
Engineering, 2023, 15, 843-866 
https://www.scirp.org/journal/eng 

ISSN Online: 1947-394X 
ISSN Print: 1947-3931 

 

DOI: 10.4236/eng.2023.1512059  Dec. 29, 2023 843 Engineering 
 

 
 
 

Influence of Anisotropic Permeability and Soret 
Effect on the Convective Heat and Mass 
Transfer through a Porous Cavity Saturated by 
a Non-Newtonian Fluid 

Dieudonné Kouke1*, Julien Yovogan1,2 

1Laboratoire d’Energétique et de Mécanique Appliquées, LEMA-EPAC, Université d’Abomey Calavi, Cotonou, Bénin 
2Université Nationale des Sciences Technologies, Ingénierie et Mathématiques, Abomey, Bénin 

 
 
 

Abstract 
In this work, an analytical study is carried out on double-diffusive natural 
convection through a horizontal anisotropic porous layer saturated with a 
non-Newtonian fluid by using the Darcy model with the Boussinesq ap-
proximations. The horizontal walls of the system are subject to vertical uni-
form fluxes of heat and mass, whereas the vertical walls are assumed to be 
adiabatic and impermeable. The Soret effect is taken into consideration. 
Based on parallel flow approximation theory, the problem is solved in the 
limit of a thin layer and documented the effects of the physical parameters 
describing this investigation. 
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1. Introduction 

The study of natural convection in porous media has been the subject of much 
research in the past. For an exhaustive review on this subject, see for example the 
book of Nield and Bejan [1]. The fluids studied in these research works are in 
general Newtonian fluids. However, there are many situations in practice where 
the considered fluids are non-Newtonian (oil drilling, design of chemical reactors, 
storage of radioactive materials, soil pollution problems, separation processes, 
geothermal systems, etc.). An exhaustive review of work on the convection of 
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non-Newtonian fluids in porous media is presented as follows.  

1.1. Convection of Non-Newtonian Fluids in Isotropic Porous  
Media 

Chen et al. [2] were the first to consider the natural convection of non-Newtonian 
fluids along an impermeable horizontal plate in an isotropic porous medium, 
subjected to non-uniform heat fluxes. The power-law model, originally proposed 
by Christopher and Middleman [3] and later modified by Dharmadhikari and 
Kale [4], was used to model non-Newtonian fluids. The study was based on the 
boundary layer approximation valid for high Rayleigh numbers. The effects of 
non-uniform heat flux distribution on heat transfer characteristics were dis-
cussed. Pascal ([5] [6]) proposed a modified Darcy equation deduced from expe-
rimental measurements of the flow of non-Newtonian fluids through a simple 
capillary tube filled with an isotropic porous medium. Unlike the model defined 
by Dharmadhikari and Kale [4], Pascal’s model takes into account the power law 
dependence on temperature. Indeed, some complex substances, such as oil 
sands, are sensitive to ambient temperature. For relatively high temperatures, 
their behavior tends towards that of a newtonian fluid. However, for interme-
diate temperatures, the behavior becomes non-Newtonian. Chen and Chen [7] 
studied the free convection of a non-Newtonian fluid along a vertical plate em-
bedded in a porous medium. The authors used the boundary layer approxima-
tion and the modified Darcy model [Pascal ([5] [6])] to predict the resulting 
flow. The behavior of the fluid was modeled with the power law model. The re-
sults showed the influence of the behavior index (n) on the thicknesses of the 
dynamic and thermal boundary layers. For n < 1, the thickness of the thermal 
layer was greater than that of the dynamic boundary layer. The opposite hap-
pened for n > 1. This phenomenon is explained by the fact that the increase in 
the behavior index leads to an increase in the viscosity of the fluid. Pascal and 
Pascal [8] studied the rheological effects of non-Newtonian fluids on the me-
chanism of natural convection in a porous medium. These effects are predicted 
for the case of a power law fluid with flow stress when this is temperature de-
pendent. The case of a heated vertical cylinder and inserted in a porous medium 
has been studied. The surface of the cylinder was kept at a constant temperature 
or heated by a constant flow of heat. Approximate self similar solutions in finite 
form and numerical solutions were obtained. The results show a significant dif-
ference between the velocity and temperature profiles of the Newtonian and 
non-Newtonian cases. It turned out that the threshold of natural convection was 
a function of the shear induced in the fluid. Amari et al. [9] obtained numerical 
results for the case of the natural convection within a horizontal porous cavity, 
saturated by a non-Newtonian fluid and subjected to horizontal and vertical heat 
flows. The modified Darcy model and the power fluid law were used. Results 
have been achieved for Rayleigh numbers varying from 30 to 1000 and for beha-
vior indices n varying between 0.6 and 1.4. These results showed that the in-
crease in the behavior index (n > 1, i.e. fluid for a dilatant) causes a strong re-
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duction in heat transfer. Indeed, the increase in the apparent viscosity in this 
case considerably slows down the flow of the fluid. The opposite occurs for a 
behavior index n < 1 (i.e. fluid for a pseudo-elastic). In addition, an analytical 
solution was considered on the basis of an approximation of a flow parallel in 
the case of a cavity with a very large extension. The analytical and numerical re-
sults were in excellent agreement. Getachew et al. [10] considered the natural 
convection in steady state, within a porous cavity of square shape, saturated by a 
non-Newtonian fluid. A numerical method and a dimensional analysis have 
been developed by these authors. The modified Darcy model and the power law 
were used to model the problem. Correlations were made between the Nusselt 
number, the consistency index and the Rayleigh number. Four different modes 
of heat transfer have been identified: a pure conduction regime, a strong convec-
tion regime (with sufficiently large Rayleigh numbers), a convective regime with 
a horizontal boundary layer (crushed cavity) and a convective regime with a 
boundary layer vertical (slender cavity). The results showed that the Nusselt 
number depends on the Rayleigh number and the behavior index. Ching-Yang 
Cheng [11] studied the free convection heat transfer over a truncated cone em-
bedded in a porous medium saturated by a non-Newtonian power-law nanofluid 
with constant wall temperature and constant wall nanoparticle volume fraction. 
The effects of Brownian motion and thermophoresis are incorporated into the 
model for nanofluids. A coordinate transformation is performed, and the ob-
tained nonsimilar equations are solved by the cubic spline collocation method. 
The effects of the power-law index, Brownian motion parameter, thermophore-
sis parameter and buoyancy ratio on the temperature, nanoparticle volume frac-
tion and velocity profiles are discussed. The reduced Nusselt numbers are plot-
ted as functions of the power-law index, thermophoresis parameter, Brownian 
parameter, Lewis number, and buoyancy ratio. Results show that increasing the 
thermophoresis parameter or the Brownian parameter tends to decrease the re-
duced Nusselt number. Moreover, the reduced Nusselt number increases as the 
power-law index is increased.  

