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Abstract 
Electrical impedance tomography (EIT) aims to reconstruct the conductivity 
distribution using the boundary measured voltage potential. Traditional re-
gularization based method would suffer from error propagation due to the 
iteration process. The statistical inverse problem method uses statistical infe-
rence to estimate unknown parameters. In this article, we develop a nonlinear 
weighted anisotropic total variation (NWATV) prior density function based 
on the recently proposed NWATV regularization method. We calculate the 
corresponding posterior density function, i.e., the solution of the EIT inverse 
problem in the statistical sense, via a modified Markov chain Monte Carlo 
(MCMC) sampling. We do numerical experiment to validate the proposed 
approach. 
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1. Introduction 

Electrical impedance tomography (EIT) [1] is an imaging modality that aims to 
reconstruct the conductivity distribution by injecting a current into the body 
through pairs of electrodes attached to the surface of the target and measuring 
the voltage data. EIT for medical imaging has the advantages of being noninva-
sive, real-time monitoring, portable, and low cost. 

However, traditional regularization based method would suffer from error 
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propagation due to the iteration process. The statistical inverse problem method 
uses statistical inference to estimate unknown parameters. Meanwhile, the post-
erior density function is sampled in solving to avoid the error propagation and 
accumulation caused by iteration. 

The statistical inverse problem method for EIT is proposed in [2]. In [2] the 
resistivity sampling based on Markov chain Monte Carlo (MCMC) is given. It is 
shown in reference [3] that the Bayesian conditional mean (CM) estimation of 
the prior distribution of total variation (TV) cannot preserve the edge. 

In reference [4], the statistical inverse problem of the EIT is realized by se-
lecting the TV regularization term as the prior density function, and the visuali-
zation image is obtained using the MCMC algorithm. In the literature [5], the 
TV prior density function and MCMC sampling algorithm are also used to 
achieve 3D EIT image reconstruction. However, as in the non-statistical method, 
staircasing artifacts occur. 

In Song [6], the authors proposed having an edge-preserving effect nonlinear 
weighted anisotropic total variation (NWATV) regularization method to solve 
the EIT inverse problem. The reconstruction quality and edge-preserving effect 
are improved. 

In this article, we develop a NWATV prior density function based on the 
NWATV regularization method. We estimate the corresponding posterior den-
sity function, i.e., the solution of the EIT inverse problem in the statistical sense, 
via a modified MCMC sampling method. Numerical results show that the pro-
posed NWATV prior density function is feasible, and the edge-preserving effect 
is improved. 

2. NWATV Priors and Posterior Distribution of EIT Problems 
2.1. NWATV Priors Density Function 

In Song [6], the authors proposed having an edge-preserving effect NWATV 

regularization term 
( )1

2

L Ω
∇ ∇σ σ , here σ  is conductivity. The conductivity 

is then reconstructed by solving the following minimization problem: 

 ( )
1

21arg min ,
2 lδ

δ δ δ α δ = − + ⋅ 
 

S V p D
σ

σ σ σ  (1) 

here, δσ  is the change of conductivity, S  is the sensitivity matrix,  
( ) ( )( ) 2; Nζ δ ζ δ= ∈p Rσ σ , ( ) ( ) 2

: 1ζ δ= ∇r rσ , ( ), ,x y z=r ,  
( ) ( ) 2; N

x yδ δ δ= ∈D D D Rσ σ σ , where , N N
x y

×∈D D R  are respectively the 
first-order difference operators along the x and y directions. 

