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Abstract 
Bundle adjustment is a camera and point refinement technique in a 3D scene 
reconstruction pipeline. The camera parameters and the 3D points are refined 
by minimizing the difference between computed projection and observed 
projection of the image points formulated as a non-linear least-square prob-
lem. Levenberg-Marquardt method is used to solve the non-linear least-square 
problem. Solving the non-linear least-square problem is computationally ex-
pensive, proportional to the number of cameras, points, and projections. In 
this paper, we implement the Bundle Adjustment (BA) algorithm and analyze 
techniques to improve algorithmic performance by reducing the mean square 
error. We investigate using an additional radial distortion camera parameter 
in the BA algorithm and demonstrate better convergence of the mean square 
error. We also demonstrate the use of explicitly computed analytical deriva-
tives. In addition, we implement the BA algorithm on GPUs using the CUDA 
parallel programming model to reduce the computational time burden of the 
BA algorithm. CUDA Streams, atomic operations, and cuBLAS library in the 
CUDA programming model are proposed, implemented, and demonstrated 
to improve the performance of the BA algorithm. Our implementation has 
demonstrated better convergence of the BA algorithm and achieved a spee-
dup of up to 16× on the use of the BA algorithm on various datasets. 
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1. Introduction 

Image-based three-dimensional (3D) scene reconstruction is an important com-
ponent of Computer Vision. The image-based 3D scene reconstruction aims to 
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recreate a 3D geometric scene using the scene’s two-dimensional (2D) images. 
The 3D scene reconstruction systems are prominent in the film industry, gam-
ing, city and street modeling, and augmented reality to obtain 3D geometric prop-
erties of the scene. The reconstruction systems are also used in various fields like 
medical imaging [1] to reconstruct human body anatomy and geosciences [2] to 
generate 3D models of objects of geological interest. 

A general 3D scene reconstruction pipeline involves multiple stages such as 
feature extraction [3], feature matching [4], camera parameters and 3D points 
initialization [5], camera parameters and 3D points refinement [6], and dense 
reconstruction. Precise information about camera parameters and 3D points is 
vital for accurate calibration and 3D reconstruction. They provide information 
about the orientation, measurements of the objects in the scene, and the position 
and depth of the various objects. As a result, refining camera parameters and 3D 
points plays an important role in the 3D scene reconstruction. 

In this paper, we work on the refinement stage by implementing the Bundle 
Adjustment (BA) algorithm. The BA algorithm is used to refine the camera pa-
rameters and/or the 3D points by minimizing the reprojection error formulated 
as the summation of the differences between the computed reprojection and the 
observed projection. The total number of camera parameters and 3D points in-
volved in the BA algorithm depends on the number of cameras generating an 
image each, the number of camera parameters being refined, the number of 3D 
points, and their projections across all the images. The computational load in the 
BA algorithm is proportional to the number of images, the total number of 
camera parameters, the number of 3D points, and their projections across the 
images. In this paper, we implement the BA algorithm on datasets [7] available 
online. The algorithm performance is optimized by improving the algorithm’s 
convergence by minimizing the reprojection error and reducing the total com-
putational time. 

BA algorithm involves minimization of the reprojection error and can be 
represented as a non-linear least-squares problem linearized by approximation 
of the reprojection error function to a first-order Taylor polynomial expansion. 
The minimization of the reprojection error can be achieved by solving the sys-
tem of Linear equations using methods like Gauss-Newton [8], Gradient Des-
cent [9], and Levenberg-Marquardt (LM) [10] [11]. The LM method, a combina-
tion of Gauss-Newton and Gradient Descent, is used prevalently since it con-
verges better than using only Gauss-Newton or Gradient Descent. Using Cho-
lesky factorization, the linear system can be solved to obtain exact solutions 
leading to the exact-step LM method [6]. Even though the system of linear equa-
tions is symmetric positive definite (SPD), the computational burden increases 
polynomial with the number of images, points, and projections. Since an exact 
solution of the linear system is not required for 3D scene reconstruction, the li-
near system can be solved using the iterative LM method known as the in-
exact-step LM method. The inexact-step LM method [7] computes approximate 
solutions using an iterative solver, such as Conjugate Gradient (CG) or precon-
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ditioned Conjugate Gradient (PCG) methods. Many researchers [6] [7] have 
demonstrated that the exact-step LM method is ideal for smaller datasets, and 
the inexact-step LM method is ideal for larger datasets. 

In this paper, we implement the BA algorithm and evaluate techniques to im-
prove the algorithm’s performance by improving the convergence of the repro-
jection error. Camera parameters like rotation vector, translation vector, focal 
length, radial distortion, and 3D points are widely used in camera calibration. In 
addition, researchers in the state-of-the-art PBA [12] implementation have em-
ployed the first radial distortion coefficient, whereas implementation in [13] has 
used both the first and second radial distortion coefficient. Adding a second 
radial distortion coefficient would increase the total number of computations. In 
this paper, we evaluate using the second radial distortion coefficient to minimize 
the reprojection error and analyze the tradeoff between improving the reprojec-
tion error and increasing the computational load. 

In addition to using the second radial distortion coefficient, we evaluate the 
effect of explicit analytical derivatives [14] by manually computing the Jacobian. 
Explicitly computing the Jacobian and using additional radial distortion coeffi-
cient increases the total number of computations in the BA algorithm. The in-
crease in computational cost can be addressed by implementing the input/output 
operations on central processing units (CPUs) and concurrent sections of the 
code on graphics processing units (GPUs) using different performance optimi-
zation techniques. 

CPUs and GPUs are two different types of processors that are widely used for 
computational purposes. The basic building blocks of both the processors con-
tain similar components like cores and memory but vary in the numerical and 
functional configuration of these components. Generally, CPUs contain a small-
er number of cores compared to GPUs with a higher clock rate thereby execut-
ing instructions faster compared to GPUs. Whereas GPUs with a higher number 
of cores can execute more instructions concurrently thereby resulting in higher 
throughput. The pipelining in the CPUs is more complex resulting in better ex-
ecution of input/output, branching and logical operations compared to GPU 
cores which mainly target simple mathematical operations. In addition, the cur-
rent CPUs have higher memory size compared to GPUs, whereas GPUs contain 
higher memory bandwidth compared to CPUs. 

Recent advances in the computational capabilities of CPUs and GPUs have 
made them feasible for high-performance computations. The complex circuitry 
in CPUs, limited cores, and higher clock rates make them suitable for branching 
and input/output operations computations. The lightweight nature of the com-
putational cores in huge numbers on GPUs makes them ideal for large-scale 
concurrent computations. In recent years, the CPU and GPU hardware have 
improved significantly in terms of resources on the chips, their performance, 
and efficiency. In addition to the improvements in the hardware, the software 
aspects, like the compilers and libraries used to exploit the parallelism in the 
computational methods on the respective hardware, have also improved signifi-
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cantly. These improvements in hardware and software can address the computa-
tional limitations of the current BA algorithm implementations. In this paper, 
we demonstrate the use of GPUs and their features to address the increasing 
computational cost from the proposed additional radial distortion coefficient 
and explicit analytical derivatives. This is achieved by executing the compute- 
intensive concurrent operations on GPU and input/output, logical and branch-
ing operations on CPU. 