1.2. Double-Diffusive Convection of Non-Newtonian Fluids in  
Isotropic Porous Media 

Double-diffusive or thermosolutal natural convection is a fluid motion due to 
simultaneous variations of temperature and concentration in the gravity field. 
The work available on the phenomena of heat and mass transfer by natural con-
vection in porous media is recorded in the books of Bejan [12], Platten and Le-
gros [13] and Nield and Bejan [1]. According to the literature review of Redha et 
al., the problem of thermosolutal natural convection in enclosures filled with sa-
turated porous media had been the subject of numerous recent and past studies. 
The interest rose from the occurrence of the phenomenon in many engineering 
applications such as geothermal energy, diffusion of moisture in fibrous insula-
tions, food processing, drying processes, spread of pollutants in soil, solar ponds, 
crystal growth in fluids, and metal casting [14] [15] [16]. The enormous interest 
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in the double diffusive convection in the recent years has led researchers to an 
extensive study on this topic. The various aspects related to the heat and mass 
transfer have also been addressed in the extensive literature [17]-[28]. These re-
searchers considered that the porous medium is saturated by a Newtonian fluid. 
Little research takes into account a non-Newtonian fluid. Rastogi and Poulika-
kos [29] studied doubly diffusive convection on a vertical surface embedded in a 
porous medium saturated with a non-Newtonian fluid. Cases where the vertical 
surface is heated and salted according to a constant temperature and concentra-
tion distribution or by heat and mass fluxes have been considered. A scaling 
analysis identified several flow regimes related to the volume force ratio N and 
the Lewis number Le. A numerical solution made it possible to highlight the de-
pendence of the current, temperature and concentration function fields on the 
behavior index of the non-Newtonian fluid. Getachew et al. [30] considered the 
double diffusion within a rectangular porous cavity, saturated by a non-Newtonian 
fluid, and subjected to horizontal temperature and concentration gradients. A 
scaling analysis made it possible to highlight the variation of the Nusselt number 
and the Sherwood number with the control parameters, namely the behavior 
index n, the Rayleigh number R, the Lewis number Le and the ratio of volume 
forces N. The influence of the behavior index on the current function fields, 
temperature and concentration was also discussed. The numerical solution of 
the governing equations is in good agreement with the analytical model. It high-
lights the impact of the control parameters (n, R, Le and N) on the mean Nusselt 
and Sherwood numbers, as well as the influence of the fluid behavior index on 
the heat transfer rates and mass. Jumah and Mujumdar [31] considered free, 
doubly diffusive convection in the case of non-Newtonian viscoplastic fluids 
above a vertical plate embedded in a porous medium. Power law and the mod-
ified Darcy model were used. The influence of the control parameters (n, Le and 
N) on velocity, temperature and concentration profiles were discussed. The re-
sults showed that the threshold of free convection is a function of the shear of 
the fluid and consequently of the law which governs the behavior of the latter. 
Darcy model with the Boussinesq approximations is used by K. Benhadji and P. 
Vasseur [32], to study double-diffusive convection in a shallow porous cavity 
saturated with a non-Newtonian fluid. A power-law model is used to character-
ize the non-Newtonian fluid behaviour. The problem is solved analytically, in 
the limit of a thin layer, using a parallel flow approximation. Solutions for the 
flow fields, Nusselt and Sherwood numbers are obtained explicitly in terms of 
the governing parameters of the problem. A good agreement is obtained be-
tween the analytical prediction and a numerical solution of the full governing 
equations. 

