 interrupts, “Almost_empty” 
and “Almost_full”, as shown in Figure 1(c). When the FIFOs are almost empty, 
the signal “Almost_empty” interrupts the sending-side processor, and this pro-
cessor puts more data into the FIFOs. When the FIFOs are almost full, the signal 
“Almost_full” interrupts the receiving-side processor, and that processor reads 
data out. When the FIFOs are big enough, these processors could be adequately 
alleviated from frequent interrupts. 

2.2. The Implementation of Synchronous and Asynchronous  
FIFOs 

Figure 2(a) shows the schematic of synchronous FIFO. In Figure 2(a), there are 
2 address registers, one at the input side and the other at the output side. When 
the two address pointers are equal, the FIFO is either full or empty. A ‘FULL’ 
register, which should be cleared at reset (indicating empty but not full), could 
be employed to differentiate and track the full and empty state. 

Figure 2(b) shows the schematic of asynchronous FIFO. The difficulty of 
asynchronous FIFO is that the address registers (read address, RA_ADDR, write 
address, WR_ADDR) are at different clock domains, so they need to be gray en-
coded (RA_GRAY and WA_GRAY) and delayed by two clock cycles (RA_d1, 
RA_d2 and WA_d1, WA_d2) at the other side (the other clock domain) before 
being used [8]. In addition, a “FULL/EMPTY” register is used in each clock do-
main. 

The main body of synchronous and asynchronous FIFOs is the memory array, 
which is responsible for storing information. The memory array could be im-
plemented in a lot of ways. When it is small, it could be composed with D-flipflops. 
When it is medium-sized, it could be realized with latches [4]. When the size is 
large, it needs to be implemented with customized circuits. 

However, in many circumstances, customized FIFOs are not provided but 
Dual-Port Static Random-Access-Memories (DPRAM) are available. In these cas-
es, we need to construct FIFOs with DPRAMs. The main difference of FIFOs and 
DPRAMs is that they are with different read timing. For DPRAMs, the output 
data is one-clock delayed after the read command, while for FIFOs with AXI-lite 
interfaces, the data are output at the same time with the “Ready” signal. 

A pipelined architecture [9] [10] could be used to transform the read timing 
of DPRAMs to that of FIFOs. Figure 3 shows this architecture. In Figure 3, a 
small-sized synchronous FIFO (SyncFIFO) follows the DPRAM. The two clocks 
of DPRAM could be synchronous or asynchronous. The “Empty” and “Full” 
flags of DPRAM are generated in the same way as D-flipflop-based FIFOs, as  

https://doi.org/10.4236/eng.2024.163007


D. W. Hu et al. 
 

 

DOI: 10.4236/eng.2024.163007 64 Engineering 
 

 
(a) Synchronous FIFO 

 
(b) Asynchronous FIFO 

Figure 2. Circuit implementation of synchronous and asynchronous FIFOs. 

 

 
Figure 3. Constructing FIFOs with DPRAMs. 
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shown in Figure 2. As long as DPRAM is not empty and the following SyncFI-
FO is ready, the data in DPRAM are read out and put into the SyncFIFO. The 
output of the SyncFIFO, whose timing aligns with that of AXI-lite interface, 
serves as the top-level output of the pipelined architecture. In order to maximize 
the throughput and minimize the latency of the reading, the SyncFIFO should be 
implemented with a skip buffer (see following sections of this paper). 

Due to the gray encoding and/or pipelined implementation, asynchronous 
FIFOs are with larger latencies then synchronous FIFOs. For synchronous FIFO, 
the minimum input-output latency is one-clock-tick. If we connect the two sides 
of asynchronous FIFO with the clocks with the same clock frequency, the latency 
of D-flipflop-based asynchronous FIFO would be 3 clock-ticks, while DPRAM- 
based asynchronous FIFO is 4 clock-ticks. Table 1 summarizes the latencies of 
synchronous and asynchronous FIFOs with different implementation styles. 