Next, we will analyze the prior density function corresponding to NWATV 
regularization in the sense of statistical inference. Precisely, we consider the fol-
lowing form of prior density: 

 ( ) ( ) ( )pr pr ,π π π+∝ σ σ σ  (2) 

where ( )prπ σ  is a regularization prior, ( )π+ σ  is the positivity prior 
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( ) ( )1 if 0 for all 1,2, , ,
0 otherwise.

k k N
π+

≤ ≤ ∞ =
= 


σ
σ

 
Here, N represents the number of components discretized by the finite ele-

ment method for the conductivity distribution in the reconstructed region. 
Considering the prior density function corresponding to NWATV regulariza-

tion 

 ( ) ( )
1

NWATV ,
l

= ⋅p Dσ σ  (3) 

we obtain 

 ( ) ( )
1

pr e .lα
π

− ⋅
∝

p D σ
σ  (4) 

Therefore, a nonlinear weighted anisotropic total variational prior density 
function is obtained 

 ( ) ( ) ( )
1

pr e ,lα
π π

− ⋅

+∝
p D σ

σ σ  (5) 

where 0α >  is a parameter related to the confidence of the regularized priors. 
When considering the change of conductivity δσ , (5) can be rewritten as follows 

 ( ) ( )
1

pr e .lα δ
π δ

− ⋅
∝

p D σ
σ  (6) 

2.2. The Solution of EIT Inverse Problem in Statistical Sense 

Now, consider the EIT problem as a concrete form of the statistical inverse prob-
lem. The EIT statistical model can be expressed as follows 

 ,δ δ= +V S Wσ  (7) 

where, δV  represents the observed quantity, δσ  represents the change of 
conductivity and W  represents noise. We assume that δσ  and W  are inde-
pendent. 

Suppose that the noise vector W  is a Gaussian random vector with zero 
mean, and the covariance matrix Γ  is positive definite, i.e., 

 ( )~ 0, .ΓW   (8) 

The likelihood density function is obtained as 

 ( ) ( ) ( )T 11| exp .
2

π δ δ δ δ δ δ− ∝ − − Γ − 
 

v S V S Vσ σ σ  (9) 

According to the Bayesian formula, the posterior density function of conduc-
tivity is 

 ( ) ( ) ( ) ( )
1

T 11| exp .
2 l

π δ δ δ δ δ δ α δ− ∝ − − Γ − − ⋅ 
 

v S V S V p Dσ σ σ σ  (10) 

In the experimental application, we assume that the noise covariance matrix is 
2 IβΓ = . We obtain 

 ( ) ( )
2 1

2
2

1| exp .
2 l l

π δ δ δ δ α δ
β

 
∝ − − − ⋅ 

 
v S V p Dσ σ σ  (11) 
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Next, we will estimate the posterior density function using the CM method. 
The formula for calculating the CM method is as follows 

 ( )CM | d .nδ δ π δ δ δ= ∫ v


σ σ σ σ  (12) 

Since an image contains a large number of pixels and hence the above integral 
dimension is huge. We use the MCMC algorithm to sample the posterior density 
function (11) to obtain the sample sequence ( ) ( ) ( )1 2, , , Mδ δ δσ σ σ . 

The burn-in period of the probe posterior density function is assumed to have 
a sample size of 0m . When the total sample quantity M is sufficiently large, the 
remaining quantity after removing the burn-in period samples is given by 

0M m− . Therefore, the above integral (12) can be approximated by the average 
of ( )0M m−  samples, i.e., 

 ( ) ( )

0

CM
10

1| d .n

M
m

m mM m
δ δ π δ δ δ δ

= +

= ≈
− ∑∫ v


σ σ σ σ σ  (13) 

Specifically, we probed and sampled the posterior density function (11) using 
the Metropolis-Hastings [7] [8] method from MCMC. Thus, we obtained a dis-
tribution Q on n  similar to the posterior density function (11). 

Fix update1 N n≤ ≤  and 0κ > . Generate an alternative value nδ ∈σ  from 
Q, satisfying ( )mδ δ ε= +σ σ , where 

update

T

1 20, ,0, ,0, ,0, ,0, ,0, ,0, ,0 ,Nε ε ε ε ′ ′ ′=     

 
with ( )~ 0,lε κ′  , update1, 2, ,l N=  . In addition, for the EIT inverse problem, 
it is generally possible to determine the conductivity range of the object. We also 
incorporate this prior information into our reconstruction algorithm. The sam-
pling algorithm is as follows 