1.3. Double-Diffusive Convection of Newtonian Fluids in  
Isotropic Porous Media 

According to the literature review of Redha et al. [33], Changhao and Payne [34] 
presented a mathematical study on the thermosolutal convection in a porous 
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medium where the Darcy model was employed. The authors established a con-
tinuous dependence of the flow solution on the Soret effect. Theoretical and 
numerical analysis of Soret-driven convection in a horizontal porous layer satu-
rated by an n-component mixture was investigated by Mutshler and Mojtabi 
[35]. In the first part, an analytical and numerical study of the onset of Soret 
driven convection was presented. The study was based on the classical Dar-
cy-Boussinesq equations, which admitted a mechanical solution associated with 
the pure double-diffusive regime. In the second part, the analytical solution for 
the unicellular flow was obtained, and the separation was expressed in terms of 
the Lewis number, the separation ratio, the cross-diffusion coefficient and the 
Rayleigh number. Benano-Molly et al. [36] investigated the effect of Soret coeffi-
cient within a rectangular porous medium saturated by a binary fluid mixture 
when the thermal and solutal buoyancy forces were opposing each other. It was 
shown that, when the solutal buoyancy force ratio was negligible, the theory 
represented well the solute behavior. Mansour et al. [37] studied the Soret effect 
on double diffusive convection and on heat and mass transfer rates in a square 
cavity. The heat transfer rate was found to be significantly affected by the Soret 
effect. Furthermore, Joly et al. [38] presented an analytical and numerical study 
of the influence of the Soret effect on the onset of convection in a vertical porous 
cavity saturated with a binary mixture. The vertical walls were subjected to uni-
form heat fluxes. The Brinkman extended Darcy model was used to solve the 
governing equations. The results indicated that the critical Rayleigh number de-
pended strongly upon of the control parameters such as the aspect ratio of the 
cavity, the Darcy and the Lewis numbers. Gaikwad et al. [39] made an analysis of 
thermosolutal convection in a horizontal anisotropic saturated porous layer with 
Soret effect. The heat and mass transfer rates increased with the anisotropy pa-
rameters and the Lewis number; in addition, the heat transfer increased with the 
negative Soret parameter while it decreased with the positive one. A reverse 
trend was found for the mass transfer rate. Malashetty et al. [40] presented a 
numerical investigation of thermosolutal convection in a porous layer saturated 
by a couple-stress fluid with Soret effect. Linear and weak nonlinear stability 
analyses were performed. The heat and mass transfer rates decreased with in-
creasing the Taylor number and the couple-stress parameter, while both in-
creased with increasing the solute Rayleigh number. The heat transfer rate de-
creased with increasing the Lewis number while the mass transfer rate increased 
significantly.  

1.4. Double-Diffusive Convection of Newtonian Fluids in an  
Anisotropic Porous Media 

There is little research done on double-diffusive convection through an aniso-
tropic porous media saturated by a Newtonian fluid. Thermohaline convection 
with cross-diffusion in an anisotropic porous medium was studied in 1989 by 
PRABHAMANI and PARVATHY [41], using normal mode technique. Their 
results shown that 1) values of the anisotropy parameter are important in decid-
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ing the mode of convection in a doubly diffusive fluid saturating a porous me-
dium, 2) depending on the values of the Soret and Dufour parameters, an in-
crease in anisotropy parameter either promotes or inhibits instability, 3) cross- 
diffusion induces instability even in a potentially stable set-up and 4) for certain 
values of the Dufour and Soret parameters there is a discontinuity in the critical 
thermal Rayleigh number, which disappears if the porous medium has horizon-
tal isotropy. Malashetty et al. [42] conducted a study on the onset of double dif-
fusive convection in a binary viscoelastic fluid saturated anisotropic porous layer 
They used The modified Darcy law for the viscoelastic fluid of the Oldroyd type 
to model the momentum equation. The effect of anisotropy parameters, Dar-
cy-Prandtl number, relaxation, and retardation parameters on the stability of the 
system is investigated. The nonlinear theory based on the truncated representa-
tion of Fourier series method is used to find the transient heat and mass transfer. 
The effect of various parameters on heat and mass transfer is also brought out. 
In 2011, Malashetty et al. [43] studied the onset of double diffusive convection in 
a binary viscoelastic fluid-saturated anisotropic rotating porous layer using a li-
near and a weakly non-linear stability analyses. The modified Darcy law for the 
viscoelastic fluid of the Oldroyd type is used to model the momentum equation. 
The onset criterion for stationary and oscillatory convection is derived analyti-
cally. The effect of anisotropy parameters, Vadasz number, relaxation and retar-
dation parameters on the stability of the system is investigated. It is found that 
contrary to their usual influence on the onset of convection in the absence of ro-
tation, the thermal anisotropy parameter and Vadasz number show contrasting 
effect on the onset criterion. Abdelraheem and Mitsuteru [44] studied double- 
diffusive natural convection with cross-diffusion effects in an anisotropic porous 
enclosure using Incompressibe Smoothed Particle Hydrodynamics (ISPH) me-
thod. Their results show that an increase of the permeability ratio parameter 
leads to decrease in the both of heat conduction and flow regime. As the Soret 
number increases with decreasing the value of Dufour number, the average 
Nusselt number increases. While, the average Sherwood number decreases as the 
Soret number increases with decreasing the Dufour number. Ajay and Kanchan 
[45], conduced, in 2018, a study on double diffusive convection in a couple stress 
fluid saturated rotating anisotropic porous layer with internal heating and soret 
effect. The problem has been solved analytically, performing linear and nonli-
near analyses. The linear analysis is done using normal mode technique. Results 
show that the Taylor number Ta, Couple stress fluid C, solute Rayleigh number 
RaS and thermal anisotropic parameter has a stabilizing effect on both stationary 
and oscillatory modes of convection. A numerical study of double-diffusive 
convection in the anisotropic porous layer under rotational modulation with in-
ternal heat generation was conducted by Samah et al. [46] using the normal 
mode technique. The effects of time varying rotation, internal heat generation, 
anisotropy parameters, concentration Rayleigh, Vadasz, and Lewis numbers on 
the heat and mass transfer are shown graphically. Modulation amplitude and in-
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ternal heating have been found to enhance the rate of heat mass transfer hence 
advancing the onset of thermal convection in the system. Gangadharaiah et al. 
[47] conducted a study on Darcy-Brinkman Double Diffusive Convection in an 
Anisotropic Porous Layer with Gravity Fluctuation and Throughflow. The criti-
cal Rayleigh numbers for the onset of stationary and oscillatory modes have been 
found via linear instability analysis. The impact of various gravitational func-
tions in the presence of throughflow on stability is studied. The analysis has been 
carried out for decreasing and increasing gravity fluctuations. The results show 
that the mechanical anisotropy parameter and Lewis number have a destabiliz-
ing effect, while the thermal anisotropy parameter, Darcy number, solutal Ray-
leigh number, throughflow parameter, and gravity parameter have a stabilizing 
effect on stationary and oscillatory convection. 