2.3. Four Special Cases of Synchronous FIFO 
2.3.1. One-Slot FIFO 
If there is only one-slot data storage in the FIFO, we call the FIFO as One-slot 
FIFO. The one-slot data storage is usually realized with a register stage. The in-
put “Data” always go into the register stage, and then go out. Therefore, the Va-
lid_out, Data_out and Valid_in, Data_in are cut by the register stage. 

However, in order to make the one-slot FIFO’s throughput as high as possible, 
when the “Data” in the register stage are going out, new “Data” could be loaded 
in at the same time (the same clock cycle). This is to say, “Ready_out” would 
enable “Ready_in”. Exactly we have 

Ready_in = Ready_out or (not Valid_out). 

“(not Valid_out)” indicates that the register stage is empty. Unlike the “Valid” 
and “Data” signals, “Ready_in” is coupled with “Ready_out”, which leads to long 
combinational logic. 

The schematic of one-slot FIFO is shown in Figure 4. 

2.3.2. Skip Buffer 
Skip buffer is one way to cut the “Ready” signal of One-slot FIFO. Figure 5 
shows the architecture of skip buffer. It is composed by a mux and an one-slot 
FIFO. When the one-slot FIFO is empty and “Ready_out” is asserted, the “Data” 
go directly from input to output, skipping the FIFO. When the one-slot FIFO is  

 
Table 1. Latencies of different implementations of synchronous and asynchronous FI-
FOs. 

Implementation Styles # of clock-ticks 

Flip-flop-based Sync-FIFO 1 

Flip-flop-based Async-FIFO 3 

DPRAM-based Sync-FIFO 2 

DPRAM-based Async-FIFO 4 
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Figure 4. One-slot FIFO. 
  

 

Figure 5. Skip Buffer. 

 

empty, but “Ready_out” is not ready (desserted), one-slot “Data” could still be ac-
cepted and stored into the FIFO. When the FIFO is full, input “Data” could not be 
accepted until the “Data” in FIFO is gone first, thus keeping the order of the “Data” 
stream. Obviously, “Ready_in” depends on either the FIFO is full or not, that is, 

Ready_in = not FIFO_Valid_out 

It’s decoupled from “Ready_out”. However, as there is a direct pathway from 
the input to the output, skip buffer couldn”t decouple “Valid_out”, “Data_out” 
from “Valid_in”, “Data_in”. 

2.3.3. Decoupling Skip Buffer 
One-slot FIFO decouples “Data” and “Valid” signals, but fails in decoupling 
“Ready” signal. Skip buffer decouples “Ready” but couldn’t decouple “Data” and 
“Valid” signals. If we combine them together, all signals could be decoupled. We 
name this kind of circuit as Decoupling Skip Buffer. 

There are two types of decoupling skip buffer as shown in Figure 6. From the 
application point of view, there are no differences for the two. Therefore, when 
we refer to decoupling skip buffer, either type could be applied. 
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Figure 6. Decoupling Skip Buffer. 

2.3.4. Two-Slot FIFO 
There are two One-slot FIFOs in decoupling skip buffer, one to decouple the 
“ready” signal, and the other to decouple “Valid” and “Data” signals. Actually we 
could directly use a Two-slot FIFO for timing decoupling. The structure of Two- 
slot FIFO is the same as that shown in Figure 2, with just 2 entries. In Figure 2, 
the output “Valid”, “Data” and “Ready” signals are all generated from (read/ 
write address pointers and “full”) registers, so they are decoupled from the input 
side of the FIFO. 

3. The Usage of Synchronous FIFOs for Intra-Processor  
Pipelines 

Look into the pipeline design of a processor, we can find that synchronous FI-
FOs are extensively used. 

3.1. Using Skip Buffer for Memory Reading Pipelines 

Figure 7 shows the pipeline model of a digital processor [2]. There are two 
memory reading blocks in the pipeline stages, one for instruction fetching and 
the other for data reading. We only discuss the instruction fetching as an exam-
ple. 