The rest of the paper is organized as follows. Section 2 talks about various im-
plementations of the BA algorithm. Section 3 provides information about the BA 
algorithm, LM method, and their mathematical representation. Section 4 talks 
about the Jacobian computation in PBA, which uses explicit analytical deriva-
tives, and provides information about the additional radial distortion parameters 
used in this paper. In addition, Section 4 also provides information about the 
CUDA implementation of the BA algorithm. Section 5 provides information 
about the datasets and the performance parameters used in the paper. Section 6 
demonstrates the results and provides information about the performance of the 
implemented sequential and CUDA versions of the BA algorithm. Finally, the 
paper concludes by reiterating the purpose for improved accuracy and computa-
tion cost of the algorithm, summarizes the findings and puts forward the scope 
of future work in the conclusion and future work section. 

2. Literature Review 

Refinement of camera parameters and 3D points in [15] has taken an incremen-
tal approach by adding information from one image at a time to the BA algo-
rithm. This incremental approach has resulted in a significantly higher compu-
tational time. Efforts in [5] involve the use of the exact-step or inexact-step LM 
method based on the problem size, unlike [15], which used an incremental ap-
proach, a minimal subset of images that capture the dense connectivity [16], and 
the geometry of the scene are used to solve the BA algorithm. 

The implementation in [6], which involves Cholesky decomposition and 
Schur complement, has proven to be accurate for solving linear systems using 
the LM method. With the increase in number of cameras and points, the sparsity 
has increased significantly in the linear systems, and the Schur complement with 
Cholesky decomposition is found to be computationally expensive. On the other 
hand, using the inexact-step LM method with the PCG method [7] [17] is ap-
propriate for problems with a larger number of images. The convergence rate of 
the PCG method is dependent on the preconditioners used. Different precondi-
tioners are studied [7] [17] [18] for the bundle adjustment problem. 

BAL implementation [7] has compared the performance of the exact-step LM 
method with the inexact-step LM method using Jacobi, block Jacobi, and SSOR 
preconditioners. Multiscale preconditioning [18] was also proposed, improving 
the PCG method’s convergence rate. In addition, researchers [19] have also im-
plemented PCG methods for large-scale BA using a reduced camera system. The 
linear system is decomposed into blocks, and variable ordering is analyzed in 
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this work. They have compared the LDL factorization and PCG method perfor-
mance with preconditioners confined to Jacobi and SSOR preconditioner. Ceres 
Solver [20], a C++ library to solve non-linear Least Squares problems, and 
Sparse Bundle Adjustment (SBA) [6] library is developed to compute the BA al-
gorithm. Both these libraries take advantage of the sparse structure in the BA 
problems by implementing Block Compressed Sparse Row (BCSR) and Com-
pressed Sparse Row (CSR) formats. Ceres Solver provides an analytic, numeric, 
and automatic derivatives interface. 

Irrespective of the preconditioner used in the PCG method, sparse ma-
trix–vector multiplication is one of the computationally expensive mathematical 
operations in the PCG method. The PBA implementation has tabulated the per-
centage of time spent on different operations. The time taken for matrix-vector 
multiplications is more than 80% of the time in the LM method. As a result, 
sparse matrix-vector multiplications play a significant role in the computational 
load of the PCG method. 

A few efforts [12] [13] [21] were also made to implement the BA algorithm on 
many-core GPUs. Researchers [21] have developed a GPU version of the ex-
act-step LM method using Compressed Column Storage (CCS). The computa-
tionally intensive linear systems are solved using the MAGMA library [22]. A 
GPU version of the inexact-step LM method using a block Jacobi preconditioner 
is developed in Parallel Bundle Adjustment (PBA) [12]. In the PBA implementa-
tion, only eight camera parameters are refined, consisting of three rotational 
elements, three translational elements, one focal length, and one radial distortion 
parameter. The BCSR format stores the sparse matrix, and the implementation 
has shown a significant performance boost compared to single-core execution. 
In this implementation, the augmented matrix is not computed; the Jacobian 
matrix is used directly in the computations. Researchers have utilized the 
cross-product between the partial derivatives of the 2D image vector with re-
spect to the 3D point and partial derivatives of the 3D point with respect to 
axis-angle representation to compute the partial derivatives of the projection 
function with respect to the rotational vector. Approximations are employed to 
simplify the derivatives, resulting in zero values for a few derivatives. The PBA 
implementation can execute the code with and without the use of the Schur 
complement. 

In the implementation [13], 11 camera parameters are refined, and only the 
time-consuming computations are simulated on GPU, and the remaining com-
putations are simulated on CPU. Researchers have demonstrated their imple-
mentation to be better compared to the PBA implementation but have not pro-
vided a comparative analysis for their better convergence. In addition, the GPU 
performance is evaluated on datasets with fewer points and projections. 

The current research efforts have targeted refining fewer camera parameters, 
parallelizing only the compute-intensive computations on the GPU, and work-
ing on datasets with fewer points and projections. In this research, we evaluate 
using second radial distortion in the camera parameters and explicit Jacobian 
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computation. Unlike [13], a comparative analysis of using the second radial dis-
tortion coefficient, its effect on the computational cost, and the algorithm con-
vergence is presented. The convergence rate using the approximated Jacobian 
computation from the state-of-the-art implementation is compared with the ex-
act Jacobian computations obtained from the proposed explicit derivatives. In 
the proposed framework, apart from parallelizing only the compute-intensive 
computation on GPU, all the computations in the LM iterations are ported to 
GPU, thereby eliminating intermediate data transfers. In addition, the algo-
rithm’s convergence rate and computation time are evaluated on datasets with 
more points and projections. 

3. Bundle Adjustment Algorithm Formulation 
3.1. Projection Function 

The formulation of the BA algorithm depends on the 3D points being projected 
into the 2D images. The 3D world coordinates are mapped to the 2D camera 
pixel coordinates using a projection function that uses a pinhole camera model. 
Mathematically, a projection function [7] uses 3D point coordinates and camera 
parameters like rotation matrix, translation vector, focal length, and radial dis-
tortions to compute the 2D projection. The projection function formulated is 
shown in Equation (1). 

( ) ( )= ∗ ∗P r I If f                        (1) 

[ ]1 2, , , , ,=P R T Xf K K  

( ) 2 4
1 21.0= + ∗ + ∗r I I IK K  

where, 
( )Pf  is the projection function in 2D pixel coordinates 

f is the focal length of the camera 
( )r I  is a scaling factor in terms of first and second radial distortion coeffi-

cients K1 and K2 
, ,   = = −   −I x y x z y zI I O O O O  is the homogenous vector in the image 

plane 
O is the 3D point , ,  = +  RX Tx y zO O O  in camera coordinates 
R is a 3 × 3 rotation matrix 
T is a 3D translation vector 
X is a 3D point 
The scaling factor represented above in Equation (1) includes the second radi-

al distortion coefficient K2 which is analyzed in this work with respect to its ef-
fect on the convergence and the computational cost of the BA algorithm. 