1.5. Double-Diffusive Convection of Non-Newtonian Fluids in an  
Anisotropic Porous Media 

Works that have addressed the study of double-diffusive convection through 
anisotropic porous media saturated with non-Newtonian fluid are very rare. 
Yovogan J. et al. [48] conducted an analytical study on double-diffusive natural 
convection in a shallow porous cavity saturated with a non-Newtonian fluid by 
using the Darcy model with the Boussinesq approximations. Based on parallel 
flow approximation theory, the problem is solved analytically, in the limit of a 
thin layer and documented the effects of the physical parameters describing this 
investigation. Solutions for the flow fields, Nusselt and Sherwood numbers are 
obtained explicitly in terms of the governing parameters of the problem. The 
results obtained show that The Sherwood number for mass transfer is an in-
creasing function of the Rayleigh number. The heat transfer increases (or de-
creases) when the permeability in the vertical direction is smaller (or higher) 
than the permeability in the horizontal direction. The characteristic parameter of 
the mass transfer (Sh) is minimal (or maximal) when the main axis having the 
most elevated permeability of the porous layer is perpendicular (or parallel) to 
the gravity. 

1.6. Present Work 

Taking into account the literature review which had just been carried out, we can 
note that no study has yet been done on double-diffusive convection through a 
horizontal anisotropic porous medium saturated by a non-Newtonian fluid with 
the contribution of the Soret effect. 

From a physical perspective, convective motions in a porous layer have two 
main effects. First, they tend to homogenize the entire volume of the fluid in 
which they arise. Second, they produce a non-uniform in situ temperature 
distribution characterized by hot zones and cold zones. Double-diffusive 
convection in aquifers must be taken into account in the following real situa-
tions: 
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- The contribution of “homogenizing effects” of these convective flows to the 
diffusion of a contaminant. Indeed, from a local source of pollution in the 
aquifer, the effects of dispersion due to the average flow velocity and convec-
tion due to the geothermal gradient tend to disperse the polluting agent (na-
noparticle of used oils, chemicals, harmful waste…, infiltrated into the water 
table) through the entire porous layer. In this case, the fluid consisting of 
water and nanoparticles can be considered as a non-Newtonian fluid; 

- The complex dykes made in the fissured zones of the volcanic formations can 
generate thermal sources for the heating of the water table of the aquifer me-
dium. When the dyke is adjacent to an almost horizontal rocky drop serving 
as a channel for the flow of the water table, the physical problem in this situ-
ation is comparable to forced or mixed convection on a horizontal plate in a 
saturated porous medium. 

Our objective is to study how the double-diffusive convection in the aquifer is 
affected by the Soret effect, the behavior index and the anisotropy parameters, 
and also to know their effect on heat and mass transfers. 

2. Mathematical Formulation and Solution 

Figure 1 shows the problem under consideration. It consists of a two-dimensional 
horizontal porous layer of height H and width L. The generated out-flow is la-
minaire. The transfer of heat by radiance is negligible. The fluid is binary, 
non-newtonian and incompressible. A Cartesian coordinate system is chosen 
with the x- and y-axes at the geometrical center of the cavity and the y’-axis ver-
tically upward. The top and bottom horizontal boundaries are subject to con-
stant heat (q) and mass (j) fluxes. The porous medium is anisotropic, the per-
meabilities along the two principal axes of the porous matrix are denoted by K1 
and K2. The anisotropy of the porous layer is characterized by the permeability 
ratio K* = K1/K2 and the orientation angle φ, defined as the angle between the  
 

 

Figure 1. Physical model and coordinate system. 
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horizontal direction and the principal axis with the permeability K2. The dimen-
sionless equations describing conservation of momentum, energy and concen-
tration are given respectively by: 