At the instruction fetching stage, Program Counter (PC) is issued out to the 
program memory (PMEM) as address. In the meantime, the fetching command 
is delayed to the next stage, that is, the instruction queue. If both the read-back 
instruction, indicated by “RB_VLD” signal, and the fetching command, indi-
cated by “RC_VLD” signal, are available, the read-back instruction is captured 
by the instruction queue. However, the PMEM is outside of the processor core 
and the read-back delay is out of control. It may come much later than the fetch-
ing command. In this case, the instruction queue will wait until both “RB_VLD” 
and “RC_VLD” are available. 
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Figure 7. Pipeline model. 
 

There is another case that makes things even difficult. The pipeline maybe 
blocked by later stages of the pipeline, e.g. by reading data memory blockage. In 
this case, the instruction queue may become full. If both “RB_VLD” and “RC_ 
VLD” are coming at this time, the instruction queue cannot capture the read- 
back instruction. However, the address has been issued out and the PC has 
changed. In this case, the read-back data must be hold by the PMEM. This is to 
say, the PMEM cannot accept new addresses, which leads to 2 shortcomings: 
firstly there will be longer delay after the later stages recover; secondly the 
PMEM cannot be read by other modules (e.g. the Direct Memory Access, DMA 
module). 

A skip buffer could be employed to overcome these shortcomings. As shown 
in Figure 5, in normal conditions, the one-slot FIFO in skip buffer is empty, and 
the read-back instruction bypasses the skip buffer and goes to the instruction 
queue directly. When the later stages of the pipeline are blocked, the back-pressure 
“RDY” signal from instruction queue will stop the PC being issued. However, 
there will be one fetching command has been issued out and the read-back in-
struction is on the fly. In this case, when the read-back instruction becomes availa-
ble, it will be stored into the One-slot FIFO of the skip buffer and the PMEM will 
be released. In this way, the previous shortcomings are overcome. Of course, a 
two-slot FIFO could also serve this purpose [11]. 

3.2. Using Multiple One-Slot FIFO for Out-of-Order Issue 

For high performance processors, there are lots of executive modules, e.g. integ-
er multiplier, integer divider, floating adder, floating multiplier, floating divider, 
etc. Different modules may have different latencies (in clock cycles). 

Refer to Figure 7 again, in order to improve the performance of the processor, 
instructions could be issued out-of-order, and it is possible that more than one 
instructions are issued simultaneously [12]. 

Figure 8 shows the implementation schematic of out-of-order issue circuits. 
In Figure 8, instructions are orderly coming to a shifter FIFO, and are attached 
with a sequential identity (ID). Each FIFO in Figure 8 is of one-slot. In the shif-
ter FIFO, instructions either go into the executive modules (below in Figure 8),  
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Figure 8. Out of order issue. 
  

or go to the right slots. All the instructions in shifter FIFO are checked parallelly, 
any instruction whose source registers are available will be issued. In this way, 
instructions could be issued out-of-orderly and parallelly. After the execution of 
these instructions, they are committed (that is, write back the results to the reg-
ister file) sequentially according to their ID. 

3.3. Using Decoupling Skip Buffer or Two-Slot FIFO for Timing  
Decoupling 

As shown in Figure 7 and Figure 8, there are many stages/modules in the pipe-
line. If all the stages/modules are separated by One-slot FIFOs, all the “READY” 
signals of every stage/module would be coupled together, which may lead to long 
combinational logic and critical timing path. 

To overcome this circumstance, some One-slot FIFOs could be replaced with 
decoupling skip buffers or two-slot FIFOs. For example, it is highly recommended 
that the depth of the instruction queue being at least 2 slots, thus not only cut-
ting both the forward “VALID” signal and the backward “READY” signal [11], 
but also facilitating PMEM reading. 

4. The Usage of Synchronous or Asynchronous FIFOs for  
Inter-Processor Communications 

In this section, the usage of synchronous or asynchronous FIFOs for inter-pro- 
cessor communications is discussed. 

