
Engineering, 2023, 15, 663-690
https://www.scirp.org/journal/eng

ISSN Online: 1947-394X
ISSN Print: 1947-3931

DOI: 10.4236/eng.2023.1510046 Oct. 31, 2023 663 Engineering

Improving Accuracy and Computational Burden
of Bundle Adjustment Algorithm Using GPUs

Pranay R. Kommera, Suresh S. Muknahallipatna*, John E. McInroy

Department of Electrical Engineering and Computer Science, University of Wyoming, Laramie, Wyoming, USA

Abstract
Bundle adjustment is a camera and point refinement technique in a 3D scene
reconstruction pipeline. The camera parameters and the 3D points are refined
by minimizing the difference between computed projection and observed
projection of the image points formulated as a non-linear least-square prob-
lem. Levenberg-Marquardt method is used to solve the non-linear least-square
problem. Solving the non-linear least-square problem is computationally ex-
pensive, proportional to the number of cameras, points, and projections. In
this paper, we implement the Bundle Adjustment (BA) algorithm and analyze
techniques to improve algorithmic performance by reducing the mean square
error. We investigate using an additional radial distortion camera parameter
in the BA algorithm and demonstrate better convergence of the mean square
error. We also demonstrate the use of explicitly computed analytical deriva-
tives. In addition, we implement the BA algorithm on GPUs using the CUDA
parallel programming model to reduce the computational time burden of the
BA algorithm. CUDA Streams, atomic operations, and cuBLAS library in the
CUDA programming model are proposed, implemented, and demonstrated
to improve the performance of the BA algorithm. Our implementation has
demonstrated better convergence of the BA algorithm and achieved a spee-
dup of up to 16× on the use of the BA algorithm on various datasets.

Keywords
Bundle Adjustment, Levenberg-Marquardt, Scene Reconstruction, Radial
Distortion Coefficient, Explicit Jacobian, CUDA Optimization

1. Introduction

Image-based three-dimensional (3D) scene reconstruction is an important com-
ponent of Computer Vision. The image-based 3D scene reconstruction aims to

How to cite this paper: Kommera, P.R.,
Muknahallipatna, S.S. and McInroy, J.E.
(2023) Improving Accuracy and Computa-
tional Burden of Bundle Adjustment Algo-
rithm Using GPUs. Engineering, 15, 663-690.
https://doi.org/10.4236/eng.2023.1510046

Received: September 25, 2023
Accepted: October 28, 2023
Published: October 31, 2023

Copyright © 2023 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/eng
https://doi.org/10.4236/eng.2023.1510046
https://www.scirp.org/
https://doi.org/10.4236/eng.2023.1510046
http://creativecommons.org/licenses/by/4.0/

P. R. Kommera et al.

DOI: 10.4236/eng.2023.1510046 664 Engineering

recreate a 3D geometric scene using the scene’s two-dimensional (2D) images.
The 3D scene reconstruction systems are prominent in the film industry, gam-
ing, city and street modeling, and augmented reality to obtain 3D geometric prop-
erties of the scene. The reconstruction systems are also used in various fields like
medical imaging [1] to reconstruct human body anatomy and geosciences [2] to
generate 3D models of objects of geological interest.

A general 3D scene reconstruction pipeline involves multiple stages such as
feature extraction [3], feature matching [4], camera parameters and 3D points
initialization [5], camera parameters and 3D points refinement [6], and dense
reconstruction. Precise information about camera parameters and 3D points is
vital for accurate calibration and 3D reconstruction. They provide information
about the orientation, measurements of the objects in the scene, and the position
and depth of the various objects. As a result, refining camera parameters and 3D
points plays an important role in the 3D scene reconstruction.

In this paper, we work on the refinement stage by implementing the Bundle
Adjustment (BA) algorithm. The BA algorithm is used to refine the camera pa-
rameters and/or the 3D points by minimizing the reprojection error formulated
as the summation of the differences between the computed reprojection and the
observed projection. The total number of camera parameters and 3D points in-
volved in the BA algorithm depends on the number of cameras generating an
image each, the number of camera parameters being refined, the number of 3D
points, and their projections across all the images. The computational load in the
BA algorithm is proportional to the number of images, the total number of
camera parameters, the number of 3D points, and their projections across the
images. In this paper, we implement the BA algorithm on datasets [7] available
online. The algorithm performance is optimized by improving the algorithm’s
convergence by minimizing the reprojection error and reducing the total com-
putational time.

BA algorithm involves minimization of the reprojection error and can be
represented as a non-linear least-squares problem linearized by approximation
of the reprojection error function to a first-order Taylor polynomial expansion.
The minimization of the reprojection error can be achieved by solving the sys-
tem of Linear equations using methods like Gauss-Newton [8], Gradient Des-
cent [9], and Levenberg-Marquardt (LM) [10] [11]. The LM method, a combina-
tion of Gauss-Newton and Gradient Descent, is used prevalently since it con-
verges better than using only Gauss-Newton or Gradient Descent. Using Cho-
lesky factorization, the linear system can be solved to obtain exact solutions
leading to the exact-step LM method [6]. Even though the system of linear equa-
tions is symmetric positive definite (SPD), the computational burden increases
polynomial with the number of images, points, and projections. Since an exact
solution of the linear system is not required for 3D scene reconstruction, the li-
near system can be solved using the iterative LM method known as the in-
exact-step LM method. The inexact-step LM method [7] computes approximate
solutions using an iterative solver, such as Conjugate Gradient (CG) or precon-

https://doi.org/10.4236/eng.2023.1510046

P. R. Kommera et al.

DOI: 10.4236/eng.2023.1510046 665 Engineering

ditioned Conjugate Gradient (PCG) methods. Many researchers [6] [7] have
demonstrated that the exact-step LM method is ideal for smaller datasets, and
the inexact-step LM method is ideal for larger datasets.

In this paper, we implement the BA algorithm and evaluate techniques to im-
prove the algorithm’s performance by improving the convergence of the repro-
jection error. Camera parameters like rotation vector, translation vector, focal
length, radial distortion, and 3D points are widely used in camera calibration. In
addition, researchers in the state-of-the-art PBA [12] implementation have em-
ployed the first radial distortion coefficient, whereas implementation in [13] has
used both the first and second radial distortion coefficient. Adding a second
radial distortion coefficient would increase the total number of computations. In
this paper, we evaluate using the second radial distortion coefficient to minimize
the reprojection error and analyze the tradeoff between improving the reprojec-
tion error and increasing the computational load.

In addition to using the second radial distortion coefficient, we evaluate the
effect of explicit analytical derivatives [14] by manually computing the Jacobian.
Explicitly computing the Jacobian and using additional radial distortion coeffi-
cient increases the total number of computations in the BA algorithm. The in-
crease in computational cost can be addressed by implementing the input/output
operations on central processing units (CPUs) and concurrent sections of the
code on graphics processing units (GPUs) using different performance optimi-
zation techniques.

CPUs and GPUs are two different types of processors that are widely used for
computational purposes. The basic building blocks of both the processors con-
tain similar components like cores and memory but vary in the numerical and
functional configuration of these components. Generally, CPUs contain a small-
er number of cores compared to GPUs with a higher clock rate thereby execut-
ing instructions faster compared to GPUs. Whereas GPUs with a higher number
of cores can execute more instructions concurrently thereby resulting in higher
throughput. The pipelining in the CPUs is more complex resulting in better ex-
ecution of input/output, branching and logical operations compared to GPU
cores which mainly target simple mathematical operations. In addition, the cur-
rent CPUs have higher memory size compared to GPUs, whereas GPUs contain
higher memory bandwidth compared to CPUs.

Recent advances in the computational capabilities of CPUs and GPUs have
made them feasible for high-performance computations. The complex circuitry
in CPUs, limited cores, and higher clock rates make them suitable for branching
and input/output operations computations. The lightweight nature of the com-
putational cores in huge numbers on GPUs makes them ideal for large-scale
concurrent computations. In recent years, the CPU and GPU hardware have
improved significantly in terms of resources on the chips, their performance,
and efficiency. In addition to the improvements in the hardware, the software
aspects, like the compilers and libraries used to exploit the parallelism in the
computational methods on the respective hardware, have also improved signifi-

https://doi.org/10.4236/eng.2023.1510046

P. R. Kommera et al.

DOI: 10.4236/eng.2023.1510046 666 Engineering

cantly. These improvements in hardware and software can address the computa-
tional limitations of the current BA algorithm implementations. In this paper,
we demonstrate the use of GPUs and their features to address the increasing
computational cost from the proposed additional radial distortion coefficient
and explicit analytical derivatives. This is achieved by executing the compute-
intensive concurrent operations on GPU and input/output, logical and branch-
ing operations on CPU.