3.2. Bundle Adjustment Algorithm and Levenberg-Marquardt  
Method 

The Bundle adjustment algorithm refines the 3D points and the camera parame-
ters by minimizing the reprojection error, formulated as the summation of the 
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difference between the computed and observed projections. The minimization of 
the reprojection error for n points and m cameras can be formulated as shown in 
Equation (2). 

( ) ( ) 2

1 1 1 1min , min
= = = =

= −∑ ∑ ∑ ∑P x x Pij iji j i
n m

j
m n f          (2) 

where, 

( ),P xij  is the projection error function 
xij  is the observed projection of point i in an image from the camera j 
( )Pf  is the projection function used to obtain computed projections 

In Equation (2), it can be observed that the reprojection error is a non-linear 
least-squares problem, and it can be solved using the Levenberg-Marquardt 
(LM) method. The LM method involves the approximation of a reprojection er-
ror with an updated parameter vector and produces a series of parameter vectors 
that minimize the reprojection error. As illustrated in [6] [7], the minimization 
results in a normal equation as in Equation (3). 

T T= −J J J eδ                           (3) 

where, 
( )= ∂ ∂J P Pf  is a Jacobian of the projection function 

δ  is the change in the parameter vector 
e is the error vector computed as the difference between the computed projec-

tion and observed projection 
The Jacobian computed in the Equation (3) may result in a rank deficient ma-

trix due to the limited information available from the camera-point system, re-
sulting in the TJ J  matrix to be a singular matrix. In such a case, solving Equa-
tion (3) will not guarantee convergence. As a result, to ensure convergence, a 
regularization term is added to Equation (3) resulting in an augmented normal 
equation shown below. 

( )T T Tµ+ = −J J D D J eδ                      (4) 

where, 
D is a non-negative diagonal matrix formulated as the square root of the di-

agonal of the matrix TJ J  [1] 
μ is the positive damping parameter used to control the regularization 
The augmented normal equation in Equation (4) can be represented as a li-

near system of equations as below. 

=Ax b                             (5) 

where, 
T Tµ= +A J J D D  is a symmetric positive-definite matrix 

T= −b J e  is a gradient vector 
=x δ  is a solution vector 

Using the regularization term, the matrix ( )T Tµ+J J D D  becomes non- 
singular and positive definite ensuring convergence. The damping parameter 
controls the regularization’s magnitude, allowing to alternate between the gra-
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dient descent and the Gauss-Newton method based on the minima. A higher 
value of damping term results in the algorithm behaving as a gradient-descent 
algorithm thereby increasing the reduction in the residual. Lower values of 
damping term result in the algorithm to behave as a Gauss-Newton algorithm 
thereby slowing the reduction in the residual. The value of the damping para-
meter can be updated systematically [23] resulting in convergence to a better 
local minimum. 

3.3. Mathematical Representation 

The augmented normal equation in Equation (4) depends on the Jacobian and 
the error vector derived from the total number of cameras, 3D points, and their 
projections. Furthermore, it depends on the total number of optimized camera 
parameters. For example, consider three points projected onto two images. The 
computed projection vector and the parameter vector can be represented as 
shown below: 

( ) ( ) ( )T TT T T T T T T T T T T
11 12 21 22 31 32 1 2 1 2 3ˆ ˆ ˆ ˆ ˆ ˆ, , , , , ; , , , ,= =P x x x x x x P c c p p pf         (6) 

where, 
Tx̂ij  is the 2D computed projection of point i in camera j 
Tc j  and Tpi  are the n-dimensional camera parameter vector of camera j and 

m dimensional point vector of point i 
n and m are the total number of camera parameters and points, respectively 
The sparse Jacobian matrix computed from the above projection and parame-

ter vector can be represented as illustrated in [6]. Based on the Jacobian repre-
sentation [6], all the notations [12] in Equation (4) can be categorized into cam-
era and point sections as shown below: 

; ; , ; , ; ,         = = = = =         J J J D D D e e ec p c p c p c p c pδ δ δ          (7) 

The augmented normal equation in Equation (4) can be represented by the 
camera and point sections as below: 

T
µ

µ

    
=    

     

U W
W V

c c

p p

δ
δ




                      (8) 

T T T T T T T; ; ; ;µ µµ µ= + = + = = − = −U J J D D V J J D D W J J e J ec c c c p p p p c p c c c p p pJ    

Solving the augmented normal equation represented in Equation (8) using the 
PCG method involves computing the solution for the entire size of the solution 
vector. These computations can be reduced using the Schur complement, which 
involves multiplying both sides of Equation (8) with a block matrix as illustrated 
in [6] and represented in Equation (9) and Equation (10). 

( )1 T 1
µ µ
− −− = −U WV W WVc c pδ                     (9) 

T
µ = −V Wp p cδ δ                        (10) 

Ongoing in this paper, solving Equation (8) directly for the solution vector is 
called without-Schur complement, and solving for the solution vector using the 
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Schur complement representation in Equation (9) and Equation (10) is called 
with-Schur complement. 

4. Implementation 

This section discusses the implementations proposed in this paper to improve 
the algorithm’s convergence and reduce the time taken for the algorithm execu-
tion. The implementations are categorized into sequential implementation and 
CUDA implementation. All the implementations are developed and analyzed for 
the without-Schur and with-Schur complements. 

4.1. Sequential Implementation 

The performance in terms of convergence of the BA algorithm is analyzed using 
an additional radial distortion coefficient and explicitly computing the Jacobian 
matrix. 

4.1.1. Additional Radial Distortion Coefficient 
The camera parameters and points are primarily used to compute the reprojec-
tion error using the projection function and to compute the Jacobian matrix 
from the partial derivatives, which are then used to generate the augmented 
normal equation. In the PBA implementation, the camera parameters include an 
utmost of eight parameters, including three translation elements, three rotation-
al elements in Rodrigue’s vector representation, one focal length, and one radial 
distortion. The camera center is assumed to be at the origin, and the skew factor 
is set to 1. As always, the point vector includes three elements that provide the 
point’s location in the 3D coordinates. 

As a result, the size of each element-block [6] in the camera section of the Ja-
cobian is (2 × 8) and the point section is (2 × 3). The size of the symmetric posi-
tive-definite matrix A is ((8 × number of cameras) + (3 × number of points))2 
and the size of both the gradient and solution vectors are ((8 × number of cam-
eras) + (3 × number of points)). 