4.1. Using Synchronous or Asynchronous FIFOs as  
Inter-Processor mailing-box 

Figure 9 shows the schematic that synchronous or asynchronous FIFO is used as 
inter-processor mailing-box. In Figure 9, there are 2 processors, Central Processing 
Unit 0 (CPU 0) and CPU 1, and a mailing-box. The mailing-box is implemented 
by synchronous or asynchronous FIFO, depending on the 2 CPUs are driven by 
the same or different clocks. CPU 0 writes data into the FIFO, the write enable 
signal is used as the “Valid_in” signal. When the FIFO is not empty, the “Va-
lid_out” signal interrupts CPU 1. When CPU 1 reads out the data entry in FIFO, 
the reading command clears the interrupt signal simultaneously. 
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Figure 9. Mailing box. 
 

It should be noted that mailing-box could be used not only between CPUs, but 
also between any master processing units (e.g. Finite-State-Machine, FSMs), or 
mixed CPU and other kind masters. 

Figure 10 shows an example for inter-processor communications with asyn-
chronous FIFOs. This is a baseband chip for satellite communications. In this 
chip, there are two CPUs, CPU 1 and CPU 2, CPU 1 controls the Transmitter 
(Tx), and CPU 2 controls the Receiver (Rx). There is a “Sync” signal from Rx to 
Tx, controlling the timing of sending signals according to the timing of the re-
ceived signals. In Figure 10, the traffic interface is Gigabit Media Independent 
Interface (GMII). The received packets of GMII are stored into off-chip Syn-
chronous Dynamic Random Access Memory (SDRAM) and CPU 1 is notified by 
interrupt signal “Eth_rx_int”. On the other side, the Rx demodulated signals are 
stored into SDRAM and sent out through GMII interface. The interrupt signal 
“Eth_tx_int” of GMII to CPU 2 asks for more packets to be sent out. 

This chip is for satellite communications. In satellite communication systems, 
Adaptive Modulation and Coding (AMC) is extensively employed to maximize 
the throughput of the wireless link. With AMC, the Rx side needs to measure the 
state (e.g. rain fading, length of buffered packets, etc.) of the wireless link, and 
returns this state to the Tx side through reverse link. Then the Tx side selects the 
best AMC scheme and processes the sending signals. With this mechanism, 
there are a few short messages from Rx module fed to the Tx module in every 
frame in the baseband chip. These messages are for link maintenance, not for 
traffic. It is called signalling. In Figure 10, these signalling messages are trans-
ferred from CPU 2 to CPU 1. 

There are two properties for these signalling messages. Firstly, the lengths of 
these signalling messages are short; the average length of every message is 32 
bytes in our case. Secondly, the number of these signalling messages is high. If 
every message interrupts CPU 1, the interrupt would be too frequent and there 
will be severe overhead in CPU 1 for context switch. As CPU 1 controls the Tx 
module and needs to be real-time, severe overhead would be dangerous. 

In our implementation, an asynchronous FIFO based mailing-box is employed 
to transfer these short messages, as shown in Figure 10. The size of the asyn-
chronous FIFO is of 1KX64, which can accommodate about 256 messages. In 
order to decrease the frequency of interrupt, two signals are employed as inter-
rupt signals, one is “Vld” of the FIFO, which indicates the non-empty of the 
FIFO, and there are messages needing to be read, the other is the “Almost_full”  
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Figure 10. Example of using Mailing Box for inter-processor communications. 
 

signal, which indicates the FIFO is almost full, and the messages should be read 
out emergently. Therefore, the “Almost_full” interrupt is of high priority. In out 
implementation, the “Almost_full” signal indicates that 75% of the FIFO is oc-
cupied. And every time it interrupts CPU 1, the CPU 1 reads all the messages in 
the mailing-box out. 

