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Abstract 
This work is devoted to the following suspension bridge with state-dependent 

delay: ( ) ( )( ) ( ), t
tt xxxx tu u u ku f u u x t u g xµ η+  ∂ + ∂ + ∂ + + + − =  . The main 

goal of this paper is to investigate the long-time behavior of the system. Un-
der suitable hypothesis, the quasi-stability estimates of the system are estab-
lished, based on which the existence of global attractor with finite fractal di-
mension is obtained. Furthermore, the existence of exponential attractor is 
proved. 
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1. Introduction 

In this paper, we are concerned with the following autonomous suspension 
bridge with state-dependent delay  

( )( ) ( )
( ) ( ) ( ) ( )
( ) ( ) [ ]
( ) ( ) [ ]

, , , 0,

0, , 0, , 0, 0,
, , , , ,0 ,

, , , , ,0 ,

t
tt xxxx t

xx xx

t t

u u u ku u x t u f u g x t

u t u L t u t u L t t
u x t x t x t h

u x t x t x t h

µ η

ψ
ψ

+  ∂ + ∂ + ∂ + + − + = ∈Ω > 
 = = ∂ = ∂ = >

= ∈Ω ∈ −
∂ = ∂ ∈Ω ∈ −

 (1) 

where [ ]0, LΩ = , ( ),u x t  denotes the deflection in the downward direction, 
η  is a mapping defined on solutions with values in some interval [ ]0,h , 0h >  
presents the retardation time, ( )0tuµ µ∂ >  represents the viscous damping, 
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( ) ( ){ }, max , ,0u x t u x t+ = , ψ  is the initial data on the interval [ ],0h− ,  

( )tu t uη  −    denotes state-dependent delay term and ( ) [ ], ,0tu u t hθ θ≡ + ∈ − , 
( )2g L∈ Ω  is an external force term. 

With regard to partial differential equation with delay (constant and time- 
dependent delay), there are many results [1]-[6]. For example, Wang in [3] stu-
died dynamics of wave equation with delay by means of pullback asymptotically 
compactness for the multi-valued processes. Aouadi [5] proved the global and 
exponential attractors for extensible thermoelastic plate with time-varying delay 
by establishing quasi-stability estimates. Wang and Ma in [6] considered the ex-
istence of pullback attractors for suspension bridge equations with constant de-
lay by using contractive function methods. In order to describe the real world, a 
new class of state-dependent delay models was introduced and studied recently. 
When the delay term depends on unknown variables in an equation, we call it a 
state-dependent delay differential equation. Partial differential equations with 
state-dependent delay have been essentially less investigated, see the discussions 
in the papers [7] [8] where they considered the parabolic case, and the results 
about the systems with state-dependent delay are not so rich as that for other 
kinds of delay differential equations so far. Chueshov and Rezounenko [9] con-
sidered dynamics of second order of in time evolution equations with state-de- 
pendent delay where they gave the abstracts results of system with state-dependent 
delay. 

Inspired by the above-mentioned papers, our main goal is to study the ex-
istence of global attractor for autonomous suspension bridge equations with 
state-dependent delay. Compared with the dynamics of suspension bridge equa-
tion with constant or time-dependent delay, the new problem encountered in 
this paper is that the appearance of the state-dependent delay term firstly will 
lead to the solution of system is not unique, in order to guarantee the uniqueness 
of solutions, we prove the well-posedness of solution in a certain appropriate 
C1-type space. Secondly, in the proof of the dissipative property, we need an ad-
ditional term in energy functional as a compensator for the delay term. In the 
end, we obtain the existence of global and exponential attractor using qua-
si-stability method which is different from [10] where the authors considered the 
non-autonomous suspension bridge equations with state-dependent delay by 
using contractive function. 

The rest of this article consists of four Sections. In the next Section, we give 
functions setting and iterate some useful lemmas and abstracts. In Section 3, we 
show the well-posedness of the solution for (1). Finally, the existence of global 
attractor and exponential attractor for (1) is proved in Sections 4 and 5. 