In this paper, we analyze the effect of using the second radial distortion coeffi-
cient. As a result, a total of nine camera parameters, which include three transla-
tion elements, three rotation matrix elements in the form of Rodrigue’s vector, 
one focal length, and two radial distortions, are used. Using the second radial 
distortion coefficient improves image correction compared to using only the 
first radial distortion coefficient. In addition, using an additional radial distor-
tion coefficient will add additional constraints to the minimization problem in 
Equation (2), resulting in better refinement of the 3D points and camera para-
meters. 

The projection function with the additional radial distortion coefficient is 
represented in Equation (1). The primary difference is in the scaling factor 
where the additional radial distortion parameter K2 is implemented. The third 
radial distortion coefficient is not used in this implementation as it is a very 
small number in the order of less than −20 and does not significantly impact the 
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image correction. 
The change in the number of camera parameters also impacts the size of each 

Jacobian and the augmented normal equation. The use of an additional radial 
distortion parameter (represented in bold) increases the size of the camera ele-
ment block in the Jacobian, as shown in Equation (11). 

( ) 3 31 2 1 2 1

1 2 3 1 2 3 1

ij ijij ij ij ij ijijij
j jj j j j jjjij

j
ij ij ij ij ij ij ij ij ij
j j j j j j j j j

x xx x x x xxx
f k tk k t t Kfc

y y y y y y y y y
c k k k t t t f K

∂ ∂∂ ∂ ∂ ∂ ∂∂ ∂ 
  ∂ ∂ ∂∂ ∂ ∂ ∂ ∂∂∂   = =  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂  
  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    

2

2

ij
j

ij
j

x
P K

yc
K

∂

∂
∂

∂

(11) 

where, 

( ),ij ijx y  is the projection in camera system for point i and camera j 
jc  is the camera parameter vector of camera j 

( )1 2 3, ,=j j j jk k k k  is the rotation matrix of camera j in axis-angle representa-
tion 

( )1 2 3, ,=j j j jt t t t  is the translation vector of camera j 
jf  is the focal length of camera j 

1
jK  and 2

jK  are the first and second radial distortion coefficients of camera j 
With the increase in element-block size in the Jacobian, every matrix/vector 

representation related to the camera also increases, as in Table 1. 

4.1.2. Explicit Jacobian Computation  
Each Jacobian element-block is computed as illustrated in [6] using Equation (3) 
and Equation (7). With nine camera parameters and three-point coordinates, the 
Jacobian element-blocks for each camera and point can be represented as in Eq-
uation (11) and Equation (12). 

( )
∂ ∂   ∂ ∂
   ∂ ∂ ∂∂ ∂   = =
   ∂ ∂ ∂ ∂∂
   
∂ ∂ ∂ ∂      

P

p

ij ijij ij
i ii iij

i
ij ij ij ij
i i i i

x xx x
f p yx z

y y y y
p x y z

             (12) 

where, 
 
Table 1. Size of different matrix/vector representations. 

Size of 
With 8 Camera Parameters 

rows × cloumns 
With 9 Camera Parameters 

rows × cloumns 

J ij
c  2 × 8 2 × 9 

U j  8 × 8 9 × 9 

A ( ) ( )( )2

cam pt8 num 3 num× + ×  ( ) ( )( )2

cam pt9 num 3 num+× ×  

δ ( ) ( )( )cam pt8 num 3 num 1×+× ×  ( ) ( )( )cam pt9 num 3 num 1×+× ×  

  ( ) ( )( )cam pt8 num 3 num 1×+× ×  ( ) ( )( )cam pt9 num 3 num 1×+× ×  
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ip  is the point parameter vector point i 

( ), ,i i ix y z  are the 3D coordinates of point i 
Computing the partial derivatives concerning translation vector, focal length, 

and radial distortion are straightforward. But the partial derivatives concerning 
rotation vector in axis-angle representation is implemented [12] [24] through 
the cross product of the partial derivatives of the 2D image vector with respect to 
3D point, and partial derivatives of 3D point with respect to the axis-angle re-
presentation as below. 

2

2

0

0

 − ∂
=  

∂  −  

f fx
P z z

f fyX
z z

 
3 2

3 1

2 1

0
0

0

− 
∂  = − ∂

 − 

k k
X k k
w

k k
           (13) 

where, 
P is the projection computed 

( ), ,=X x y z  is the 3D point in camera coordinates computed from rotation 
matrix R derived using Rodrigues’ formula from its axis-angle representation 

f is the focal length 
( )1 2 3, ,=w k k k  is the rotational vector representation in axis-angle format 

The rotation matrix is computed from the axis-angle representation using 
Rodrigues’ formula [25], and the Jacobian for rotation vector in axis-angle re-
presentation is computed as shown in Equation (13). As a result, when the pa-
rameters are updated after a successful LM iteration, the updated rotation matrix 
is computed as Equation (14). 

T′ = ∗ oriR dR R                         (14) 

where, 
′R  is the updated rotation matrix 
T
oriR  is the transpose of the original rotation matrix 

dR is the change in rotation matrix. For simplicity, the above equation does 
not include radial distortion parameter 

PBA implementation has adapted the above methodology and the partial de-
rivative of ijy  and ijx  with respect to translation elements t1 and t2 are ap-
proximated to 0, although they contain smaller non-zero values. 

Unlike in PBA implementation, we propose using a rotation vector in the 
axis-angle representation directly in the Jacobian computation without compu-
ting the rotational matrix using Rodrigues’ formula and without any cross-product 
of partial derivatives. The Jacobian is derived using explicit analytical deriva-
tives. By using rotation vector in axis-angle rotation, there is no need to update 
the rotation matrix as in Equation (14); instead update the rotation matrix in the 
axis-angle representation as shown in Equation (15). 

δ′ = +ori
kk k                           (15) 

where, 
[ ]1 2 3′ ′ ′ ′=k k k k  are the update rotation matrix in axis-angle representation 
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1 2 3 =  
ori ori ori orik k k k  are the original rotation matrix in axis-angle representa-

tion 

1 2 3
δ δ δ δ =  k k k k  are the change in the rotation matrix in axis-angle repre-

sentation 
Unlike in PBA implementation, the partial derivative of ijy  and ijx  with 

respect to translation elements t1 and t2 are not approximated to 0. The expres-
sions for the partial derivates are complex to be derived manually. As a result, 
the derivates of the Jacobian elements are computed using “diff” command in 
Matlab Symbolic Math Toolbox [26] and by hardcoding the projection function 
into the code. 

Using explicit Jacobian matrix and the additional radial distortion coefficient 
increases the total computations. This increase in the computational load is ad-
dressed by implementing the code using the CUDA programming model on the 
GPUs. 

4.2. CUDA Implementation 

As the Jacobians of each projection function depend on one set of camera and 
3D points only, most elements of the Jacobian matrix would end up being zero, 
resulting in a sparse matrix as detailed in [6]. Computing normal equations from 
the Jacobian matrix and solving the LM implementation would involve numer-
ous matrix and vector operations that benefit heavily from the cache. Also, the 
independent nature of many computations in the BA algorithm would benefit 
from the asynchronous computations. The features as mentioned earlier, and the 
behavior of the BA algorithm would benefit from simulating different code sec-
tions concurrently on the GPUs. As a result, the Compute Unified Device Ar-
chitecture (CUDA) [27] application programming interface (API) is used to ac-
celerate the BA algorithm using the inexact-step LM method with the PCG me-
thod on GPUs. 