The rest of the paper is organized as follows. Section 2 talks about various im-
plementations of the BA algorithm. Section 3 provides information about the BA
algorithm, LM method, and their mathematical representation. Section 4 talks
about the Jacobian computation in PBA, which uses explicit analytical deriva-
tives, and provides information about the additional radial distortion parameters
used in this paper. In addition, Section 4 also provides information about the
CUDA implementation of the BA algorithm. Section 5 provides information
about the datasets and the performance parameters used in the paper. Section 6
demonstrates the results and provides information about the performance of the
implemented sequential and CUDA versions of the BA algorithm. Finally, the
paper concludes by reiterating the purpose for improved accuracy and computa-
tion cost of the algorithm, summarizes the findings and puts forward the scope
of future work in the conclusion and future work section.

2. Literature Review

Refinement of camera parameters and 3D points in [15] has taken an incremen-
tal approach by adding information from one image at a time to the BA algo-
rithm. This incremental approach has resulted in a significantly higher compu-
tational time. Efforts in [5] involve the use of the exact-step or inexact-step LM
method based on the problem size, unlike [15], which used an incremental ap-
proach, a minimal subset of images that capture the dense connectivity [16], and
the geometry of the scene are used to solve the BA algorithm.

The implementation in [6], which involves Cholesky decomposition and
Schur complement, has proven to be accurate for solving linear systems using
the LM method. With the increase in number of cameras and points, the sparsity
has increased significantly in the linear systems, and the Schur complement with
Cholesky decomposition is found to be computationally expensive. On the other
hand, using the inexact-step LM method with the PCG method [7] [17] is ap-
propriate for problems with a larger number of images. The convergence rate of
the PCG method is dependent on the preconditioners used. Different precondi-
tioners are studied [7] [17] [18] for the bundle adjustment problem.

BAL implementation [7] has compared the performance of the exact-step LM
method with the inexact-step LM method using Jacobi, block Jacobi, and SSOR
preconditioners. Multiscale preconditioning [18] was also proposed, improving
the PCG method’s convergence rate. In addition, researchers [19] have also im-
plemented PCG methods for large-scale BA using a reduced camera system. The
linear system is decomposed into blocks, and variable ordering is analyzed in

https://doi.org/10.4236/eng.2023.1510046

P. R. Kommera et al.

DOI: 10.4236/eng.2023.1510046 667 Engineering

this work. They have compared the LDL factorization and PCG method perfor-
mance with preconditioners confined to Jacobi and SSOR preconditioner. Ceres
Solver [20], a C++ library to solve non-linear Least Squares problems, and
Sparse Bundle Adjustment (SBA) [6] library is developed to compute the BA al-
gorithm. Both these libraries take advantage of the sparse structure in the BA
problems by implementing Block Compressed Sparse Row (BCSR) and Com-
pressed Sparse Row (CSR) formats. Ceres Solver provides an analytic, numeric,
and automatic derivatives interface.

Irrespective of the preconditioner used in the PCG method, sparse ma-
trix–vector multiplication is one of the computationally expensive mathematical
operations in the PCG method. The PBA implementation has tabulated the per-
centage of time spent on different operations. The time taken for matrix-vector
multiplications is more than 80% of the time in the LM method. As a result,
sparse matrix-vector multiplications play a significant role in the computational
load of the PCG method.

A few efforts [12] [13] [21] were also made to implement the BA algorithm on
many-core GPUs. Researchers [21] have developed a GPU version of the ex-
act-step LM method using Compressed Column Storage (CCS). The computa-
tionally intensive linear systems are solved using the MAGMA library [22]. A
GPU version of the inexact-step LM method using a block Jacobi preconditioner
is developed in Parallel Bundle Adjustment (PBA) [12]. In the PBA implementa-
tion, only eight camera parameters are refined, consisting of three rotational
elements, three translational elements, one focal length, and one radial distortion
parameter. The BCSR format stores the sparse matrix, and the implementation
has shown a significant performance boost compared to single-core execution.
In this implementation, the augmented matrix is not computed; the Jacobian
matrix is used directly in the computations. Researchers have utilized the
cross-product between the partial derivatives of the 2D image vector with re-
spect to the 3D point and partial derivatives of the 3D point with respect to
axis-angle representation to compute the partial derivatives of the projection
function with respect to the rotational vector. Approximations are employed to
simplify the derivatives, resulting in zero values for a few derivatives. The PBA
implementation can execute the code with and without the use of the Schur
complement.

In the implementation [13], 11 camera parameters are refined, and only the
time-consuming computations are simulated on GPU, and the remaining com-
putations are simulated on CPU. Researchers have demonstrated their imple-
mentation to be better compared to the PBA implementation but have not pro-
vided a comparative analysis for their better convergence. In addition, the GPU
performance is evaluated on datasets with fewer points and projections.

The current research efforts have targeted refining fewer camera parameters,
parallelizing only the compute-intensive computations on the GPU, and work-
ing on datasets with fewer points and projections. In this research, we evaluate
using second radial distortion in the camera parameters and explicit Jacobian

https://doi.org/10.4236/eng.2023.1510046

P. R. Kommera et al.

DOI: 10.4236/eng.2023.1510046 668 Engineering

computation. Unlike [13], a comparative analysis of using the second radial dis-
tortion coefficient, its effect on the computational cost, and the algorithm con-
vergence is presented. The convergence rate using the approximated Jacobian
computation from the state-of-the-art implementation is compared with the ex-
act Jacobian computations obtained from the proposed explicit derivatives. In
the proposed framework, apart from parallelizing only the compute-intensive
computation on GPU, all the computations in the LM iterations are ported to
GPU, thereby eliminating intermediate data transfers. In addition, the algo-
rithm’s convergence rate and computation time are evaluated on datasets with
more points and projections.

3. Bundle Adjustment Algorithm Formulation
3.1. Projection Function

The formulation of the BA algorithm depends on the 3D points being projected
into the 2D images. The 3D world coordinates are mapped to the 2D camera
pixel coordinates using a projection function that uses a pinhole camera model.
Mathematically, a projection function [7] uses 3D point coordinates and camera
parameters like rotation matrix, translation vector, focal length, and radial dis-
tortions to compute the 2D projection. The projection function formulated is
shown in Equation (1).

() ()= ∗ ∗P r I If f (1)

[]1 2, , , , ,=P R T Xf K K

() 2 4
1 21.0= + ∗ + ∗r I I IK K

where,
()Pf is the projection function in 2D pixel coordinates

f is the focal length of the camera
()r I is a scaling factor in terms of first and second radial distortion coeffi-

cients K1 and K2
, , = = − −I x y x z y zI I O O O O is the homogenous vector in the image

plane
O is the 3D point , , = + RX Tx y zO O O in camera coordinates
R is a 3 × 3 rotation matrix
T is a 3D translation vector
X is a 3D point
The scaling factor represented above in Equation (1) includes the second radi-

al distortion coefficient K2 which is analyzed in this work with respect to its ef-
fect on the convergence and the computational cost of the BA algorithm.

3.2. Bundle Adjustment Algorithm and Levenberg-Marquardt
Method

The Bundle adjustment algorithm refines the 3D points and the camera parame-
ters by minimizing the reprojection error, formulated as the summation of the

https://doi.org/10.4236/eng.2023.1510046

P. R. Kommera et al.

DOI: 10.4236/eng.2023.1510046 669 Engineering

difference between the computed and observed projections. The minimization of
the reprojection error for n points and m cameras can be formulated as shown in
Equation (2).

() () 2

1 1 1 1min , min
= = = =

= −∑ ∑ ∑ ∑P x x Pij iji j i
n m

j
m n f (2)

where,

(),P xij is the projection error function
xij is the observed projection of point i in an image from the camera j
()Pf is the projection function used to obtain computed projections

In Equation (2), it can be observed that the reprojection error is a non-linear
least-squares problem, and it can be solved using the Levenberg-Marquardt
(LM) method. The LM method involves the approximation of a reprojection er-
ror with an updated parameter vector and produces a series of parameter vectors
that minimize the reprojection error. As illustrated in [6] [7], the minimization
results in a normal equation as in Equation (3).