In this implementation, the signalling bandwidth is 1 Mega-bits-per-second 
(Mbps), there are 4000 messages on average within one second. If there is no 
mailing-box, the messages need to be stored in SDRAM, and every message in-
terrupts CPU 1, which means 4000 interrupts within one second on average, the 
average time interval between two interrupts is 0.25 minisecond. However, with 
this mailing-box and only “Almost_full” signal is interrupting CPU 1, there is 
only 21 interrupts within one second, and the interrupt interval is 48 minisecond 
on average. From this example, we can see that the usage of FIFO greatly de-
creased the frequency of interrupts and thus facilitated inter-processor commu-
nications. 

4.2. Using Synchronous or Asynchronous FIFOs as  
Inter-Processor Packet Router 

Figure 11 shows the architecture of a many-core processor [4] [13] [14]. In Fig-
ure 11, every 4 Processing Elements (PEs) are clustered together, called Quad PE 
(QPE). 32 QPEs are connected together with a Network-on-Chip (NoC) of 6 by 
6 mesh topology. Every QPE is connected to a NoC Router, which is indicated as 
“R” in Figure 11. The links between every two NoC Routers are called L1. The 
links between PEs and NoC Routers are called L2, and the links between every 
two PEs within a QPE are called L3. In the center of the mesh NoC, there are 
synchronizers and shared memories facilitating on-chip inter-processor com-
munications. At the 4 corners of the chip, 4 Double Data Rate (DDR) controllers  
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Figure 11. The architecture of a many-core processor. 

 

are integrated to connecting to off-chip SDRAMs, each at one corner. In Figure 
11, 128 PEs are integrated in a chip with this mesh topology. Obviously this ar-
chitecture could be extended to integrate more PEs within a die, and if neces-
sary, more DDR controllers could be employed to even increase memory access 
bandwidth. 

Figure 12(a) shows the interface of NoC Router, and Figure 12(b) shows the 
architecture of NoC Router [4]. In Figure 12(a), there are 8 input ports, 4 for 
PEs and another 4 for {East, South, West and North} L1 links. Correspondingly, 
there are 8 output ports for the NoC Router, also 4 for PEs and 4 for L1 links. In 
Figure 12(b), the input ports are firstly buffered by FIFOs. The output of the 
inputting FIFOs are then arbitrated and routed (by MUX) to the outputting FI-
FOs, thus sending packets to the next stage. 

In Figure 12(b), the FIFOs in NoC Router could be synchronous or asynchron-
ous FIFOs. Synchronous FIFOs are with less latencies thus quicker communica-
tion (especially reading) response time. Asynchronous FIFOs are with better power 
efficiency and could alleviate the difficulty of clock tree routing for big chips [5]. 
For low power embedded many-core processors, where power is more cared about 
than performance, asynchronous-FIFO-based NoC is recommended [5] [13]. 
However, for big chips aiming at applications in High-Performance-Computers 
(HPCs), where latency is the main concern, synchronous-FIFO-based NoC is pre-
ferred as long as the timing is allowed [15] [16]. 
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(a) Interface of NoC Router 

 
(b) Architecture of NoC Router 

Figure 12. Interface and architecture of NoC router. 

5. The Usage of Synchronous or Asynchronous FIFOs for  
System-on-Chips 

5.1. Usage of Synchronous or Asynchronous FIFOs for Peripherals 

Figure 13 shows a picture in which synchronous or asynchronous FIFOs are 
used for peripherals. In Figure 13, data are put into tx_FIFOs and the peripher-
als take data out and transmit them out. When the tx_FIFOs are almost empty, it 
interrupts the CPU and asks for more data. For the receiving direction, the data 
from peripherals are put into rx_FIFOs. When the rx_FIFOs are almost full, it 
interrupts the CPU and CPU takes data out from it. 
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Figure 13. Using FIFOs for peripherals. 
 

In Figure 13, the tx_FIFOs and rx_FIFOs could be synchronous or asynchron-
ous FIFO. When the peripherals and the bus use the same clock, the tx_FIFOs and 
rx_FIFOs are synchronous, when the peripherals and the bus use different clocks, 
tx_FIFOs and rx_FIFOs are asynchronous. 