This paper implements the BA algorithm on GPUs using the CUDA pro-
gramming model. The proposed explicit Jacobian and an additional radial dis-
tortion coefficient in the sequential implementation are also used in the CUDA 
implementation. Implementing the BA algorithm on the GPUs using CUDA 
involves many aspects of memory transfers and block-thread configuration on 
the GPUs for optimal concurrency. This paper implements basic optimizations 
involved in CUDA programming for effective memory transfers and computa-
tional throughput.  

In this paper, we study the use of different CUDA features/libraries to im-
prove the computational performance of the algorithm compared to its sequen-
tial implementation. A highly optimized CUDA BLAS library, cuBLAS [28], is 
used for all the vector operations. CUDA streams are used to take advantage of 
the asynchronous behavior of the mathematical equations in the algorithm. In 
addition, owing to the sparse structure of the matrix, Atomic Additions are used 
in the matrix-vector multiplications, thereby taking advantage of the concur-
rency from the parallel computations, and making sure to eliminate any race 
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condition from writing to the same memory. Parallelizing compute-intensive 
computations on the GPU and transferring the data to the CPU is ideal for 
smaller datasets, but the data transfer penalty would be significant for huge da-
tasets. The proposed framework is developed to execute the entire BA algorithm 
on the GPUs, eliminating intermediate data transfers of considerable sizes to the 
CPU. 

4.2.1. Computational and Memory Tradeoff 
Solving the augmented normal equation requires the computation of matrices 
represented on the left-hand side of Equation (8). In the PBA implementation, 
the matrix is not computed explicitly but through the matrix-vector product [12] 
in the PCG method. The PCG method is implemented using a block Jacobi pre-
conditioner. Even though the matrix is not explicitly computed, the diagonal 
blocks in matrix A need to be computed for the sake of the preconditioner. This 
would involve multiple computations of block diagonal matrices µU  and µV . 

Instead of computing block diagonals multiple times, we store their values in 
the memory, thereby reducing the additional computations. Storing the matrices 
does not require a significant memory as their sizes are smaller. In addition, the 
gradient vector is also computed and stored in the memory as it is required to 
check the termination conditions in the algorithm. Storing the required matrices 
and vectors instead of recursive computations has resulted in around 3% per-
formance improvement in the computational time. 

4.2.2. Concurrent Executions 
In the BA algorithm, solving the augmented normal equation can be categorized 
into camera and point sections and be executed concurrently. The computation 
of block diagonal matrices and their inverse for the preconditioner in the PCG 
method are independent of each other. In addition, matrix-vector computations 
in the PCG method can also be executed concurrently per camera and point sec-
tion. Concurrent executions of the camera and point sections will improve the 
algorithm’s performance by reducing the computational time. The serial and 
concurrent execution of the matrix-vector multiplication in the PCG method is 
shown below: 

T T
µ µ

µ µ

   + 
= =     +        

U W U W
A

W V W V

k k k
c c pk
k k k
p c p

p p p
p

p p p
                (16) 

From Figure 1 it can be seen that the matrix-vector computations take around 
six steps when computed sequentially but take only two steps when computed 
concurrently. This paper uses CUDA streams [27] to implement concurrency in 
the algorithm. Multiple CUDA streams are created and used across the algo-
rithm where the operations are independent. Figure 2 and Figure 3 provide an 
NSight Systems [29] profiler view of the inverse computation of the diagonal 
matrices with and without using streams. 

The “cudaUinv” and “cudaVinv” kernels compute the inverse of block di-
agonals in the preconditioner computation. The kernels in Figure 2 are executed  
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Figure 1. Sequential (left) and concurrent execution (right) of different stages in the ma-
trix-vector multiplication involved in PCG method. 
 

 

Figure 2. Profiler view of the inverse of preconditioner without CUDA streams. 
 

 

Figure 3. Profiler view of the inverse of the preconditioner with CUDA streams. 
 
consecutively, one after the other, according to their calling. Whereas in Figure 
3, with CUDA streams implementing the kernels on different streams, the kernel 
execution starts around the same time. As a result, the computational time taken 
by “cudaVinv” is hidden behind the computational time of the “cudaUinv” ker-
nel, thereby reducing the execution time for the entire preconditioner computa-
tion. Similarly, various computations of camera and point sections are indepen-
dent of each other, and their concurrency is exploited using the CUDA streams. 

4.2.3. cuBLAS Implementation 
Computation of the right-hand side of the normal equation involves matrix- 
matrix multiplications of Jacobians. As in PBA implementation [12], the ma-
trix-matrix computations are replaced by the matrix-vector operation, and most 
of the computations in the BA algorithm now involve matrix-vector and vec-
tor-vector operations. cuBLAS is a highly optimized BLAS library containing 
APIs for matrix-vector and vector-vector operations, which can be used to im-
plement code on GPUs. cuBLAS APIs like L2-norm, dot product, vector addi-
tion, and scalar-vector multiplication are also utilized in the code, resulting in a 
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performance boost of around 5% - 10% compared to the manually optimized 
parallel kernels. 

4.2.4. Atomic Operations 
Computation of block diagonal matrices and matrix-vector multiplication oper-
ations involve sweeping through all the projections. PBA implementation [12] 
stores shuffled copies of data-in-order to enable improved continuous memory 
access patterns. In this paper, we implemented atomic operations [27] supported 
by the CUDA platform. The atomic operations ensure that the same memory 
location is not modified by any other thread, thereby preventing any read-after-write 
hazard. As the computations are iterated through the projections, we can distri-
bute each computation concerning a projection onto one thread on GPU and 
use atomic operations to update the values appropriately. 

4.2.5. Thread and Block Configuration on GPU 
Different thread and block configurations would impact the performance of the 
CUDA kernels. Using very few threads in a block would result in underutiliza-
tion of the compute resources. On the other hand, utilizing more threads might 
hit the resource limitations and spawn fewer blocks, resulting in less parallelism. 
As a result, the thread and block configurations should be set based on the 
computational load and the resources available per streaming multiprocessor on 
a GPU. 

In the BA algorithm, most of the matrix-vector, vector-vector operations are 
iterated through several cameras, points, projections, and the size of the solution 
vector. As the number of cameras is fewer compared to points and projections, 
assigning computations of each camera to a block has produced optimal perfor-
mance for CUDA kernels that iterate through the cameras. On the other hand, 
as the number of points and projections is higher, unrolling computations of 
multiple points/projections per block has reduced the total number of blocks 
invoked and produced optimal performance. 