T T= −J J J eδ (3)

where,
()= ∂ ∂J P Pf is a Jacobian of the projection function

δ is the change in the parameter vector
e is the error vector computed as the difference between the computed projec-

tion and observed projection
The Jacobian computed in the Equation (3) may result in a rank deficient ma-

trix due to the limited information available from the camera-point system, re-
sulting in the TJ J matrix to be a singular matrix. In such a case, solving Equa-
tion (3) will not guarantee convergence. As a result, to ensure convergence, a
regularization term is added to Equation (3) resulting in an augmented normal
equation shown below.

()T T Tµ+ = −J J D D J eδ (4)

where,
D is a non-negative diagonal matrix formulated as the square root of the di-

agonal of the matrix TJ J [1]
μ is the positive damping parameter used to control the regularization
The augmented normal equation in Equation (4) can be represented as a li-

near system of equations as below.

=Ax b (5)

where,
T Tµ= +A J J D D is a symmetric positive-definite matrix

T= −b J e is a gradient vector
=x δ is a solution vector

Using the regularization term, the matrix ()T Tµ+J J D D becomes non-
singular and positive definite ensuring convergence. The damping parameter
controls the regularization’s magnitude, allowing to alternate between the gra-

https://doi.org/10.4236/eng.2023.1510046

P. R. Kommera et al.

DOI: 10.4236/eng.2023.1510046 670 Engineering

dient descent and the Gauss-Newton method based on the minima. A higher
value of damping term results in the algorithm behaving as a gradient-descent
algorithm thereby increasing the reduction in the residual. Lower values of
damping term result in the algorithm to behave as a Gauss-Newton algorithm
thereby slowing the reduction in the residual. The value of the damping para-
meter can be updated systematically [23] resulting in convergence to a better
local minimum.

3.3. Mathematical Representation

The augmented normal equation in Equation (4) depends on the Jacobian and
the error vector derived from the total number of cameras, 3D points, and their
projections. Furthermore, it depends on the total number of optimized camera
parameters. For example, consider three points projected onto two images. The
computed projection vector and the parameter vector can be represented as
shown below:

() () ()T TT T T T T T T T T T T
11 12 21 22 31 32 1 2 1 2 3ˆ ˆ ˆ ˆ ˆ ˆ, , , , , ; , , , ,= =P x x x x x x P c c p p pf (6)

where,
Tx̂ij is the 2D computed projection of point i in camera j
Tc j and Tpi are the n-dimensional camera parameter vector of camera j and

m dimensional point vector of point i
n and m are the total number of camera parameters and points, respectively
The sparse Jacobian matrix computed from the above projection and parame-

ter vector can be represented as illustrated in [6]. Based on the Jacobian repre-
sentation [6], all the notations [12] in Equation (4) can be categorized into cam-
era and point sections as shown below:

; ; , ; , ; , = = = = = J J J D D D e e ec p c p c p c p c pδ δ δ (7)

The augmented normal equation in Equation (4) can be represented by the
camera and point sections as below:

T
µ

µ

=

U W
W V

c c

p p

δ
δ

 (8)

T T T T T T T; ; ; ;µ µµ µ= + = + = = − = −U J J D D V J J D D W J J e J ec c c c p p p p c p c c c p p pJ

Solving the augmented normal equation represented in Equation (8) using the
PCG method involves computing the solution for the entire size of the solution
vector. These computations can be reduced using the Schur complement, which
involves multiplying both sides of Equation (8) with a block matrix as illustrated
in [6] and represented in Equation (9) and Equation (10).

()1 T 1
µ µ
− −− = −U WV W WVc c pδ (9)

T
µ = −V Wp p cδ δ (10)

Ongoing in this paper, solving Equation (8) directly for the solution vector is
called without-Schur complement, and solving for the solution vector using the

https://doi.org/10.4236/eng.2023.1510046

P. R. Kommera et al.

DOI: 10.4236/eng.2023.1510046 671 Engineering

Schur complement representation in Equation (9) and Equation (10) is called
with-Schur complement.

4. Implementation

This section discusses the implementations proposed in this paper to improve
the algorithm’s convergence and reduce the time taken for the algorithm execu-
tion. The implementations are categorized into sequential implementation and
CUDA implementation. All the implementations are developed and analyzed for
the without-Schur and with-Schur complements.

4.1. Sequential Implementation

The performance in terms of convergence of the BA algorithm is analyzed using
an additional radial distortion coefficient and explicitly computing the Jacobian
matrix.

4.1.1. Additional Radial Distortion Coefficient
The camera parameters and points are primarily used to compute the reprojec-
tion error using the projection function and to compute the Jacobian matrix
from the partial derivatives, which are then used to generate the augmented
normal equation. In the PBA implementation, the camera parameters include an
utmost of eight parameters, including three translation elements, three rotation-
al elements in Rodrigue’s vector representation, one focal length, and one radial
distortion. The camera center is assumed to be at the origin, and the skew factor
is set to 1. As always, the point vector includes three elements that provide the
point’s location in the 3D coordinates.

As a result, the size of each element-block [6] in the camera section of the Ja-
cobian is (2 × 8) and the point section is (2 × 3). The size of the symmetric posi-
tive-definite matrix A is ((8 × number of cameras) + (3 × number of points))2
and the size of both the gradient and solution vectors are ((8 × number of cam-
eras) + (3 × number of points)).

In this paper, we analyze the effect of using the second radial distortion coeffi-
cient. As a result, a total of nine camera parameters, which include three transla-
tion elements, three rotation matrix elements in the form of Rodrigue’s vector,
one focal length, and two radial distortions, are used. Using the second radial
distortion coefficient improves image correction compared to using only the
first radial distortion coefficient. In addition, using an additional radial distor-
tion coefficient will add additional constraints to the minimization problem in
Equation (2), resulting in better refinement of the 3D points and camera para-
meters.

The projection function with the additional radial distortion coefficient is
represented in Equation (1). The primary difference is in the scaling factor
where the additional radial distortion parameter K2 is implemented. The third
radial distortion coefficient is not used in this implementation as it is a very
small number in the order of less than −20 and does not significantly impact the

https://doi.org/10.4236/eng.2023.1510046

P. R. Kommera et al.

DOI: 10.4236/eng.2023.1510046 672 Engineering

image correction.
The change in the number of camera parameters also impacts the size of each

Jacobian and the augmented normal equation. The use of an additional radial
distortion parameter (represented in bold) increases the size of the camera ele-
ment block in the Jacobian, as shown in Equation (11).

() 3 31 2 1 2 1

1 2 3 1 2 3 1

ij ijij ij ij ij ijijij
j jj j j j jjjij

j
ij ij ij ij ij ij ij ij ij
j j j j j j j j j

x xx x x x xxx
f k tk k t t Kfc

y y y y y y y y y
c k k k t t t f K

∂ ∂∂ ∂ ∂ ∂ ∂∂ ∂
 ∂ ∂ ∂∂ ∂ ∂ ∂ ∂∂∂ = = ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

2

2

ij
j

ij
j

x
P K

yc
K

∂

∂
∂

∂

(11)

where,

(),ij ijx y is the projection in camera system for point i and camera j
jc is the camera parameter vector of camera j

()1 2 3, ,=j j j jk k k k is the rotation matrix of camera j in axis-angle representa-
tion

()1 2 3, ,=j j j jt t t t is the translation vector of camera j
jf is the focal length of camera j

1
jK and 2

jK are the first and second radial distortion coefficients of camera j
With the increase in element-block size in the Jacobian, every matrix/vector

representation related to the camera also increases, as in Table 1.

4.1.2. Explicit Jacobian Computation
Each Jacobian element-block is computed as illustrated in [6] using Equation (3)
and Equation (7). With nine camera parameters and three-point coordinates, the
Jacobian element-blocks for each camera and point can be represented as in Eq-
uation (11) and Equation (12).

()
∂ ∂ ∂ ∂
 ∂ ∂ ∂∂ ∂ = =
 ∂ ∂ ∂ ∂∂

∂ ∂ ∂ ∂

P

p

ij ijij ij
i ii iij

i
ij ij ij ij
i i i i

x xx x
f p yx z

y y y y
p x y z

 (12)

where,

Table 1. Size of different matrix/vector representations.