( )d da
dy d

n

Ra T NS
y x
ψ  ∂

= − +  ∂ 
,                    (1) 

2d
d

T T
y x
ψ ∂

= ∇
∂

,                           (2) 

( )2d
d

SLe S SrT
y x
ψ ∂

= ∇ −
∂

.                      (3) 

where ( ) ( )3
0 1

nRa gK THρ εα= ∆  is the modified thermal Rayleigh number, 
( ) ( )s TN S Tβ β= ∆ ∆  the buoyancy ratio, T SLe α α=  the Lewis number  
( ) ( )ST SSr D T Sα= ∆ ∆ , the Soret number, STD  the Soret diffusion coefficient, 

* 2 2cos sina K ϕ ϕ= + , d dyψ  the dimensionless horizontal velocity distribu-
tion, T the dimensionless temperature distribution, S the dimensionless concen-
tration distribution and ψ  the stream function. 

The dimensionless boundary conditions for the Darcy model are given by: 

0, 0, 0,
2
A S Tx

x x
ψ ∂ ∂

± = = =
∂ ∂

                      (4) 

1 0, 1, 1.
2

S Ty Sr
y y

ψ ∂ ∂
= ± = = − = −

∂ ∂
                   (5) 

where A L H= . The system is then governed by the following parameters: the 
Soret number (Sr), the modified thermal Rayleigh number (Ra), the buoyancy 
ratio (N), the Lewis number (Le), the anisotropic permeability ratio (K*), the 
orientation angle (φ) and the power-law index (n). 

In large aspect ratios ( 1A ), the present problem can be significantly simpli-
fied by the approximation of the parallel flow in which v = 0 and u(x, y) = u(y), 
in the central part of the enclosure. Such an approximation follows from the fact 
that, for a shallow cavity, the flow in the core of the enclosure is approximately 
parallel to the horizontal boundaries. The temperature and the concentration 
field, in the central part, can be divided into the sum of a linear dependence on x 
and an unknown function of y. Thus, it is assumed that 

( ) ( ),x y yψ ψ=                           (6) 

( ) ( ), T TT x y C x yθ⋅= +                       (7) 

( ) ( ), S SS x y C x yθ⋅= +                       (8) 

The solutions of Equations (1)-(3) satisfying the boundary conditions, Equa-
tions (4) and (5), are given by: 

( ) ( )
11

0
nnnu y yψ= −                          (9) 

( ) ( )
1

120
11

,
1 2 11 2

nT n
n T

n

C n yT x y C x y y
n

n

ψ +

+

 
 = − − −
 ++  

⋅          (10) 
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( ) ( )( ) ( )
1

120
11

, 1
1 2 11 2

nS T n
n S

n

LeC SrC n yS x y C x y Sr y
n

n

ψ +

+

 −  = − − +⋅ −
 ++  

 (11) 

In Equations (9)-(11) the expression of 0ψ  is given by: 

( )
( ) ( )0 2 * 2sin cos

T SRa C NC
K

ψ
ϕ ϕ

+
=

+
                    (12) 

The expressions of CT and CS can be deduced by integration of the following 
Equations (13) and (14), together with the boundary conditions (4) and (5), by 
considering the arbitrary control volume of Figure 1 and connecting with the 
region of the parallel flow (Makayssi [49]). This yields: 

( )1 2

01 2
dn n Tx

U T y C
=−

= −∫                      (13) 

( ) ( )1 2

01 2
dn n S Tx

Le U S y C SrC
=−

= − +∫                  (14) 

Substituting the temperature, concentration and velocity profiles into Equa-
tions (13) and (14) and after performing the integration, it is readily found that 
the constant gradients of temperature and concentration along the x-direction, 
CT and CS, are respectively expressed by: 

( ) ( )

( )( ) ( )

1 3
2

2 0 1 2 0
2 4

2 2 2
1 0 1 01 1

n n

T
n n

a a a Le
C

a Le a Le

ψ ψ

ψ ψ

+
=

+ + −
               (15) 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 3 4 5 6

0 0 1 0 2 0 3 0 4 0
2 4 6

2 3
5 0 6 0 2 1 01

n n n n n

S
n n n

b b b b b
C

b b a a Le

ψ ψ ψ ψ ψ

ψ ψ ψ

+ + − +
=

+ + −
        (16) 

Substituting the expressions of CT and CS, into the expression of 0ψ , Equa-
tion (12), the following polynomial equation is obtained: 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

10 8 6 4 2

11 0 10 0 9 0 8 0 7 0

10 9 8 7

5 0 4 0 20 0 3 0

6 5 4

18 0 2 0 2 0

3 1

1 0 0 0 0 0

n n n n n

n n n n
n n n n

n n n
n n n

n n
n n n

ab ab ab ab ab

Ra Ra RaNb Ra

RaNb Ra RaNb

Ra Ra a f

ψ ψ ψ ψ ψ

ω ψ ω ψ ψ ω ψ

ψ ω ψ ψ

ω ψ ω ψ ψ

− − − −

− − −

− −

− + − − −

− + + +

+ + +

+ + − = =

    (17) 

The constants ( )1,2i ia = , ( )1, ,20i ib = 

 and ( )0, ,5i iω = 

 which depend on Sr, Ra, K*, 
φ, n and Le are given by the following expressions: 