2. Preliminaries 

Firstly, define  

( ) ( ) ( ) ( ) ( ){ }, : 0, , 0, , 0xx xxD A u V Au H u t u L t u t u L t= ∈ ∈ = = ∂ = ∂ = , 

where 2
xxxxA = ∆ = ∂ , then ( ): A D A H→  is a strictly positive self-adjoint op-
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erator, and introduce the scale of Hilbert spaces generated the powers of A as 
follows:  

( )
2

24 4 4 4,  , , ,  , .
ss

s s s s

s VV
V D A u v A u A v u A u s

   
= = = ∀ ∈      

   
  

denote ( )2
0H V L= = Ω , ( )1

1 0V H= Ω , ( ) ( )
1

1 22
2 0V V D A H H

 
= = = Ω ∩ Ω  

 
, 

and the scalar product and the norm of 1, H V  and V as follows:  

( ) ( ) 2 2, , ,   ,HH
u v u v u u= =  

( ) ( )
11

2 2, , ,  ,VV
u v u v u u= ∇ ∇ = ∇  

( ) ( ) 2 2, , ,  .VV
u v u v u u= ∆ ∆ = ∆  

By the Poincaré inequality, we have  
2 2

1 11 ,  ,ss su u u Vλ ++
≤ ∀ ∈  

where 2
1λ  is the first eigenvalue of A. 

We will denote by XC  the Banach space [ ]( )0 ,0 ;C h X− , endowed with the 
sup-norm. For an element Xu C∈ , its norm is [ ] ( ),0sup

X hC X
u uθ θ∈ −= . 

Introduce the phase space  

[ ]( ) [ ]( )1,0 ; ,0 ; ,Y C h V C h H≡ − ∩ −  

its norm is  

,  .
V HtY C C Yψ ψ ψ ψ= + ∂ ∀ ∈  

Secondly, in order to prove the well-posedness of solution and dissipative of 
system (see [9] [10] for details), assume that nonlinear term f satisfies the fol-
lowing dissipative conditions (2) (3) and growth conditions (4):  

( )
2liminf 0,

s

F s
s→∞

≥                        (2) 

where ( ) ( )
0

d
s

F s F τ τ= ∫ . 

( ) ( )0
02liminf 0,   0.

s

sf s C F s
C

s→∞

−
≥ >                 (3) 

and  

( )
limsup 0,p

s

f s

s→∞

′
=                      (4) 

where 0 p≤ < ∞ . 
For every 0ν > , there exists 0Cν > , such that  

( )( )2 2 d .u C u F u xν ν
Ω

≤ + ∆ + ∫               (5) 

Finally, due to the appearance of the state delay term, while proving the 
well-posedness of solution, it is necessary to suppose that the mapping  
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[ ]: 0,Y hη →  is locally Lipschitz  

( ) ( )1 2 1 2 ,R YCη ψ η ψ ψ ψ− ≤ −                    (6) 

for every 1 2, Yψ ψ ∈ , , 1,2j Y
R jψ ≤ = . 

Remark [9] The main example of state-depenent delay term is  

( ) ( )( ) [ ]( ),  ,0 ; ,M C h Hφ φ π φ φ= − ∈ −  

where π  maps [ ]( ),0 ;C h H−  into some interval [ ]0,h . We note that this de-
lay term M is not locally Lipschitz in the classical space of continuous functions 

[ ]( ),0 ;C h H− , see [6] [9] [10] [11] [13] for details. 
Definition 1 [12] [14] Let , ,X Y Z  be three reflexive Banach spaces with X 

compactly embedded in Y, H X Y Z= × ×  and let ( )( ),S t H  be a dynamical 
system given by an evolution operator  

( ) ( ) 1 2, 1,2, , , 0.i iS t y y t i y y B t= = ∀ ∈ >  

We call the dynamical system ( )( ),S t H  quasi-stable on B H⊂ . If there 
exists a compact seminorm Xn  on X and nonnegative scalar functions ( )a t  
and ( )c t , locally bounded in [ )0,∞ , and ( ) ( )1b t L +∈   with ( )lim 0t b t→∞ = , 
such that  