Size of
With 8 Camera Parameters

rows × cloumns
With 9 Camera Parameters

rows × cloumns

J ij
c 2 × 8 2 × 9

U j 8 × 8 9 × 9

A () ()()2

cam pt8 num 3 num× + × () ()()2

cam pt9 num 3 num+× ×

δ () ()()cam pt8 num 3 num 1×+× × () ()()cam pt9 num 3 num 1×+× ×

 () ()()cam pt8 num 3 num 1×+× × () ()()cam pt9 num 3 num 1×+× ×

https://doi.org/10.4236/eng.2023.1510046

P. R. Kommera et al.

DOI: 10.4236/eng.2023.1510046 673 Engineering

ip is the point parameter vector point i

(), ,i i ix y z are the 3D coordinates of point i
Computing the partial derivatives concerning translation vector, focal length,

and radial distortion are straightforward. But the partial derivatives concerning
rotation vector in axis-angle representation is implemented [12] [24] through
the cross product of the partial derivatives of the 2D image vector with respect to
3D point, and partial derivatives of 3D point with respect to the axis-angle re-
presentation as below.

2

2

0

0

 − ∂
=

∂ −

f fx
P z z

f fyX
z z

3 2

3 1

2 1

0
0

0

−
∂ = − ∂

 −

k k
X k k
w

k k
 (13)

where,
P is the projection computed

(), ,=X x y z is the 3D point in camera coordinates computed from rotation
matrix R derived using Rodrigues’ formula from its axis-angle representation

f is the focal length
()1 2 3, ,=w k k k is the rotational vector representation in axis-angle format

The rotation matrix is computed from the axis-angle representation using
Rodrigues’ formula [25], and the Jacobian for rotation vector in axis-angle re-
presentation is computed as shown in Equation (13). As a result, when the pa-
rameters are updated after a successful LM iteration, the updated rotation matrix
is computed as Equation (14).

T′ = ∗ oriR dR R (14)

where,
′R is the updated rotation matrix
T
oriR is the transpose of the original rotation matrix

dR is the change in rotation matrix. For simplicity, the above equation does
not include radial distortion parameter

PBA implementation has adapted the above methodology and the partial de-
rivative of ijy and ijx with respect to translation elements t1 and t2 are ap-
proximated to 0, although they contain smaller non-zero values.

Unlike in PBA implementation, we propose using a rotation vector in the
axis-angle representation directly in the Jacobian computation without compu-
ting the rotational matrix using Rodrigues’ formula and without any cross-product
of partial derivatives. The Jacobian is derived using explicit analytical deriva-
tives. By using rotation vector in axis-angle rotation, there is no need to update
the rotation matrix as in Equation (14); instead update the rotation matrix in the
axis-angle representation as shown in Equation (15).

δ′ = +ori
kk k (15)

where,
[]1 2 3′ ′ ′ ′=k k k k are the update rotation matrix in axis-angle representation

https://doi.org/10.4236/eng.2023.1510046

P. R. Kommera et al.

DOI: 10.4236/eng.2023.1510046 674 Engineering

1 2 3 =
ori ori ori orik k k k are the original rotation matrix in axis-angle representa-

tion

1 2 3
δ δ δ δ = k k k k are the change in the rotation matrix in axis-angle repre-

sentation
Unlike in PBA implementation, the partial derivative of ijy and ijx with

respect to translation elements t1 and t2 are not approximated to 0. The expres-
sions for the partial derivates are complex to be derived manually. As a result,
the derivates of the Jacobian elements are computed using “diff” command in
Matlab Symbolic Math Toolbox [26] and by hardcoding the projection function
into the code.

Using explicit Jacobian matrix and the additional radial distortion coefficient
increases the total computations. This increase in the computational load is ad-
dressed by implementing the code using the CUDA programming model on the
GPUs.

4.2. CUDA Implementation

As the Jacobians of each projection function depend on one set of camera and
3D points only, most elements of the Jacobian matrix would end up being zero,
resulting in a sparse matrix as detailed in [6]. Computing normal equations from
the Jacobian matrix and solving the LM implementation would involve numer-
ous matrix and vector operations that benefit heavily from the cache. Also, the
independent nature of many computations in the BA algorithm would benefit
from the asynchronous computations. The features as mentioned earlier, and the
behavior of the BA algorithm would benefit from simulating different code sec-
tions concurrently on the GPUs. As a result, the Compute Unified Device Ar-
chitecture (CUDA) [27] application programming interface (API) is used to ac-
celerate the BA algorithm using the inexact-step LM method with the PCG me-
thod on GPUs.

This paper implements the BA algorithm on GPUs using the CUDA pro-
gramming model. The proposed explicit Jacobian and an additional radial dis-
tortion coefficient in the sequential implementation are also used in the CUDA
implementation. Implementing the BA algorithm on the GPUs using CUDA
involves many aspects of memory transfers and block-thread configuration on
the GPUs for optimal concurrency. This paper implements basic optimizations
involved in CUDA programming for effective memory transfers and computa-
tional throughput.

In this paper, we study the use of different CUDA features/libraries to im-
prove the computational performance of the algorithm compared to its sequen-
tial implementation. A highly optimized CUDA BLAS library, cuBLAS [28], is
used for all the vector operations. CUDA streams are used to take advantage of
the asynchronous behavior of the mathematical equations in the algorithm. In
addition, owing to the sparse structure of the matrix, Atomic Additions are used
in the matrix-vector multiplications, thereby taking advantage of the concur-
rency from the parallel computations, and making sure to eliminate any race

https://doi.org/10.4236/eng.2023.1510046

P. R. Kommera et al.

DOI: 10.4236/eng.2023.1510046 675 Engineering

condition from writing to the same memory. Parallelizing compute-intensive
computations on the GPU and transferring the data to the CPU is ideal for
smaller datasets, but the data transfer penalty would be significant for huge da-
tasets. The proposed framework is developed to execute the entire BA algorithm
on the GPUs, eliminating intermediate data transfers of considerable sizes to the
CPU.

4.2.1. Computational and Memory Tradeoff
Solving the augmented normal equation requires the computation of matrices
represented on the left-hand side of Equation (8). In the PBA implementation,
the matrix is not computed explicitly but through the matrix-vector product [12]
in the PCG method. The PCG method is implemented using a block Jacobi pre-
conditioner. Even though the matrix is not explicitly computed, the diagonal
blocks in matrix A need to be computed for the sake of the preconditioner. This
would involve multiple computations of block diagonal matrices µU and µV .

Instead of computing block diagonals multiple times, we store their values in
the memory, thereby reducing the additional computations. Storing the matrices
does not require a significant memory as their sizes are smaller. In addition, the
gradient vector is also computed and stored in the memory as it is required to
check the termination conditions in the algorithm. Storing the required matrices
and vectors instead of recursive computations has resulted in around 3% per-
formance improvement in the computational time.

4.2.2. Concurrent Executions
In the BA algorithm, solving the augmented normal equation can be categorized
into camera and point sections and be executed concurrently. The computation
of block diagonal matrices and their inverse for the preconditioner in the PCG
method are independent of each other. In addition, matrix-vector computations
in the PCG method can also be executed concurrently per camera and point sec-
tion. Concurrent executions of the camera and point sections will improve the
algorithm’s performance by reducing the computational time. The serial and
concurrent execution of the matrix-vector multiplication in the PCG method is
shown below:

T T
µ µ

µ µ

 +
= = +

U W U W
A

W V W V

k k k
c c pk
k k k
p c p

p p p
p

p p p
 (16)

From Figure 1 it can be seen that the matrix-vector computations take around
six steps when computed sequentially but take only two steps when computed
concurrently. This paper uses CUDA streams [27] to implement concurrency in
the algorithm. Multiple CUDA streams are created and used across the algo-
rithm where the operations are independent. Figure 2 and Figure 3 provide an
NSight Systems [29] profiler view of the inverse computation of the diagonal
matrices with and without using streams.

The “cudaUinv” and “cudaVinv” kernels compute the inverse of block di-
agonals in the preconditioner computation. The kernels in Figure 2 are executed

https://doi.org/10.4236/eng.2023.1510046

P. R. Kommera et al.

DOI: 10.4236/eng.2023.1510046 676 Engineering

Figure 1. Sequential (left) and concurrent execution (right) of different stages in the ma-
trix-vector multiplication involved in PCG method.

Figure 2. Profiler view of the inverse of preconditioner without CUDA streams.

Figure 3. Profiler view of the inverse of the preconditioner with CUDA streams.

consecutively, one after the other, according to their calling. Whereas in Figure
3, with CUDA streams implementing the kernels on different streams, the kernel
execution starts around the same time. As a result, the computational time taken
by “cudaVinv” is hidden behind the computational time of the “cudaUinv” ker-
nel, thereby reducing the execution time for the entire preconditioner computa-
tion. Similarly, various computations of camera and point sections are indepen-
dent of each other, and their concurrency is exploited using the CUDA streams.