5.2. Usage of Synchronous FIFOs for Interleaved AXI Reading and  
Writing 

For AXI bus [7] [16], there could be multiple masters issuing reading commands 
or writing commands, and the commands from different masters are inter-
leaved. Each command requests multiple reading or writing data packets. The 
data packets belonging to one command is called a burst. The last data packet 
within a burst is always indicated by a “last_data” flag. The length of the burst 
means the number of packets within a burst. To differentiate these masters, these 
masters are with different Master IDentities (MIDs). For AXI bus, the timing of 
the address channel and data channel are independent, which enables outstand-
ing reading or writing. With outstanding reading, multiple reading commands 
could be issued before their corresponding reading-data are back. With out-
standing writing, multiple writing commands could be issued before the corres-
ponding writing-data are sent out. 

However, as AXI is an in-order bus, that is, it must keep the order of data in 
reading and writing, it is very dangerous in implementing outstanding reading 
and writing. For example, if multiple reading commands with MID 2 following 
MID 1 are sent out, but there are not enough data buffer in MID 1, the read- 
back data belonging to MID 1 will be blocked at the read-data channel of the 
slave, thus blocking the read-back data belonging to MID 2 coming back to the 
master. For writing, if multiple writing commands with MID 2 following MID 1 
are sent out, but there are not enough data buffer for MID 1 in the slave, the 
writing-data of MID 1 will be blocked at the writing-data channel of the slave, 
thus blocking writing-data belonging to MID 2 going to the slave. If this read-
ing-blockage or writing-blockage occurs, the efficiency of the AXI bus will be 
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greatly deteriorated. 
Figure 14(a) shows the idea to avoid reading blockage. In Figure 14(a), there 

is a flag “Almost_full” showing the status of read-back data buffer in each MID, 
which indicates how many slots are available to store incoming packets in the 
read-back data buffer. When a reading command (indicated by addr_vld MID x) 
is sent out, it is ANDed with its corresponding read-data buffer status. The “Al-
most_full” flag is inverted and ANDed with it. If we design that the “Almost_full” 
to be no less than the length of one AXI burst, the resulted “addr_vld_out MID 
x” will make sure that when the reading command is sent to the slave, the read- 
back data will always be accepted by the corresponding master “MID x”. After 
the reading command is sent out, the status of the read-data buffer is updated. 
On the other side, when the data are taken out from the data buffer by the mas-
ter, the status is updated again to release the buffer for reading more data. 

In Figure 14(a), multiple valid “addr_vld_out MID x” are arbitrated, and one 
is selected to the slave. At the slave, the selected MID are stored in a FIFO, and 
attached to the read-back data. The “last_data” flag in a burst is used to pop out 
the MID from the FIFO. At the masters, the MID attached with the read-back 
data are used to recognize which master the data are belonging to. This recogni-
zation is realized by “Classification” module in Figure 14(a). 

Figure 14(b) shows the idea to avoid writing blockage. In Figure 14(b), mul-
tiple masters with different MIDs are issuing writing commands. These writing 
commands may request writing multiple data packets. Firstly the “Writing Sin-
gle MID x” module transforms the writing commands into multiple “Writing 
Single” commands, which only request writing single data packet. Then the “Ar-
bitration & MUX” module selects one “Writing Single” command from multiple 
MIDs, and sends this command to the salve. In the mean time, one data packet 
corresponding to the selected MID is also selected out and sent to the slave. In 
order to avoid the case when a “Writing Single” command is sent out, but the 
corresponding data packet is not yet ready (that is, the “data_vld” is not as-
serted), the “vld” signal of the “Writing Single” command is ANDed with the 
“vld” signal of the corresponding data packet before going to the arbitrator. 

It is worth noting that the priority of the arbitrator must be free-rotating, see 
Figure 14(a) and Figure 14(b) the “Free-Rotating Priority” module. If MID x is 
selected by the arbitrator, however, the data buffer for MID x in slave is full, the 
transfer from MID x to the slave cannot be accomplished. At this time, if the 
priority of the arbitrator is free-rotating, other MIDs will be selected and tried. 
In this way, the AXI bus will never be blocked by any one master, thus the band-
width of the bus is sufficiently utilized. On the contrary, if the priority-rotating 
depends on the accomplishment of a transfer, blockages may occur. 