( )( )

2 22 22

1

1 12

2

1 1
1 2 1 3 2 2 2 1 2

1 1 1
2 1 2 2 2

n n

n n

n n na
n n n n

na
n

+ +  
     = −     + + + +   

  


         = − −      +      
 

          (18) 
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( )
( )( )

( )

( )
( )

( )
( )

( )

0 2 2

2 2
1 1 2 1 2

2 1 2
2 3

3 2 1

2 3
4 2 1

2 2
5 2 1

2 2 2 2
6 1 2 1

2
7 5 1

2 2 2
8 6 5 1 1

2 2 3 2 2
9 6 1 2 1 5 1
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1 ,

1 1 ,

,

1 ,

,

1 ,

1 ,

1 ,

1 ,

1 ,

b Lea Sr a Sr

b Lea a Sr Le a a SrLe

b Lea a Sr

b a a Le Sr

b Sra a Le

b a Le a Le

b a a Le Le a Le

b b a Le

b b b a Le a Le

b b a Le a a Le b a Le

b

= − −

= − + −

=

= −

=

= + +

= + −

= + +

= + + −

= + − −

= ( )

( )
( )

( )
( )

2 2 3 3 2
6 1 2 1

4 5
11 2 1

2
12 2 1 5 2

2
13 5 1 2 6 2

2 2 2 3
14 6 1 2 1 2

3 2 5
15 1 2

2
16 1 0 1

2 2
17 1 1 3 0 1

2
18 4 2 1

2 2
19 3 1 1 1

20 4 1

1 ,

,

,

,

1 ,

1 ,

1

,

,

1 ,

1

b a Le a a Le Le

b a a Le

b a a Le b a

b b a a Le b a

b b a a Le a a Le

b a a Le

b b b a Le

b b a Le b b a Le

b b b a Le

b b a Le b a Le

b b a

+ +

=

= +

= +

= −

=

= + +

= + − −

= + +

= + +

= +( )2 2
2 1 .Le b a Le








































 −

                (19) 

0 2 0

1 12 16

2 13 17

3 14 19
2

4 3 1 15
2

5 4 1

a Nb
b Nb
b Nb
b Nb

Nb a Le b

Nb a Le

ω
ω
ω
ω

ω

ω

= +
 = +
 = +
 = −
 = −

 =

                         (20) 

3. Onset of Supercritical Convection When n = 1  
(Newtonian Fluid) 

Equation (17), for n = 1, can be written as follows: 

( ) ( ) ( )( ) ( )
( )( ) ( ) ( )( ) ( )
( )( ) ( )

10 9 8 7
11 0 5 0 10 4 0 20 0

6 5 4 3
3 9 0 18 0 2 8 0 2 0

2
1 7 0 0 1 0

ab Ra ab Ra RaNb

Ra ab RaNb Ra ab RaNb

Ra ab Ra a f

ψ ω ψ ω ψ ψ

ω ψ ψ ω ψ ψ

ω ψ ω ψ

− − + + +

+ − + + − +

+ − + − =

 (21) 

The onset of supercritical convection is obtained while taking 0 0ψ =  in Eq-
uation (21). The supercritical Rayleigh number sup

cRa  takes the following form: 
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( )1 1
sup c
c

Ra
Ra

LeN Sr NSr
=

+ − −



                   (22) 

where 12cRa a=


. 

4. Average Nusselt and Sherwood Numbers 

The average Nusselt ( Nu ) and Sherwood ( Sh ) number can be obtained as follows: 

( ) ( )

( ) ( ) ( ) ( )

2

2

2

2

1 d
, 0.5 , 0.5

1 d
, 0.5 , 0.5 , 0.5 , 0.5

A

A

A

A

xNu
A T x T x

xSh
A S x S x Sr T x T x

+

−

+

−


= − − + 


= − − + + − − +       

∫

∫
   (23) 

We obtain then: 

( )

( )

1

0

1

0

1

1
1

1

nT

nS

Nu
C

Sh
LeC

α ψ

α ψ

= 
+ 


=


+ 

                      (24) 

where: 
1 1 12 2 21 1 12

1 2 1 2 2 2
n n nn n

n n
α

+ + +  
       = − − −       + +         

          (25) 

5. Results and Discussion 
5.1. Isotropic Porous Cavity Saturated by a Newtonian Fluid 

The solutions, Equations (9)-(11), when n = 1 is given by: 

( )

( )

( ) ( ) ( )

( )

0

2
0

2
0

0

,

1, ,
2 3 4

1, 1 ,
2 3 4

T
T

S T
S

T S

u y y

C yT x y C x y y

LeC SrC yS x y C x y Sr y

Ra C NC

ψ

ψ

ψ

ψ

= − 


  = − − −  
  


−   = − − + −    

= + 

⋅

⋅

      (26) 

which are in agreement with those reported by Amari et al. [9], Mamou et al. 
[50], Kalla et al. [51] and Yovogan et al. [48] for Sr = 0 and K* = 1. 

5.2. Comparison of ψ0 and Supercritical Rayleigh Number with  
Other Results Reported in the Past  

The supercritical Rayleigh number (Equation (22)), for an isotropic porous cav-
ity saturated by a Newtonian fluid, is similar to results obtained by Attia et al. 
[55], Redha et al. [33] for Ha = 0, Du = 0 (Table 1 & Table 2). 