4.2.3. cuBLAS Implementation
Computation of the right-hand side of the normal equation involves matrix-
matrix multiplications of Jacobians. As in PBA implementation [12], the ma-
trix-matrix computations are replaced by the matrix-vector operation, and most
of the computations in the BA algorithm now involve matrix-vector and vec-
tor-vector operations. cuBLAS is a highly optimized BLAS library containing
APIs for matrix-vector and vector-vector operations, which can be used to im-
plement code on GPUs. cuBLAS APIs like L2-norm, dot product, vector addi-
tion, and scalar-vector multiplication are also utilized in the code, resulting in a

https://doi.org/10.4236/eng.2023.1510046

P. R. Kommera et al.

DOI: 10.4236/eng.2023.1510046 677 Engineering

performance boost of around 5% - 10% compared to the manually optimized
parallel kernels.

4.2.4. Atomic Operations
Computation of block diagonal matrices and matrix-vector multiplication oper-
ations involve sweeping through all the projections. PBA implementation [12]
stores shuffled copies of data-in-order to enable improved continuous memory
access patterns. In this paper, we implemented atomic operations [27] supported
by the CUDA platform. The atomic operations ensure that the same memory
location is not modified by any other thread, thereby preventing any read-after-write
hazard. As the computations are iterated through the projections, we can distri-
bute each computation concerning a projection onto one thread on GPU and
use atomic operations to update the values appropriately.

4.2.5. Thread and Block Configuration on GPU
Different thread and block configurations would impact the performance of the
CUDA kernels. Using very few threads in a block would result in underutiliza-
tion of the compute resources. On the other hand, utilizing more threads might
hit the resource limitations and spawn fewer blocks, resulting in less parallelism.
As a result, the thread and block configurations should be set based on the
computational load and the resources available per streaming multiprocessor on
a GPU.

In the BA algorithm, most of the matrix-vector, vector-vector operations are
iterated through several cameras, points, projections, and the size of the solution
vector. As the number of cameras is fewer compared to points and projections,
assigning computations of each camera to a block has produced optimal perfor-
mance for CUDA kernels that iterate through the cameras. On the other hand,
as the number of points and projections is higher, unrolling computations of
multiple points/projections per block has reduced the total number of blocks
invoked and produced optimal performance.

5. Datasets and Performance Parameters
5.1. Datasets

The datasets used in this paper are obtained from the online resources provided
by Bundle Adjustment in the Large [7]
(https://grail.cs.washington.edu/projects/bal/). The online resource provided has
around 100 different datasets. Below is a table with information about a few dif-
ferent datasets whose final mean square error, computational time, and speedup
are demonstrated in the paper. The table is arranged in increasing order of the
total number of projections.

Of these total datasets, about 32 of them do not converge from their initial
mean square error. This indicates that these datasets cannot be further refined.
Apart from these datasets, some produce different behavior involving Not a
Number (NaN) errors. In this paper, 66 different datasets are executed and ana-
lyzed. Apart from the datasets provided in Table 2, a summary of the behavior

https://doi.org/10.4236/eng.2023.1510046
https://grail.cs.washington.edu/projects/bal/

P. R. Kommera et al.

DOI: 10.4236/eng.2023.1510046 678 Engineering

Table 2. Details about the number of images, points, and projections for different data-
sets.

Dataset No. Number of Images Number of Points Number of Projections

1 21 11,315 36,455

2 138 44,033 165,899

3 856 93,344 415,769

4 1587 150,845 663,289

5 287 182,023 971,292

6 308 195,089 1,045,197

7 356 226,730 1,255,268

8 961 187,103 1,692,975

9 871 527,480 2,785,977

10 1936 649,673 5,213,733

of the remaining datasets will also be presented in the paper using the perfor-
mance parameters mentioned below.

5.2. Performance Parameters

The convergence of the mean square error of the algorithm is used as a mea-
surement in the sequential implementations. Lowering the mean square error
indicates better convergence. When comparing two different implementations
percentage error between the final mean square errors is calculated below.

original modified

original

mse mse
100%

mse
δ

−
= × (17)

where,
δ is the percentage error

originalmse is the final mean square error of the original code

modifiedmse is the final mean square error of the modified code
The aggregate performance of all the datasets will be computed using the av-

erage percentage error, as shown in Equation (18).

1Average Percentage Error
δ

== ∑
k

k
K

K
 (18)

where,
δ k is the percentage error of kth dataset
K is the total number of datasets
The positive average percentage error indicates the percentage of improve-

ment achieved by the modified code.
The speedup of the algorithm is used as a measurement to compare the per-

formance boost achieved by the CUDA implementation compared to the se-
quential implementation. The speedup can be computed from Equation (19).

https://doi.org/10.4236/eng.2023.1510046

P. R. Kommera et al.

DOI: 10.4236/eng.2023.1510046 679 Engineering

The higher the speedup, suggests better the performance of the modified imple-
mentation.

base

modified

Speedup = T
T

 (19)

where,
Tbase is the time taken by the base algorithm
Tmodified is the time the modified algorithm takes

6. Results and Performance Analysis

The proposed framework and the PBA implementation are implemented on a
server equipped with a 64-core AMD EPYC 7713P CPU and 3584 cores NVIDIA
A30 GPU. The AMD CPU and NVIDIA GPU are connected using a PCIe inter-
face with a bandwidth of 64GB/s. The proposed framework and the PBA library
use the C/C++ programming language for the CPU implementation and the
CUDA C programming model for the GPU implementation. In addition, the
cuBLAS library [28] is used in the proposed framework to implement the CUDA
version of basic linear algebra subroutines (BLAS).

First, the comparisons using different Jacobian computations and additional
camera parameters between the sequential implementations of the proposed im-
plementation and the PBA implementation are evaluated. Next, the CUDA ver-
sion of the proposed framework is compared with the CPU version of the pro-
posed framework and the CUDA version of the PBA library. All the compari-
sons involve both the algorithm configurations of without-Schur and with-Schur.

6.1. Sequential Implementation
6.1.1. Explicit Jacobian Computation
Explicitly computing the Jacobian affects the convergence of the algorithm. Ta-
ble 3 compares the convergence of different datasets from Table 2 between the
PBA implementation and the proposed explicit Jacobian implementation. Both
the configurations of the algorithm without-Schur and with-Schur complements
are provided.

Table 3 shows that for a higher number of datasets, the explicit Jacobian im-
plementation convergence is better or similar compared to the PBA implemen-
tation. Eliminating the approximations in the Jacobian computation would im-
pact the convergence. There are multiple datasets where the PBA implementa-
tion convergence is better than the explicit Jacobian implementation. The aver-
age percentage error for those without-Schur complement is 4.7%, and those
with-Schur complement is 3.7%. The positive value of the average percentage
error indicates that the algorithm has a better convergence using the explicit Ja-
cobian implementation. Of the 66 datasets analyzed, 75% have better conver-
gence using the explicit Jacobian implementation in the without-Schur configu-
ration, and 83% have better convergence using the explicit Jacobian implemen-
tation in the with-Schur configuration.

https://doi.org/10.4236/eng.2023.1510046

P. R. Kommera et al.

DOI: 10.4236/eng.2023.1510046 680 Engineering

Table 3. The final mean square error values across different datasets using without-Schur
and with-Schur complement for both the PBA Jacobian and Explicit Jacobian implemen-
tations.

Dataset
No.

Final Mean Square Error

Without-Schur Complement With-Schur Complement

PBA
Explicit
Jacobian

Rate of
Change

PBA
Explicit
Jacobian

Rate of
Change

1 1.846 1.844 0.002 1.846 1.844 0.002

2 1.239 1.238 0.001 1.239 1.237 0.002

3 1.271 1.117 0.154 1.282 1.116 0.166

4 1.595 1.347 0.248 1.796 1.332 0.464

5 1.146 1.262 −0.116 1.163 1.157 0.006

6 1.408 1.414 −0.006 1.242 1.061 0.181

7 1.451 1.649 −0.198 1.412 1.354 0.058

8 1.967 1.968 −0.001 1.967 1.968 −0.001

9 1.380 1.383 −0.003 1.386 1.383 0.003

10 1.929 1.937 −0.008 1.929 1.937 −0.008

6.1.2. Additional Camera Parameters
The use of an additional radial distortion coefficient has a significant impact on
the convergence of the algorithm. Table 4 shows the final mean square error
across different datasets without-Schur and with-Schur complement. The expli-
cit Jacobian implementation is employed using eight and nine camera parame-
ters. Unlike in Table 3, the difference between the final mean square errors is
higher. The convergence of the datasets is higher when nine camera parameters
are used. The average percentage error for those without-Schur complement is
17%, and for those with-Schur complement is 16%.