Figure 14(a) and Figure 14(b) could be used to combine multiple AXI master 
ports into one AXI master port. In this case, in Figure 14(a) and Figure 14(b), 
after the AXI slave receives a reading or writing command, it will initiate a new 
reading or writing command to the next stage, acting as a new AXI master. 
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(a) Interleaved Reading 

 
(b) Interleaved Writing 

Figure 14. AXI interleaved Reading and Writing. 
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5.3. Usage of One-Slot-FIFO-Based Circular Buffer for AXI Bus  
Data Alignment 

AXI bus supports unaligned data transfers. If the width of data channel is W 
bytes, but the reading or writing address is not W-byte aligned, unaligned trans-
fer occurs. In unaligned transfer, the first data packet transfers the non-aligned 
part of the data stream, so that all the addresses of following packets are W-byte 
aligned. Figure 15 shows the data on read/write data channel of unaligned trans-
fer. The numeric digits in Figure 15 are the addresses of the valid bytes. In Fig-
ure 15, the reading/writing address starts at 0x0003, the width of the data chan-
nel is 64-bit (8 bytes), the first data packet is of 5 bytes (address 0x0003 to 
0x0007), and all the addresses of the following data packets are 8-byte aligned. 
Because of the length of the data stream, only 6 bytes in the last packet are valid. 
For writing, these valid bytes are indicated by “w_strb” signal of the write data 
channel. For reading, the master knows the valid bytes in the last packet by itself. 

Referring to Figure 16, there is a DMA controller, who moves data between 
memory addresses. The DMA controller is composed of a top-level controller 
module “DMA Controller Top”, a memory reading controller “DMA Reading”, 
a memory writing controller “DMA writing”, and a “Data Alignment” module. 
We assume it reads data starting from address “addr_r”, and writes data starting 
from “addr_w”, both “addr_r” and “addr_w” are unaligned with W bytes, and 
the reading and writing are with different sized first packet, e.g., “addr_r” starts 
at 0x0003 while “addr_w” starts at 0x0002, we therefore need to decompose and 
re-assemble every data packet so that the data packets on the read/write data 
channels of the bus are in accordance with the AXI specification. This decompo-
sition and re-assembly process is called data alignment. 

Figure 17 shows the implementation of this data alignment. In Figure 17, D 
 

 

Figure 15. The data on read/write data channel of unaligned transfer. 
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Figure 16. Data alignment in DMA controller. 
 

 

Figure 17. Using circular one-slot-FIFOs for data alignment. 
  

One-slot-FIFOs, denoted as B[0], B[1], ..., B[D − 1], are circularly connected 
and form a circular buffer. Every One-slot-FIFO is of one-byte width. There are 
two address pointers, one for writing data into the circular buffer, named as 
“Writing_Pointer”, and one for reading data from the circular buffer, named as 
“Reading_Pointer”. The length between “Writing_Pointer” and “Reading_Pointer” 
indicates the number of slots (that is, number of bytes) being occupied, this is 
denoted as “Len_used”. The length of buffer which is available for incoming data 
is denoted as “Len_available”, which is the total length of the circular buffer mi-
nus the length being occupied, that is, 

Len_used = (Writing_Pointer − Reading_Pointer) % D 

Len_available = D − Len_used 

In the above equation, “%” means modulo. 
At reset, both “Writing_Pointer” and “Reading_Pointer” point to One-slot- 

FIFO B[0]. When a data packet is read out from memory by the DMA control-
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ler, it is written into this circular buffer, and the “Writing_Pointer” is updated. 
After that, when a new packet is read out by the DMA controller, the length of 
the packet is compared with “Len_available” of the circular buffer. Whenever 
“Len_available” is bigger than the length of the packet, this packet is put into the 
circular buffer, and the “Writing_Pointer” is updated. 