Step 1: Set : 0m = , B, updateN  and initialize ( )0δσ  by e.g. ( ) [ ]T0 : 0, ,0δ = σ . 
Step 2: Set ( ): mδ δ ε= +σ σ , where  

update

T

1 20, ,0, ,0, ,0, ,0, ,0, ,0, ,0Nε ε ε ε ′ ′ ′=      , with ( )~ 0,lε κ′   inde-

pendent random numbers. 
Step 3: If ( )i Bδ <σ , then perform n steps to retransfer again, such that 
( ) ( ) ( )mi i w Bδ δ= + ≥σ σ , 1, ,i N=  , ( )2~ 0, 2nw γ , 1,2,3,n =  , where 

B is the background pixel value of the image. 
Step 4: If ( ) ( )( )| |mπ δ δ π δ δ≥v vσ σ  then set ( )1mδ δ+ =σ σ  and go to Step 

5. 
Step 5: Draw a random number s from the uniform distribution on [ ]0,1 . If 

( )
( )( )

|

|m
s

π δ δ

π δ δ
≤

v

v

σ

σ
 then set ( )1 :mδ δ+ =σ σ ; else set ( ) ( )1 :m mδ δ+ =σ σ . 

Step 6: If m M=  then stop; else set 1m m→ +  and go to Step 2. 

3. Result 

We used the EIDORS [9] software package to solve the forward problem. Expe-
riments were conducted using adjacent injection current and voltage measure-
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ment modes with a maximum injection current of 1 mA. In the sampling 
process, we maintain the acceptance rate in the range 0.25 - 0.35. 

We used the sample data to calculate and visualize the upper and lower bounds 
for 90% credibility interval of the imaging results to evaluate the reconstruction 
effect. The credibility interval is defined as follows 

 ( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ, , for 1, , .CL i CU i i a i i a i i nδ γ δ γ= − + =       σ σ  (14) 

Here CL represents the lower credibility bound, CU represents the upper cre-
dibility bound, a is the credibility coefficient (In the experiment, the value is 
1.645.), ( )ˆ iδσ  and ( )iγ  are the mean and variance of the sample data for the 
i-th component after fitting the probability distribution. 

To verify the feasibility of the theory and obtain the visualization image, we 
used a modified MCMC algorithm to perform a 2D numerical experiment of 
EIT. The parameters of the numerical experiment were set to 0B = ,  

61 10M = × , 5
0 5 10m = × , update 5N = , 35 10κ −= × , 121 10α −= × , 31 10β −= × . 

The reconstruction results are shown in Figure 1. We also visualized the upper 
and lower bounds for 90% credibility interval to evaluate the effect of the CM es-
timate reconstruction, as shown in Figure 2. As a comparison, we also used the 
Tikhonov regularization [10] method to reconstruct the conductivity distribu-
tion, and the results are shown in Figure 1. 

The experimental results show that the CM method is better than the Tikho-
nov regularization method regarding conductivity reconstruction quality and 
boundary preservation. In addition, we obtain more information about the solu-
tion, such as credibility intervals. 

 

 
Figure 1. Reconstruction of the conductivity distribution of circular objects. The first line is the real conductivity distribution 
image, the second line is the Tikhonov reconstruction of the conductivity distribution, and the third line is the CM estimate of the 
conductivity distribution. 
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Figure 2. The upper and lower bounds for 90% credibility interval. The first line is the lower credibility bound, and the second is 
the upper credibility bound. 

4. Conclusions 

In this article, the traditional NWATV regularization term is extended to the 
NWATV prior density function, and the corresponding posterior density func-
tion is obtained. The modified MCMC sampling algorithm was used to sample 
the posterior density function, and the visualization image was obtained from 
the CM estimation. Meanwhile, the edge-preserving effect is improved. 

Compared with the traditional Tikhonov iterative algorithm, the statistical 
sampling algorithm avoids error propagation and accumulation in the iterative 
process. Moreover, for the statistical inverse problem of EIT, except for obtain-
ing a numerical solution, we obtain the posterior density function, which con-
tains rich information about the solution. 
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