5. Datasets and Performance Parameters 
5.1. Datasets 

The datasets used in this paper are obtained from the online resources provided 
by Bundle Adjustment in the Large [7]  
(https://grail.cs.washington.edu/projects/bal/). The online resource provided has 
around 100 different datasets. Below is a table with information about a few dif-
ferent datasets whose final mean square error, computational time, and speedup 
are demonstrated in the paper. The table is arranged in increasing order of the 
total number of projections. 

Of these total datasets, about 32 of them do not converge from their initial 
mean square error. This indicates that these datasets cannot be further refined. 
Apart from these datasets, some produce different behavior involving Not a 
Number (NaN) errors. In this paper, 66 different datasets are executed and ana-
lyzed. Apart from the datasets provided in Table 2, a summary of the behavior  
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Table 2. Details about the number of images, points, and projections for different data-
sets. 

Dataset No. Number of Images Number of Points Number of Projections 

1 21 11,315 36,455 

2 138 44,033 165,899 

3 856 93,344 415,769 

4 1587 150,845 663,289 

5 287 182,023 971,292 

6 308 195,089 1,045,197 

7 356 226,730 1,255,268 

8 961 187,103 1,692,975 

9 871 527,480 2,785,977 

10 1936 649,673 5,213,733 

 
of the remaining datasets will also be presented in the paper using the perfor-
mance parameters mentioned below. 

5.2. Performance Parameters 

The convergence of the mean square error of the algorithm is used as a mea-
surement in the sequential implementations. Lowering the mean square error 
indicates better convergence. When comparing two different implementations 
percentage error between the final mean square errors is calculated below. 

original modified

original

mse mse
100%

mse
δ

−
= ×                   (17) 

where, 
δ is the percentage error 

originalmse  is the final mean square error of the original code 

modifiedmse  is the final mean square error of the modified code 
The aggregate performance of all the datasets will be computed using the av-

erage percentage error, as shown in Equation (18). 

1Average Percentage Error
δ

== ∑
k

k
K

K
                 (18) 

where, 
δ k  is the percentage error of kth dataset 
K is the total number of datasets 
The positive average percentage error indicates the percentage of improve-

ment achieved by the modified code. 
The speedup of the algorithm is used as a measurement to compare the per-

formance boost achieved by the CUDA implementation compared to the se-
quential implementation. The speedup can be computed from Equation (19). 

https://doi.org/10.4236/eng.2023.1510046


P. R. Kommera et al. 
 

 

DOI: 10.4236/eng.2023.1510046 679 Engineering 
 

The higher the speedup, suggests better the performance of the modified imple-
mentation. 

base

modified

Speedup = T
T

                        (19) 

where, 
Tbase is the time taken by the base algorithm 
Tmodified is the time the modified algorithm takes 

6. Results and Performance Analysis 

The proposed framework and the PBA implementation are implemented on a 
server equipped with a 64-core AMD EPYC 7713P CPU and 3584 cores NVIDIA 
A30 GPU. The AMD CPU and NVIDIA GPU are connected using a PCIe inter-
face with a bandwidth of 64GB/s. The proposed framework and the PBA library 
use the C/C++ programming language for the CPU implementation and the 
CUDA C programming model for the GPU implementation. In addition, the 
cuBLAS library [28] is used in the proposed framework to implement the CUDA 
version of basic linear algebra subroutines (BLAS). 

First, the comparisons using different Jacobian computations and additional 
camera parameters between the sequential implementations of the proposed im-
plementation and the PBA implementation are evaluated. Next, the CUDA ver-
sion of the proposed framework is compared with the CPU version of the pro-
posed framework and the CUDA version of the PBA library. All the compari-
sons involve both the algorithm configurations of without-Schur and with-Schur. 

6.1. Sequential Implementation 
6.1.1. Explicit Jacobian Computation 
Explicitly computing the Jacobian affects the convergence of the algorithm. Ta-
ble 3 compares the convergence of different datasets from Table 2 between the 
PBA implementation and the proposed explicit Jacobian implementation. Both 
the configurations of the algorithm without-Schur and with-Schur complements 
are provided. 

Table 3 shows that for a higher number of datasets, the explicit Jacobian im-
plementation convergence is better or similar compared to the PBA implemen-
tation. Eliminating the approximations in the Jacobian computation would im-
pact the convergence. There are multiple datasets where the PBA implementa-
tion convergence is better than the explicit Jacobian implementation. The aver-
age percentage error for those without-Schur complement is 4.7%, and those 
with-Schur complement is 3.7%. The positive value of the average percentage 
error indicates that the algorithm has a better convergence using the explicit Ja-
cobian implementation. Of the 66 datasets analyzed, 75% have better conver-
gence using the explicit Jacobian implementation in the without-Schur configu-
ration, and 83% have better convergence using the explicit Jacobian implemen-
tation in the with-Schur configuration. 
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Table 3. The final mean square error values across different datasets using without-Schur 
and with-Schur complement for both the PBA Jacobian and Explicit Jacobian implemen-
tations. 

Dataset 
No. 

Final Mean Square Error 

Without-Schur Complement With-Schur Complement 

PBA 
Explicit 
Jacobian 

Rate of 
Change 

PBA 
Explicit 
Jacobian 

Rate of 
Change 

1 1.846 1.844 0.002 1.846 1.844 0.002 

2 1.239 1.238 0.001 1.239 1.237 0.002 

3 1.271 1.117 0.154 1.282 1.116 0.166 

4 1.595 1.347 0.248 1.796 1.332 0.464 

5 1.146 1.262 −0.116 1.163 1.157 0.006 

6 1.408 1.414 −0.006 1.242 1.061 0.181 

7 1.451 1.649 −0.198 1.412 1.354 0.058 

8 1.967 1.968 −0.001 1.967 1.968 −0.001 

9 1.380 1.383 −0.003 1.386 1.383 0.003 

10 1.929 1.937 −0.008 1.929 1.937 −0.008 

6.1.2. Additional Camera Parameters 
The use of an additional radial distortion coefficient has a significant impact on 
the convergence of the algorithm. Table 4 shows the final mean square error 
across different datasets without-Schur and with-Schur complement. The expli-
cit Jacobian implementation is employed using eight and nine camera parame-
ters. Unlike in Table 3, the difference between the final mean square errors is 
higher. The convergence of the datasets is higher when nine camera parameters 
are used. The average percentage error for those without-Schur complement is 
17%, and for those with-Schur complement is 16%. 

Although additional camera parameters would increase the total number of 
computations and the memory usage, the algorithm’s convergence is signifi-
cantly improved. Using a second radial distortion coefficient results in addition-
al dimension in the Jacobian elements and the projection vector, providing more 
information for the camera and point refinement. Of the entire 66 datasets ana-
lyzed, all the datasets have better convergence using nine camera parameters in 
the without-Schur configuration, and 98% of the datasets have better conver-
gence using nine camera parameters in the with-Schur configuration. 