Otherwise, when N = 0, the supercritical Rayleigh number (Equation (22) is 
agreement with the result (Rac = 12a) obtained in the past by Nield [56], Vasseur 
et al. [57] and Degan et al. [54]. 
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5.3. Effect of Physical Parameters on the Onset of Convection  
When n = 1 

The effects of the anisotropic permeability, K*, on the critical Rayleigh number 
are presented in Figure 2, when φ = 45˚, N = 0.5, Le = 2, and n = 1. By consi-
dering cooperating convection (N > 0) and compared to the situation for which 
K* = 1, results show that: 
● For Sr ≤ −0.9, the supercritical Rayleigh number for the onset of convection 

decreases with an increase of Soret number when K1 > K2 (K* = 2) and in-
creases with an increase of Soret number when K2 > K1 (K* = 0.1). 

● For Sr > −0.9 the supercritical Rayleigh number for the onset of convection 
increases with an increase of Soret number and with an increase of the aniso-
tropic permeability K*. 

Considering opposite convection, for which N < 0 (N = −0.5), the results pre-
sented in Figure 3 (when φ = 45˚, Le = 2, and n = 1) indicate that the effect of  

 
Table 1. Comparison of ψ0 with previous studies. 

Ra = 100, n = 1, Le = 10, 
N = −0.24, Sr = 0 

Present study 
K* = 0.1 

Mamou et al. [52] 
K* = 1 

Present study 
K* = 1.2 

ψ0 3.4336 3.685 3.9888 

 
Table 2. Comparison of sup

cRa  with previous studies. 

N = 0 
Present study 

K* = 0.1 
Alloui et al. [53], Degan 

et al. [54]. K* = 1 
Present study 

K* = 1.2 
sup
cRa  1.2 12 14.4 

 

 

Figure 2. Effects of various values of K*, on the supercritical Rayleigh number for the onset of the convection as functions of 
Soret when φ = 45˚, N = 0.5, Le = 2 and n = 1. 
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anisotropy in permeability is only noticeable for values of the Soret number such 
that −0.1 < Sr < 0.1. For this value interval and compared with the isotropic situ-
ation, the supercritical Rayleigh number (for negative values of Soret number) 
increases and is maximum when Sr = 0 and decreases with an increase of Soret 
number. 

The influence of the anisotropic angle, φ, on the supercritical Rayleigh num-
ber are presented in Figure 4 (N = 0.5, cooperating convection) and Figure 5 (N 
= −0.5, opposite convection), when K* = 0.1, Le = 2, and n = 1. It observed in 

 

 

Figure 3. Effects of various values of Soret number, on the supercritical Rayleigh number for the onset of the 
convection when φ = 45˚, N = −0.5, Le = 2, n = 1 and various values of K*. 

 

 

Figure 4. Effects of various values of φ, on the supercritical Rayleigh number for the onset of the convection as 
functions of Soret number when K* = 0.1, N = 0.5, Le = 2 and n = 1. 
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Figure 4 that the supercritical Rayleigh number increases with an increase of 
Soret number and anisotropic angle. The results observed in Figure 5 are similar 
to those obtained in Figure 3. 

The results obtained in Figure 6, show that for Sr > 1 the supercritical Rayleigh 
number takes negative values. However for Sr < 1, it takes positive values and is 
maximum (minimal) when φ = 90˚ (φ = 0˚). 

The effects of Soret number on the profiles of the velocity, temperature and 
concentration distribution are presented respectively in Figures 7-9 when φ = 0˚,  

 

 

Figure 5. Effects of various values of φ, on the supercritical Rayleigh number for the onset of the convection as 
functions of Soret number when K* = 0.1, N = −0.5, Le = 2 and n = 1. 

 

 

Figure 6. Effects of various values of Soret number, on the supercritical Rayleigh number for the onset of the 
convection as functions of φ, when K* = 0.1, N = 0.5, Le = 2 and n = 1. 
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Figure 7. Effects of various values of Soret number, on the horizontal velocity distribution when φ = 0˚, K* = 0.1, N = 0.5, 
Le = 2, Ra = 150 and n = 1.5. 

 

 

Figure 8. Effects of various values of Soret number, on the temperature distribution when φ = 0˚, K* = 0.1, N = 0.5, Le = 2, 
Ra = 150 and n = 1.5. 

https://doi.org/10.4236/eng.2023.1512059


D. Kouke, J. Yovogan 
 

 

DOI: 10.4236/eng.2023.1512059 859 Engineering 
 

 

Figure 9. Effects of various values of Soret number, on the concentration distribution when φ = 0˚, K* = 0.1, N = 0.5, Le = 2, Ra = 
150 and n = 1.5. 

 
K* = 0.1, Le = 2, Ra = 150, n = 1 and N = 0.5 (cooperating convection). It is 
noted that whatever the value of y ≠ 0, the velocity, temperature and concentra-
tion distribution increase with an increase of Soret number. Moreover the veloc-
ity and temperature distribution are decreasing functions of y while the concen-
tration is an increasing function of y. 