( ) ( ) ( )2 2
1 2 1 2 ,HH

S t y S t y a t y y− ≤ −               (7) 

and  

( ) ( ) ( ) ( )
[ ]

( ) ( )( )2 2
1 2 1 2

0,
sup .XHH s t

S t y S t y b t y y c t n u s v s
∈

 − ≤ − + −     (8) 

Proposition 2 [12] [14] Let the hypothesis in Definition 1 be in force. Sup-
pose that the dynamical system ( )( ),S t H  is quasi-stable on every bounded 
forward invariant set B in H. Then ( )( ),S t H  is asymptotically smooth. 

Theorem 3 [12] [14] A dissipative dynamical system ( )( ),S t H  has a com-
pact global attractor if and only if it is asymptotically smooth. 

Theorem 4 [12] [14] If dynamical system ( )( ),S t H  possesses a compact 
global attractor   and is quasi-stable on  . Then the attractor   has finite 
fractal dimension. 

Theorem 5 [12] [14] Suppose that dynamical system ( )( ),S t H  is dissipative 
and quasi-stable on some bounded absorbing set B. In addition, assume that 
there exists an extended space H H⊇ , such that mapping ( )t S t y→  is Hölder 
continuous in H  for each y B∈ , that is, there exist 0 1γ< ≤  and ,B TC , 
such that  

( ) ( ) [ ]1 2 , 1 2 1 2, , 0, , .B TH
S t y S t y C t t t t T y Bγ− ≤ − ∈ ∈  

Then the dynamical system ( )( ),S t H  possesses a generalized fractal expo-
nential attractor whose dimension is finite in the space H . 

3. Well-Posedness 

Definition 6 A vector function  
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( ) [ ]( ) [ ]( )1
2 0, ; , ;u t C h T V C h T V∈ − ∩ −  

is said to be a weak solution of the problem (1) on the interval [ ]0,T , if ( ),u x t  
satisfies: 

1) ( ) ( ) [ ], ,0u t t t hψ= ∀ ∈ − ; 
2) 2v V∀ ∈ , we have that  

( ) ( ) ( ) ( ) ( )( ) ( )( ) ( ), , , , , , , .t
tt tu v u v u v ku v f u v u t u v g vµ π+  ∂ + ∆ ∆ + ∂ + + + − =   

Lemma 7 Suppose that f satisfy (2) - (3) and (5), ( )2g L∈ Ω . For any 0µ , 
there exists ( )0 0 0h h µ= > , such that ( ) [ ) ( ]0 0, , 0,h hµ µ∈ +∞ × . Then the solu-
tion ( ), tu u∂  of Equation (1) satisfies the following estimates  

( ) ( ) ( ) ( )( )
21

22 22 44e 0 ,t
Y

Cz t A u t k u t E hδ α ψ
δ

+ −+ + ≤ + +       (9) 

where 2
1 2

2 42 2C g K K Cρδ ε
µ µ

= + + + . 

Proof Similar to reference [9], we set  

( ) ( )
22 2

12 d 2 0,E t z u k u F u x K+

Ω
= + ∆ + + + ≥∫  

( ) ( ) ( ) 2

0
d d ,

h t
tt s

V t E t u r r s
h
α

−
= + ∂∫ ∫  

we can prove that  

( ) ( ) ( ) ( )( )
21

22 22 44e 0 ,t
Y

Cz t A u t k u t E hδ α ψ
δ

+ −+ + ≤ + +       (10) 

where 2
1 2

2 42 2C g K K Cρδ ε
µ µ

= + + + . Then (9) hold true. 