6.1.3. Convergence Analysis 
The minimization problem aims to converge the computed projections, which 
are evaluated using the camera parameters and 3D points to the observed pro-
jections. In an ideal case, the mean square error would result in zero, where both 
the observed and computed projections are similar. The convergence of the 
computed projections to the observed projections by refining the camera para-
meters and 3D points is analyzed using the L-infinity norm in Table 5. 
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Table 4. The final mean square error values across different datasets using without-Schur 
and with-Schur complement for the eight and nine camera parameters implementations. 

Dataset 
No. 

Final Mean Square Error 

Without-Schur Complement With-Schur Complement 

8 Camera 
Parameters 

9 Camera 
Parameters 

Rate of 
Change 

8 Camera 
Parameters 

9 Camera 
Parameters 

Rate of 
Change 

1 1.844 1.667 0.177 1.844 1.667 0.177 

2 1.238 1.065 0.173 1.237 1.045 0.192 

3 1.117 1.021 0.096 1.116 1.059 0.057 

4 1.347 1.175 0.172 1.332 1.159 0.173 

5 1.262 0.723 0.539 1.157 0.724 0.433 

6 1.414 0.743 0.671 1.061 0.743 0.318 

7 1.649 0.784 0.865 1.354 0.783 0.571 

8 1.968 1.874 0.094 1.968 1.874 0.094 

9 1.383 1.236 0.147 1.383 1.237 0.146 

10 1.937 1.784 0.153 1.937 1.784 0.153 

 
Table 5. L-Infinity norm of the projection errors. 

Dataset 
No. 

L-Infinity Norm of the Projection Errors Represented in L-2 Norm 

Initial 
Without-Schur Complement With-Schur Complement 

PBA Proposed PBA Proposed 

1 0.01727 0.00478 0.00468 0.00478 0.00468 

2 0.02075 0.00824 0.00815 0.00824 0.00816 

3 2.39244 0.22943 0.02752 0.06158 0.13779 

4 26.5631 0.15234 0.13674 0.46556 0.10041 

5 0.11949 0.05866 0.00969 0.05787 0.00969 

6 0.11345 0.06318 0.01152 0.05902 0.01151 

7 0.11403 0.06488 0.01263 0.05927 0.01263 

8 0.09239 0.04870 0.04862 0.04870 0.04862 

9 0.04171 0.02299 0.02306 0.02300 0.02308 

10 0.23783 0.05419 0.05418 0.05419 0.05418 

 
First, each of the 2D projection errors computed initially is converted into a 

scalar value by using the L-2 norm on each projection, resulting in a 1D projec-
tion error vector. L-infinity norm is then applied to the 1D projection error vec-
tor to identify the projection index with the largest projection error. The ‘Initial’ 
column in Table 5 provides information on the L-infinity norm for the projec-
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tion errors derived from the initial camera parameters and 3D points. Table 5 
also provides information about the final L-Infinity norm for the projection er-
rors derived from the refined camera parameters and 3D points. 

Table 5 shows that the proposed implementation with a second radial distor-
tion coefficient and the explicit Jacobian computation results in a lower L-infinity 
norm than the PBA implementation. The overall reduction of the projection er-
ror indicates that the proposed implementation improves the algorithm’s con-
vergence. The difference between the L-infinity values provided can be observed 
to be very small in the order of −1 to −4. This is because of the data being nor-
malized. Denormalization of the data would provide a better understanding of 
the effect of the refined camera parameters and 3D points. 

Table 6 provides the observed and computed projection in pixel coordinates 
after denormalization. A comparison between the observed projection to the fi-
nal computed projection for the projection index with higher projection error 
from both the PBA and Proposed implementations is shown in Table 6. The 
comparison is done by computing the distance between the observed projection 
and the computed projection in terms of pixel coordinates. 

Table 6 shows that the proposed implementation has better convergence and 
the final computed projection in terms of pixel coordinates is closer to the ob-
served projection than the PBA implementation. Figure 4 provides a pictorial 
representation of the computed and observed projections for different projection 
indexes. Figure 4 shows that the computed projections from the proposed im-
plementation are close to the observed projections compared to the computed 
projections from the PBA implementation. 
 

 

Figure 4. Final projections in pixel coordinates from both observed and computed pro-
jections. 
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Table 6. Final projections are represented in pixel coordinates. 

Dataset No. 
Without-Schur Complement With-Schur Complement 

PBA Proposed PBA Proposed 

1 9.0172 11.1571 9.0205 11.1583 

2 2.0843 1.5112 2.0937 0.9540 

3 0.4697 0.2444 0.9435 0.2673 

4 147.0987 0.0450 152.1348 0.0016 

5 68.4172 33.4208 65.4357 33.4225 

6 217.9652 1.8467 203.614 1.8483 

7 222.7412 1.8852 203.4508 1.8588 

8 34.0829 45.6782 34.0821 45.9777 

9 0.1618 0.5123 0.1626 0.4891 

10 25.9884 4.5954 25.9916 4.6031 

6.2. CUDA Implementation 

Based on the sequential implementation analysis, the algorithm’s CUDA version 
is analyzed using explicit Jacobian implementation and nine camera parameters. 
This paper implements a preliminary CUDA version of the algorithm resem-
bling the sequential implementation with basic GPU-related optimizations. Un-
like the PBA algorithm, which is heavily dependent on the texture memory de-
precated in the latest CUDA software stack, we are confining ourselves to effec-
tively utilize global, shared, and register memory. In addition, we have employed 
the highly optimized cuBLAS library for all the linear algebra computations. As 
the algorithm is highly sensitive to precision changes, similar behavior between 
the sequential and CUDA implementations which are executed on different 
hardware, is of utmost importance. As a result, we have initially compared the 
final mean square error between the sequential and CUDA implementations, 
followed by analyzing the speedup for different datasets. 

The final mean square error is approximately similar across CPU and GPU 
implementations. The overall average percentage error for without-Schur com-
plement is 0.05% and for with-Schur complement is 0.2%. Of the total 66 data-
sets, greater than 90% have the percentage error less than an order of −2. The 
lower average percentage error indicates that sequential and CUDA implemen-
tations converge to the same minima. Although both the implementations con-
verge to the same minima, the number of LM steps and the total number of 
conjugate gradients iterations it takes to reach the minima is different, and it is 
mainly because of the differences in precision across hardware. 

6.2.1. Computational Time and Speedup between CPU and GPU  
Implementations 

Figure 5 shows the time taken by sequential and CUDA implementations across  
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Figure 5. Time taken by sequential and CUDA implementation across different datasets using without-Schur and with-Schur 
complement. (a) Without-Schur Complement; (b) With-Schur Complement. 

 
different datasets. The plot shows that the CUDA implementation always takes 
less time compared to the sequential implementation. The time taken by the 
with-Schur complement configuration is higher than the without-Schur com-
plement as it involves additional computations of the Schur complement. The 
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time taken by a dataset depends upon many factors like the size of the delta vec-
tor, which is (9 × number of cameras) + (3 × number of points), number of pro-
jections, total LM iterations and total number of conjugate gradient iterations. 
From Figure 5, it can be seen that the total number of projections significantly 
impacts the time taken by the datasets. 