Although additional camera parameters would increase the total number of
computations and the memory usage, the algorithm’s convergence is signifi-
cantly improved. Using a second radial distortion coefficient results in addition-
al dimension in the Jacobian elements and the projection vector, providing more
information for the camera and point refinement. Of the entire 66 datasets ana-
lyzed, all the datasets have better convergence using nine camera parameters in
the without-Schur configuration, and 98% of the datasets have better conver-
gence using nine camera parameters in the with-Schur configuration.

6.1.3. Convergence Analysis
The minimization problem aims to converge the computed projections, which
are evaluated using the camera parameters and 3D points to the observed pro-
jections. In an ideal case, the mean square error would result in zero, where both
the observed and computed projections are similar. The convergence of the
computed projections to the observed projections by refining the camera para-
meters and 3D points is analyzed using the L-infinity norm in Table 5.

https://doi.org/10.4236/eng.2023.1510046

P. R. Kommera et al.

DOI: 10.4236/eng.2023.1510046 681 Engineering

Table 4. The final mean square error values across different datasets using without-Schur
and with-Schur complement for the eight and nine camera parameters implementations.

Dataset
No.

Final Mean Square Error

Without-Schur Complement With-Schur Complement

8 Camera
Parameters

9 Camera
Parameters

Rate of
Change

8 Camera
Parameters

9 Camera
Parameters

Rate of
Change

1 1.844 1.667 0.177 1.844 1.667 0.177

2 1.238 1.065 0.173 1.237 1.045 0.192

3 1.117 1.021 0.096 1.116 1.059 0.057

4 1.347 1.175 0.172 1.332 1.159 0.173

5 1.262 0.723 0.539 1.157 0.724 0.433

6 1.414 0.743 0.671 1.061 0.743 0.318

7 1.649 0.784 0.865 1.354 0.783 0.571

8 1.968 1.874 0.094 1.968 1.874 0.094

9 1.383 1.236 0.147 1.383 1.237 0.146

10 1.937 1.784 0.153 1.937 1.784 0.153

Table 5. L-Infinity norm of the projection errors.

Dataset
No.

L-Infinity Norm of the Projection Errors Represented in L-2 Norm

Initial
Without-Schur Complement With-Schur Complement

PBA Proposed PBA Proposed

1 0.01727 0.00478 0.00468 0.00478 0.00468

2 0.02075 0.00824 0.00815 0.00824 0.00816

3 2.39244 0.22943 0.02752 0.06158 0.13779

4 26.5631 0.15234 0.13674 0.46556 0.10041

5 0.11949 0.05866 0.00969 0.05787 0.00969

6 0.11345 0.06318 0.01152 0.05902 0.01151

7 0.11403 0.06488 0.01263 0.05927 0.01263

8 0.09239 0.04870 0.04862 0.04870 0.04862

9 0.04171 0.02299 0.02306 0.02300 0.02308

10 0.23783 0.05419 0.05418 0.05419 0.05418

First, each of the 2D projection errors computed initially is converted into a

scalar value by using the L-2 norm on each projection, resulting in a 1D projec-
tion error vector. L-infinity norm is then applied to the 1D projection error vec-
tor to identify the projection index with the largest projection error. The ‘Initial’
column in Table 5 provides information on the L-infinity norm for the projec-

https://doi.org/10.4236/eng.2023.1510046

P. R. Kommera et al.

DOI: 10.4236/eng.2023.1510046 682 Engineering

tion errors derived from the initial camera parameters and 3D points. Table 5
also provides information about the final L-Infinity norm for the projection er-
rors derived from the refined camera parameters and 3D points.

Table 5 shows that the proposed implementation with a second radial distor-
tion coefficient and the explicit Jacobian computation results in a lower L-infinity
norm than the PBA implementation. The overall reduction of the projection er-
ror indicates that the proposed implementation improves the algorithm’s con-
vergence. The difference between the L-infinity values provided can be observed
to be very small in the order of −1 to −4. This is because of the data being nor-
malized. Denormalization of the data would provide a better understanding of
the effect of the refined camera parameters and 3D points.

Table 6 provides the observed and computed projection in pixel coordinates
after denormalization. A comparison between the observed projection to the fi-
nal computed projection for the projection index with higher projection error
from both the PBA and Proposed implementations is shown in Table 6. The
comparison is done by computing the distance between the observed projection
and the computed projection in terms of pixel coordinates.

Table 6 shows that the proposed implementation has better convergence and
the final computed projection in terms of pixel coordinates is closer to the ob-
served projection than the PBA implementation. Figure 4 provides a pictorial
representation of the computed and observed projections for different projection
indexes. Figure 4 shows that the computed projections from the proposed im-
plementation are close to the observed projections compared to the computed
projections from the PBA implementation.

Figure 4. Final projections in pixel coordinates from both observed and computed pro-
jections.

https://doi.org/10.4236/eng.2023.1510046

P. R. Kommera et al.

DOI: 10.4236/eng.2023.1510046 683 Engineering

Table 6. Final projections are represented in pixel coordinates.

Dataset No.
Without-Schur Complement With-Schur Complement

PBA Proposed PBA Proposed

1 9.0172 11.1571 9.0205 11.1583

2 2.0843 1.5112 2.0937 0.9540

3 0.4697 0.2444 0.9435 0.2673

4 147.0987 0.0450 152.1348 0.0016

5 68.4172 33.4208 65.4357 33.4225

6 217.9652 1.8467 203.614 1.8483

7 222.7412 1.8852 203.4508 1.8588

8 34.0829 45.6782 34.0821 45.9777

9 0.1618 0.5123 0.1626 0.4891

10 25.9884 4.5954 25.9916 4.6031

6.2. CUDA Implementation

Based on the sequential implementation analysis, the algorithm’s CUDA version
is analyzed using explicit Jacobian implementation and nine camera parameters.
This paper implements a preliminary CUDA version of the algorithm resem-
bling the sequential implementation with basic GPU-related optimizations. Un-
like the PBA algorithm, which is heavily dependent on the texture memory de-
precated in the latest CUDA software stack, we are confining ourselves to effec-
tively utilize global, shared, and register memory. In addition, we have employed
the highly optimized cuBLAS library for all the linear algebra computations. As
the algorithm is highly sensitive to precision changes, similar behavior between
the sequential and CUDA implementations which are executed on different
hardware, is of utmost importance. As a result, we have initially compared the
final mean square error between the sequential and CUDA implementations,
followed by analyzing the speedup for different datasets.

The final mean square error is approximately similar across CPU and GPU
implementations. The overall average percentage error for without-Schur com-
plement is 0.05% and for with-Schur complement is 0.2%. Of the total 66 data-
sets, greater than 90% have the percentage error less than an order of −2. The
lower average percentage error indicates that sequential and CUDA implemen-
tations converge to the same minima. Although both the implementations con-
verge to the same minima, the number of LM steps and the total number of
conjugate gradients iterations it takes to reach the minima is different, and it is
mainly because of the differences in precision across hardware.

6.2.1. Computational Time and Speedup between CPU and GPU
Implementations

Figure 5 shows the time taken by sequential and CUDA implementations across

https://doi.org/10.4236/eng.2023.1510046

P. R. Kommera et al.

DOI: 10.4236/eng.2023.1510046 684 Engineering

Figure 5. Time taken by sequential and CUDA implementation across different datasets using without-Schur and with-Schur
complement. (a) Without-Schur Complement; (b) With-Schur Complement.

different datasets. The plot shows that the CUDA implementation always takes
less time compared to the sequential implementation. The time taken by the
with-Schur complement configuration is higher than the without-Schur com-
plement as it involves additional computations of the Schur complement. The

https://doi.org/10.4236/eng.2023.1510046

P. R. Kommera et al.

DOI: 10.4236/eng.2023.1510046 685 Engineering

time taken by a dataset depends upon many factors like the size of the delta vec-
tor, which is (9 × number of cameras) + (3 × number of points), number of pro-
jections, total LM iterations and total number of conjugate gradient iterations.
From Figure 5, it can be seen that the total number of projections significantly
impacts the time taken by the datasets.