At the other side, when the DMA controller is trying to write a data packet 
into the memory, it requests data from this circular buffer to form the data 
packet. If the length of the requested data packet is smaller than “Len_used”, the 
data in circular buffer are taken out to form this data packet, and the “Reading_ 
Pointer” is updated. After that, when forming a new packet, new data are re-
quested from this circular buffer. Whenever “Len_used” is bigger than the re-
quested length, the data are taken out and “Reading_Pointer” is updated. How-
ever, if “Len_used” is smaller than the requested length, we have to wait until 
new data packets are put into the circular buffer, and “Len_used” is updated. 

There are two points worth of noting: 
1) When writing or reading the circular buffer, it is possible that multiple 

bytes are written into or taken out from the circular buffer simultaneously, and 
the number of bytes being written or reading is changing. Therefore, one Static 
Random Access Memory (SRAM) macro block doesn’t work; we therefore form 
the circular buffer with multiple One-slot-FIFOs of one-byte width. 

2) The minimum depth of the circular is 2*W − 1, that is, 

Min {D} = 2*W − 1 

If the depth of circular buffer is less than 2*W − 1, it is possible that there are 
not enough data to form the requested data packet, while new data packet can’t 
be put into the circular buffer because there are not enough buffer for this in-
coming data packet, thus the circular buffer can’t either be read or written, and 
therefore deadlock occurs. 

5.4. Usage of Asynchronous FIFOs for Clock-Domain Crossing 
5.4.1. Usage of Asynchronous FIFOs for AXI Bus Bridge 
As mentioned in the previous section, for AXI bus, the read address channel, the 
read data channel, the write address channel, the write data channel and the 
write response channel are independent. And as shown in section II.A, the data 
flow of FIFO is unidirectional. Therefore, an asynchronous FIFO could be used 
for every channel for clock domain crossing. In this way, clock domain could be 
easily separated. 

5.4.2. Usage of Asynchronous FIFOs for AHB Bus Bridge 
For Advanced High Performance Bus (AHB bus), the timing of address and data 
are tightly coupled. When an address is issued for a writing, the data should 
tightly follow it with one-clock-tick delay. Therefore, we use an one-slot FIFO to 
delay the address, so that it is aligned with the data. Then the aligned address 
and data are put into an asynchronous FIFO to cross the clock domain. At the 
other side, an one-slot FIFO is used again to delay the data for one-clock-tick after  
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Figure 18. Using asynchronous FIFOs for AHB clock bridge. 

 
the address. 

For AHB reading, only address is put into the asynchronous FIFO, and after 
the FIFO, the read-back data are put into another asynchronous FIFO whose 
data flows in another direction. After the reading data cross the asynchronous 
FIFO, the “Valid_out” signal serves as the “hready” signal of the AHB reading 
command. 

The block diagram of AHB clock bridge is shown in Figure 18. 

6. Conclusions 

Synchronous FIFOs and asynchronous FIFOs are extensively used in contem-
porary digital systems. In this paper, we addressed the various implementations 
of synchronous and asynchronous FIFOs. We also addressed the four special 
cases of synchronous FIFOs: One-slot FIFO, Skip Buffer, Decoupling Skip Buf-
fer, and Two-slot FIFO. We showed their sophisticated usage in the pipeline de-
sign of processors. For inter-processor communication networks, we showed 
that synchronous and asynchronous FIFOs could be used as mailing-box, and in 
NoCs, asynchronous FIFOs could not only undertake inter-processor commu-
nications, but also facilitate clock-domain-crossing. At the whole SoC level, syn-
chronous and asynchronous FIFOs are not only used in peripherals, but also 
used for AXI masters combining, and for AXI and AHB clock-domain crossing. 
From the review of this paper, we can find that FIFOs play an important role in 
digital design, and are used at all levels of nowadays digital systems. Therefore, 
we should pay more attentions to the usage of FIFOs in our future work. 

In the future, more design patterns will be explored and more advanced de-
sign methodologies will be proposed. 
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