The speedup between the sequential and CUDA implementations for the 
above datasets is provided in Figure 6. From the plot, it can be observed that the 
speedup is random across the datasets from 1.02× to 16×. As the time taken by 
the dataset depends on many factors, as mentioned earlier, a smaller dataset 
might take more time than a larger dataset if it requires more LM steps or con-
jugate gradient iterations. For example, the time taken by the Dataset ID# 9 is 
greater than the time taken by the Dataset ID#10. Although Dataset ID#10 has 
5,213,733 projections compared to the 2,785,977 projections in Dataset ID# 9, 
the total number of conjugate gradient iterations taken by Dataset ID# 9 is 
around 1400 compared to the 600 conjugate gradient iterations taken by Dataset 
ID# 10. From our analysis, it is observed that the size of the dataset has a signifi-
cant impact on the speedup compared to the total LM steps and the conjugate 
gradient iterations. The dataset’s size depends on the number of cameras, points, 
and projections, of which the total number of projections has more impact on 
the speedup. 

To demonstrate, we have obtained the speedup for different datasets with an 
increased number of projections by setting the total number of LM iterations 
and the conjugate gradient iterations to one, as shown in Figure 7. From the 
plot, it can be observed that the speedup increases as the total number of projec-
tions increases. But for a smaller number of projections, the total number of 
cameras and points also affects the speedup. 
 

 

Figure 6. Speedup between the sequential and CUDA implementation using with-Schur 
and without-Schur complement across different datasets. 
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In addition to the speedup plot in Figure 7, Table 7 provides information 
about the time taken by sequential and CUDA implementations for eight and 
nine camera parameters using both Without-Schur and With-Schur comple-
ment. All the simulations are executed for one LM and one CG iteration. From 
the Table, it can be seen that the time taken for nine camera parameters is higher 
than for eight camera parameters for both the CPU and GPU implementations. 
This is because of the additional computations involved with the additional  
 

 

Figure 7. Speedup plot for different datasets using without-Schur and with-Schur com-
plement with 1 Levenberg-Marquardt iteration and one conjugate gradient iteration. 
 
Table 7. Time taken by CPU and GPU implementations. (CP denotes Camera Parame-
ters). 

Dataset 
No. 

Without-Schur Complement With-Schur Complement 

CPU (secs) GPU (secs) CPU (secs) GPU (secs) 

8 CP 9 CP 8 CP 9 CP 8 CP 9 CP 8 CP 9 CP 

1 0.016 0.018 0.004 0.004 0.016 0.019 0.004 0.005 

2 0.069 0.080 0.009 0.010 0.074 0.083 0.011 0.009 

3 0.176 0.193 0.015 0.018 0.192 0.214 0.019 0.022 

4 0.288 0.325 0.023 0.028 0.217 0.354 0.020 0.032 

5 0.392 0.439 0.043 0.048 0.415 0.490 0.049 0.054 

6 0.426 0.476 0.046 0.052 0.454 0.507 0.052 0.059 

7 0.510 0.567 0.055 0.062 0.538 0.602 0.063 0.070 

8 0.691 0.787 0.056 0.065 0.748 0.835 0.062 0.073 

9 1.127 1.281 0.099 0.114 1.203 1.347 0.112 0.130 

10 2.188 2.430 0.168 0.198 2.299 2.687 0.183 0.219 
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camera parameter. However, the rate of increase in time is higher in the CPU 
implementations compared to the GPU implementations. One of the reasons is 
that in GPU implementations, more of the computations are concurrently ex-
ecuted, resulting in higher throughput than in CPU implementations. 

6.2.2. PBA CUDA and Proposed CUDA Implementation Comparison 
In addition to the above speedup analysis, we discuss the preliminary speedup 
comparison between PBA CUDA implementation and proposed CUDA imple-
mentation. The PBA CUDA and proposed CUDA implementations converge to 
a different mean square error with a different number of LM iterations and con-
jugate gradient iterations. This is because the proposed CUDA implementation 
has different configurations, like using explicit Jacobian and nine camera para-
meters. As a result, the total LM iterations in the proposed CUDA implementa-
tion are modified to attain similar or better mean square error as the PBA 
CUDA implementation. 

The analysis shows that the speedup varies between the proposed CUDA im-
plementation and the PBA CUDA implementation to converge to a specific 
mean square error, with the proposed CUDA implementation being performant 
compared to the PBA CUDA implementation in most cases. The total number of 
conjugate gradient steps required by the PBA CUDA implementation is higher 
than the proposed CUDA implementation. This indicates that the time taken by 
the PBA CUDA implementation per iteration of the LM step, or the conjugate 
gradient iteration is less than the proposed CUDA implementation. Various ad-
vanced optimization techniques, like improving the memory throughput and 
minimizing the warp divergence, can be implemented in the proposed CUDA 
implementation. As a result, further optimization of the proposed CUDA code 
will improve the speedup compared to the PBA CUDA implementation. 

7. Conclusion and Future Work 

The camera parameters and 3D points play a vital role in scene reconstruction. 
Refining of the intrinsic and extrinsic parameters of the camera and the 3D 
points through bundle adjustment algorithm provides accurate information 
about the depth, orientation, and alignment of the objects in the scene. Refine-
ment of the camera parameters and 3D points involves solving of the LM algo-
rithm which is computationally expensive and proportional to the number of 
images, points, and projections. In this paper, the accuracy of the bundle ad-
justment algorithm is improved by minimizing the reprojection error. In addi-
tion, the computation cost of the algorithm is addressed by parallel program-
ming using CUDA programming model. Overall, the accuracy of the refinement 
is studied for obtaining improved scene reconstruction and the computation 
cost of the algorithm is improved as it is computationally expensive for refining 
larger datasets. 

An additional radial distortion parameter and explicit Jacobian computation 
are analyzed and demonstrated to have better convergence. The BA algorithm is 
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also implemented on GPUs using the CUDA programming model and demon-
strated to have a significant speedup compared to the sequential implementa-
tion. In addition, we also demonstrate the use of various CUDA features that 
improve the performance of the BA algorithm by reducing the computational 
time. The concurrency of the computations in the BA algorithm is exploited us-
ing CUDA streams, resulting in asynchronous execution. We have used atomic 
operations to read and write data from/to the same memory location by different 
threads without race conditions. 

The use of complex preconditioners that would improve the convergence in 
the conjugate gradient method can be studied as part of future work. The in-
creased computational time taken by the complex preconditioners can be ad-
dressed using GPUs. As aforementioned, the GPU implementation in the paper 
involves basic optimization techniques to improve the speedup of the GPU code. 
Further advanced optimization techniques involving data layout and utilizing 
shared and register memory effectively can be implemented in the CUDA code. 
In addition, comparing the proposed CUDA code with the state-of-the-art GPU 
implementations can provide further analysis of the algorithm and its behavior 
on the GPUs. 
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