The speedup between the sequential and CUDA implementations for the
above datasets is provided in Figure 6. From the plot, it can be observed that the
speedup is random across the datasets from 1.02× to 16×. As the time taken by
the dataset depends on many factors, as mentioned earlier, a smaller dataset
might take more time than a larger dataset if it requires more LM steps or con-
jugate gradient iterations. For example, the time taken by the Dataset ID# 9 is
greater than the time taken by the Dataset ID#10. Although Dataset ID#10 has
5,213,733 projections compared to the 2,785,977 projections in Dataset ID# 9,
the total number of conjugate gradient iterations taken by Dataset ID# 9 is
around 1400 compared to the 600 conjugate gradient iterations taken by Dataset
ID# 10. From our analysis, it is observed that the size of the dataset has a signifi-
cant impact on the speedup compared to the total LM steps and the conjugate
gradient iterations. The dataset’s size depends on the number of cameras, points,
and projections, of which the total number of projections has more impact on
the speedup.

To demonstrate, we have obtained the speedup for different datasets with an
increased number of projections by setting the total number of LM iterations
and the conjugate gradient iterations to one, as shown in Figure 7. From the
plot, it can be observed that the speedup increases as the total number of projec-
tions increases. But for a smaller number of projections, the total number of
cameras and points also affects the speedup.

Figure 6. Speedup between the sequential and CUDA implementation using with-Schur
and without-Schur complement across different datasets.

https://doi.org/10.4236/eng.2023.1510046

P. R. Kommera et al.

DOI: 10.4236/eng.2023.1510046 686 Engineering

In addition to the speedup plot in Figure 7, Table 7 provides information
about the time taken by sequential and CUDA implementations for eight and
nine camera parameters using both Without-Schur and With-Schur comple-
ment. All the simulations are executed for one LM and one CG iteration. From
the Table, it can be seen that the time taken for nine camera parameters is higher
than for eight camera parameters for both the CPU and GPU implementations.
This is because of the additional computations involved with the additional

Figure 7. Speedup plot for different datasets using without-Schur and with-Schur com-
plement with 1 Levenberg-Marquardt iteration and one conjugate gradient iteration.

Table 7. Time taken by CPU and GPU implementations. (CP denotes Camera Parame-
ters).

Dataset
No.

Without-Schur Complement With-Schur Complement

CPU (secs) GPU (secs) CPU (secs) GPU (secs)

8 CP 9 CP 8 CP 9 CP 8 CP 9 CP 8 CP 9 CP

1 0.016 0.018 0.004 0.004 0.016 0.019 0.004 0.005

2 0.069 0.080 0.009 0.010 0.074 0.083 0.011 0.009

3 0.176 0.193 0.015 0.018 0.192 0.214 0.019 0.022

4 0.288 0.325 0.023 0.028 0.217 0.354 0.020 0.032

5 0.392 0.439 0.043 0.048 0.415 0.490 0.049 0.054

6 0.426 0.476 0.046 0.052 0.454 0.507 0.052 0.059

7 0.510 0.567 0.055 0.062 0.538 0.602 0.063 0.070

8 0.691 0.787 0.056 0.065 0.748 0.835 0.062 0.073

9 1.127 1.281 0.099 0.114 1.203 1.347 0.112 0.130

10 2.188 2.430 0.168 0.198 2.299 2.687 0.183 0.219

https://doi.org/10.4236/eng.2023.1510046

P. R. Kommera et al.

DOI: 10.4236/eng.2023.1510046 687 Engineering

camera parameter. However, the rate of increase in time is higher in the CPU
implementations compared to the GPU implementations. One of the reasons is
that in GPU implementations, more of the computations are concurrently ex-
ecuted, resulting in higher throughput than in CPU implementations.

6.2.2. PBA CUDA and Proposed CUDA Implementation Comparison
In addition to the above speedup analysis, we discuss the preliminary speedup
comparison between PBA CUDA implementation and proposed CUDA imple-
mentation. The PBA CUDA and proposed CUDA implementations converge to
a different mean square error with a different number of LM iterations and con-
jugate gradient iterations. This is because the proposed CUDA implementation
has different configurations, like using explicit Jacobian and nine camera para-
meters. As a result, the total LM iterations in the proposed CUDA implementa-
tion are modified to attain similar or better mean square error as the PBA
CUDA implementation.

The analysis shows that the speedup varies between the proposed CUDA im-
plementation and the PBA CUDA implementation to converge to a specific
mean square error, with the proposed CUDA implementation being performant
compared to the PBA CUDA implementation in most cases. The total number of
conjugate gradient steps required by the PBA CUDA implementation is higher
than the proposed CUDA implementation. This indicates that the time taken by
the PBA CUDA implementation per iteration of the LM step, or the conjugate
gradient iteration is less than the proposed CUDA implementation. Various ad-
vanced optimization techniques, like improving the memory throughput and
minimizing the warp divergence, can be implemented in the proposed CUDA
implementation. As a result, further optimization of the proposed CUDA code
will improve the speedup compared to the PBA CUDA implementation.

7. Conclusion and Future Work

The camera parameters and 3D points play a vital role in scene reconstruction.
Refining of the intrinsic and extrinsic parameters of the camera and the 3D
points through bundle adjustment algorithm provides accurate information
about the depth, orientation, and alignment of the objects in the scene. Refine-
ment of the camera parameters and 3D points involves solving of the LM algo-
rithm which is computationally expensive and proportional to the number of
images, points, and projections. In this paper, the accuracy of the bundle ad-
justment algorithm is improved by minimizing the reprojection error. In addi-
tion, the computation cost of the algorithm is addressed by parallel program-
ming using CUDA programming model. Overall, the accuracy of the refinement
is studied for obtaining improved scene reconstruction and the computation
cost of the algorithm is improved as it is computationally expensive for refining
larger datasets.

An additional radial distortion parameter and explicit Jacobian computation
are analyzed and demonstrated to have better convergence. The BA algorithm is

https://doi.org/10.4236/eng.2023.1510046

P. R. Kommera et al.

DOI: 10.4236/eng.2023.1510046 688 Engineering

also implemented on GPUs using the CUDA programming model and demon-
strated to have a significant speedup compared to the sequential implementa-
tion. In addition, we also demonstrate the use of various CUDA features that
improve the performance of the BA algorithm by reducing the computational
time. The concurrency of the computations in the BA algorithm is exploited us-
ing CUDA streams, resulting in asynchronous execution. We have used atomic
operations to read and write data from/to the same memory location by different
threads without race conditions.

The use of complex preconditioners that would improve the convergence in
the conjugate gradient method can be studied as part of future work. The in-
creased computational time taken by the complex preconditioners can be ad-
dressed using GPUs. As aforementioned, the GPU implementation in the paper
involves basic optimization techniques to improve the speedup of the GPU code.
Further advanced optimization techniques involving data layout and utilizing
shared and register memory effectively can be implemented in the CUDA code.
In addition, comparing the proposed CUDA code with the state-of-the-art GPU
implementations can provide further analysis of the algorithm and its behavior
on the GPUs.

Acknowledgements

We want to thank Sameer Agarwal et al. [7] for releasing the datasets and addi-
tional information through the online URL
https://grail.cs.washington.edu/projects/bal/ and Changchang Wu et al. [12] for
releasing software and additional information through the online URL
https://grail.cs.washington.edu/projects/mcba/.