In Figure 10 and Figure 11, the effects of the Rayleigh number on the veloci-
ty, temperature and concentration distribution are reported for the fixed values 
of the following physical parameters, φ = 0˚, K* = 0.1, Le = 2, Sr = 2, n = 1 and N 
= 0.5 (cooperating convection). We notice that an increase in Rayleigh number 
tends to reduce the velocity and temperature of the convective flow, while the 
same increase in Rayleigh number tends to increase the concentration distribu-
tion whatever the value of y. 

The resolution of the Equation (17) shows that no convection is possible when 
the porous cavity is saturated by a pseudo plastic fluid (n < 1). The onset of con-
vection is only possible when n ≥ 1 (Newtonians fluids and dilatants fluids).  

Table 3 indicates that for the dilatants fluids, the flow intensity (ψ0) increases 
with an increase of the behavior index (n) and for given values of the physical 
parameters. In Table 4, we can observe that the flow intensity (ψ0) decreases 
with an increase of the Rayleigh number (Ra) and the effects are the same for 
both a Newtonian fluid and for the dilatants fluids. In Table 5, it should be 
noted that for the dilatants fluids and whatever the value of the Soret number, 
the average Nussekt (Sherwood) number decreases (increases) with the increase 
of the behavior index. 
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Figure 10. Effects of various values of Rayleigh number, on the horizontal velocity distribution when φ = 0˚, K* = 0.1, N = 
0.5, Le = 2, Sr = 2 and n = 1.5. 

 

 

Figure 11. Effects of various values of Rayleigh number, on the temperature and concentration distribution when φ = 0˚, K* 
= 0.1, N = 0.5, Le = 2, Sr = 2 and n = 1.5. 
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Table 3. Effect of behavior index on the stream function value at the center of the cavity. 

Ra φ K* Sr N Le n Ѱ0 Fluid type 

150 0˚ 0.1 2.0 0.5 2 1.0 7.2982 Newtonian fluid 

150 0˚ 0.1 2.0 0.5 2 2 3.1931 

Dilatant fluid 

150 0˚ 0.1 2.0 0.5 2 4 3.5504 

150 0˚ 0.1 2.0 0.5 2 6 3.8765 

150 0˚ 0.1 2.0 0.5 2 8 4.2113 

150 0˚ 0.1 2.0 0.5 2 9 4.3853 

150 0˚ 0.1 2.0 0.5 2 10 4.5647 

150 0˚ 0.1 2.0 0.5 2 20 6.7353 

150 0˚ 0.1 2.0 0.5 2 30 9.7801 

150 0˚ 0.1 2.0 0.5 2 40 13.9283 

150 0˚ 0.1 2.0 0.5 2 50 19.3218 

 
Table 4. Effect of Rayleigh number on the stream function value at the center of the cavity. 

Ra φ K* Sr N Le n Ѱ0 

Newtonian fluid 

150 0˚ 0.1 2.0 0.5 2 1.0 7.2982 

200 0˚ 0.1 2.0 0.5 2 1.0 7.2980 

400 0˚ 0.1 2.0 0.5 2 1.0 7.2975 

600 0˚ 0.1 2.0 0.5 2 1.0 7.2974 

800 0˚ 0.1 2.0 0.5 2 1.0 7.2973 

Dilatants fluid 

150 0˚ 0.1 2.0 0.5 2 1.5 7.2982 

200 0˚ 0.1 2.0 0.5 2 1.5 7.2980 

400 0˚ 0.1 2.0 0.5 2 1.5 7.2975 

600 0˚ 0.1 2.0 0.5 2 1.5 7.2974 

800 0˚ 0.1 2.0 0.5 2 1.5 7.2973 

 
Table 5. Effect of Soret number and the behavior index on the average Nusselt and 
Sherwood numbers. 

Ra φ K* Sr N Le n Sh  Nu  Fluid type 

150 0˚ 0.1 1.0 0.5 2 2 0.9545 1.2910 

D
ilatant fluid 

150 0˚ 0.1 1.0 0.5 2 4 0.9647 1.1439 

150 0˚ 0.1 1.0 0.5 2 6 0.9731 1.0899 

150 0˚ 0.1 2.0 0.5 2 2 0.8884 1.1708 

150 0˚ 0.1 2.0 0.5 2 4 0.9042 1.1043 

150 0˚ 0.1 2.0 0.5 2 6 0.9214 1.0752 

150 0˚ 0.1 5.0 0.5 2 2 0.5074 1.5214 

150 0˚ 0.1 5.0 0.5 2 4 0.5530 1.2890 

150 0˚ 0.1 5.0 0.5 2 6 0.5782 1.2297 
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6. Conclusions  

In this study, an analytical investigation is carried out on the effects of physical 
parameters (such as the Soret number (Sr), the anisotropy angle φ, the aniso-
tropic permeability K*, the Rayleigh number, the behavior index) on the thermal 
and mass flows through a rectangular porous cavity saturated by a non-Newtonian 
fluid. It emerges from this study that; 

1) No onset of convection is observed when n < 1 (pseudo plastic fluid); 
2) The supercritical Rayleigh number, for cooperating convection, increases 

with an increase of Soret number and anisotropic angle; 
3) The velocity, temperature and concentration distribution increase with an 

increase of Soret number; 
4) For the dilatants fluids and whatever the value of the Soret number, the av-

erage Nussekt (Sherwood) number decreases (increases) with the increase of the 
behavior index. 
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