We would also like to thank NVIDIA corporation for providing access to the
Selene cluster for development purposes.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Chen, C.I., Sargent, D., Tsai, C.M., Wang, Y.F. and Koppel, D. (2009) Uniscale Mul-

ti-View Registration Using Double Dog-Leg Method. Medical Imaging 2009: Visua-
lization, Image-Guided Procedures, and Modeling, Vol. 7261, 468-477.
https://doi.org/10.1117/12.810966

[2] Favalli, M., Fornaciai, A., Isola, I., Tarquini, S. and Nannipieri, L. (2012) Multiview
3D Reconstruction in Geosciences. Computers & Geosciences, 44, 168-176.
https://doi.org/10.1016/j.cageo.2011.09.012

[3] Lowe, D.G. (2004) Distinctive Image Features from Scale-Invariant Keypoints. In-
ternational Journal of Computer Vision, 60, 91-110.
https://doi.org/10.1023/B:VISI.0000029664.99615.94

[4] Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R. and Wu, A.Y. (1998) An Op-

https://doi.org/10.4236/eng.2023.1510046
https://grail.cs.washington.edu/projects/bal/
https://grail.cs.washington.edu/projects/mcba/
https://doi.org/10.1117/12.810966
https://doi.org/10.1016/j.cageo.2011.09.012
https://doi.org/10.1023/B:VISI.0000029664.99615.94

P. R. Kommera et al.

DOI: 10.4236/eng.2023.1510046 689 Engineering

timal Algorithm for Approximate Nearest Neighbor Searching Fixed Dimensions.
Journal of the ACM (JACM), 45, 891-923. https://doi.org/10.1145/293347.293348

[5] Agarwal, S., Snavely, N., Simon, I., Seitz, S.M. and Szeliski, R. (2009) Building Rome
in a Day. 2009 IEEE 12th International Conference on Computer Vision, Kyoto, 29
September-2 October 2009, 72-79. https://doi.org/10.1109/ICCV.2009.5459148

[6] Lourakis, M.I. and Argyros, A.A. (2009) SBA: A Software Package for Generic
Sparse Bundle Adjustment. ACM Transactions on Mathematical Software (TOMS),
36, 1-30. https://doi.org/10.1145/1486525.1486527

[7] Agarwal, S., Snavely, N., Seitz, S.M. and Szeliski, R. (2010) Bundle Adjustment in
the Large. Computer Vision ECCV 2010: 11th European Conference on Computer
Vision, Heraklion, 5-11 September 2010, 29-42.
https://doi.org/10.1007/978-3-642-15552-9_3

[8] Björck, Å. (1996) Numerical Methods for Least Squares Problems. Society for In-
dustrial and Applied Mathematics, Philadelphia.

[9] Curry, H.B. (1944) The Method of Steepest Descent for Non-Linear Minimization
Problems. Quarterly of Applied Mathematics, 2, 258-261.
https://doi.org/10.1090/qam/10667

[10] Levenberg, K. (1944) A Method for the Solution of Certain Non-Linear Problems in
Least Squares. Quarterly of Applied Mathematics, 2, 164-168.
https://doi.org/10.1090/qam/10666

[11] Marquardt, D.W. (1963) An Algorithm for Least-Squares Estimation of Nonlinear
Parameters. Journal of the Society for Industrial and Applied Mathematics, 11,
431-441. https://doi.org/10.1137/0111030

[12] Wu, C., Agarwal, S., Curless, B. and Seitz, S.M. (2011) Multicore Bundle Adjust-
ment. CVPR 2011, Colorado Springs, 20-25 June 2011, 3057-3064.
https://doi.org/10.1109/CVPR.2011.5995552

[13] Zheng, M., Zhou, S., Xiong, X. and Zhu, J. (2017) A New GPU Bundle Adjustment
Method for Large-Scale Data. Photogrammetric Engineering & Remote Sensing, 83,
633-641. https://doi.org/10.14358/PERS.83.9.633

[14] On Derivatives—Ceres Solver (n.d.). http://ceres-solver.org/derivatives.html

[15] Snavely, N., Seitz, S.M. and Szeliski, R. (2006) Photo Tourism: Exploring Photo
Collections in 3D. ACM SIGGRAPH 2006 Papers, Boston, 30 July-3 August 2006,
835-846.

[16] Snavely, N., Seitz, S.M. andSzeliski, R. (2008) Skeletal Graphs for Efficient Structure
from Motion. 2008 IEEE Conference on Computer Vision and Pattern Recognition,
Anchorage, 23-28 June 2008, 1-8. https://doi.org/10.1109/CVPR.2008.4587678

[17] Byröd, M. and Åström, K. (2010) Conjugate Gradient Bundle Adjustment. Computer
Vision ECCV 2010: 11th European Conference on Computer Vision, Heraklion,
5-11 September 2010, 114-127. https://doi.org/10.1007/978-3-642-15552-9_9

[18] Byröd, M. and Åström, K. (2009) Bundle Adjustment Using Conjugate Gradients
with Multiscale Preconditioning. British Machine Vision Conference, BMVC 2009,
London, 7-10 September 2009, 1-10. https://doi.org/10.5244/C.23.36

[19] Jeong, Y., Nister, D., Steedly, D., Szeliski, R. and Kweon, I.S. (2011) Pushing the
Envelope of Modern Methods for Bundle Adjustment. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 34, 1605-1617.
https://doi.org/10.1109/TPAMI.2011.256

[20] Sameer, A. and Mierle, K. (2012) Ceres Solver.

[21] Choudhary, S., Gupta, S. and Narayanan, P.J. (2012) Practical Time Bundle Ad-

https://doi.org/10.4236/eng.2023.1510046
https://doi.org/10.1145/293347.293348
https://doi.org/10.1109/ICCV.2009.5459148
https://doi.org/10.1145/1486525.1486527
https://doi.org/10.1007/978-3-642-15552-9_3
https://doi.org/10.1090/qam/10667
https://doi.org/10.1090/qam/10666
https://doi.org/10.1137/0111030
https://doi.org/10.1109/CVPR.2011.5995552
https://doi.org/10.14358/PERS.83.9.633
http://ceres-solver.org/derivatives.html
https://doi.org/10.1109/CVPR.2008.4587678
https://doi.org/10.1007/978-3-642-15552-9_9
https://doi.org/10.5244/C.23.36
https://doi.org/10.1109/TPAMI.2011.256

P. R. Kommera et al.

DOI: 10.4236/eng.2023.1510046 690 Engineering

justment for 3D Reconstruction on the GPU. Trends and Topics in Computer Vi-
sion: ECCV 2010 Workshops, Heraklion, 10-11 September 2010, 423-435.
https://doi.org/10.1007/978-3-642-35740-4_33

[22] Tomov, S., Dongarra, J., Volkov, V. and Demmel, J. (2009) Magma Library. Univ. of
Tennessee and Univ. of California, Knoxville.

[23] Nielsen, H.B. (1999) Damping Parameter in Marquardt’s Method (Vol. 248) IMM.

[24] Dao Khanh, H. and Dinchev, L. (2020, November 8) Bundle Adjustment—Part 1:
Jacobians. Telesens.
https://telesens.co/2016/10/13/bundle-adjustment-part-1-jacobians/

[25] https://en.wikipedia.org/wiki/Rodrigues%27_rotation_formula

[26] MathWorks, I. (2022, January 9) Symbolic Math Toolbox.
https://www.mathworks.com/help/symbolic/

[27] Nvidia, C. (2022) Programming Guide: CUDA Toolkit Documentation.

[28] Nvidia, C.U.D.A. (2008) Cublas Library. NVIDIA Corporation, Santa Clara.

[29] NVIDIA Nsight Systems (2020, May) NVIDIA Documentation Center.
https://docs.nvidia.com/nsight-systems/2020.3/profiling/index.html

https://doi.org/10.4236/eng.2023.1510046
https://doi.org/10.1007/978-3-642-35740-4_33
https://telesens.co/2016/10/13/bundle-adjustment-part-1-jacobians/
https://en.wikipedia.org/wiki/Rodrigues%27_rotation_formula
https://www.mathworks.com/help/symbolic/
https://docs.nvidia.com/nsight-systems/2020.3/profiling/index.html

	Improving Accuracy and Computational Burden of Bundle Adjustment Algorithm Using GPUs
	Abstract
	Keywords
	1. Introduction
	2. Literature Review
	3. Bundle Adjustment Algorithm Formulation
	3.1. Projection Function
	3.2. Bundle Adjustment Algorithm and Levenberg-Marquardt Method
	3.3. Mathematical Representation

	4. Implementation
	4.1. Sequential Implementation
	4.1.1. Additional Radial Distortion Coefficient
	4.1.2. Explicit Jacobian Computation

	4.2. CUDA Implementation
	4.2.1. Computational and Memory Tradeoff
	4.2.2. Concurrent Executions
	4.2.3. cuBLAS Implementation
	4.2.4. Atomic Operations
	4.2.5. Thread and Block Configuration on GPU

	5. Datasets and Performance Parameters
	5.1. Datasets
	5.2. Performance Parameters

	6. Results and Performance Analysis
	6.1. Sequential Implementation
	6.1.1. Explicit Jacobian Computation
	6.1.2. Additional Camera Parameters
	6.1.3. Convergence Analysis

	6.2. CUDA Implementation
	6.2.1. Computational Time and Speedup between CPU and GPU Implementations
	6.2.2. PBA CUDA and Proposed CUDA Implementation Comparison

	7. Conclusion and Future Work
	Acknowledgements
	Conflicts of Interest
	References