Set ( ) ( ) ( )( );U t u t v t= , rewrite (1) as the following first order differential eq-
uation in the space V H= ×   

( ) ( ) ( ) ( ) ( )d ,    , 0, ,
d

tU t U t U x t
t

+ = ∈Ω× +∞   

where ( ); , t Yψ ψ ψΦ = ∂ ∈ , define the operator   and the mapping   as 
follows:  

( ) ( )( ) ( ) ( )
( ) ( )( ) ( )( ) [ ]( )( )

; ,   ; ,

0; 0 0 .

z v t Au v t U u v D V H

f k g

µ

ψ ψ ψ η ψ

= − + = ∈ ≡ ×

Φ = − − − − +

 


 

We can show that the operator   generates exponentially stable C0-semigroup 

{ }e : 0t t− ≥  in   (see [15]). 
Definition 8 A mild solution of (1) on an interval [ ]0,T  is defined as a func-

tion  

[ ]( ) [ ]( )1, ; , ; ,u C h T V C h T H∈ − ∩ −  

where ( ) ( ) [ ], ,0u hθ ψ θ θ= ∈ −  and ( ) ( ) ( )( ); tU t u t u t= ∂  satisfies  

( ) ( ) ( ) ( ) [ ]
0

e 0 e d ,   0, .
t t st sU t U U s t T− −−= + ∈∫    
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Theorem 9 [9] [10] Assume that f satisfy (4) and (6), ( )2g L∈ Ω . Then for 
any i Yψ ∈ , , 1,2i Y C iψ ≤ = , there exists max0 T< ≤ ∞ , and a unique mild so-
lution ( ) ( ) ( )( ); tU t u t u t≡ ∂  of (1.1) on the interval [ ]max0,T , maxT = ∞  or 

max
lim t

t T Y
u

−→ = ∞ . 
Theorem 10 [9] [10] (Well-posedness) Let assumptions (2) - (6) hold true 

and ( )2g L∈ Ω . Then for any 1 2, Yψ ψ ∈ , , 1,2i Y iψ µ≤ = , there exists a 
unique global mild solution ( ) ( ) ( )( ); tU t u t u t≡ ∂  of (1) on the interval [ ]0,+∞ . 
Moreover, for any 0µ >  and 0T >  there exists a positive constant ,TCµ , 
such that  

( ) ( )( ) ( ) ( ) [ ]
21

2 22
1 2 1 2 , 1 2 ,   0, .t t T YA u t u t u t u t C t Tµ ψ ψ− + ∂ − ∂ ≤ − ∈  

Owing to Theorem 10, we can define an evolution operator as following:  

( ) : ,  0,S t Y Y t→ ∀ >                      (11) 

by the formula ( ) tS t uψ = , where ( )u t  is the solution of (1), satisfying 
0u ψ= . 

4. Global Attractor 

In this section, firstly, we prove the system ( )( ),S t Y  has a bounded set; se-
condly, we will show that the semigroup ( ){ } 0t

S t
≥

 corresponding to (1) is 
asymptotically compact; Finally, the existence of global attractor system (1) is 
obtained. 

Theorem 11 (Dissipative) Assume that the assumptions in Lemma 7 be in 
force. Then dynamical system ( )( ),S t Y  is dissipative, i.e. there exists 0R > , 

0ρ∀ > , such that  

( ) , , , .YY
S t R Y t tρψ ψ ψ ρ≤ ∀ ∈ ≤ ≥  

Proof Similar to Lemma 7, there holds 

( ) ( ) ( ) ( )( )
21

22 22 44e 0 .t
Y

Cz t A u t k u t E hδ α ψ
δ

+ −+ + ≤ + +  

now setting t θ+  instead of t (where [ ],0hθ ∈ − ) in (10),  

( ) ( ) ( )

( ) ( )( ) ( ) ( )( )

21
222

2 24 44e 0 4e 0 .t t h
Y Y

A u t z t k u t

C CE h E hδ θ δ

θ θ θ

α ψ α ψ
δ δ

+

− + − −

+ + + + +

≤ + + ≤ + +

  (12) 

Hence, by (12)  

[ ]
( )

[ ]
( )

[ ]
( ) ( )

( ) ( )( )

21
2 2 2

,0 ,0

21
2 2

,0

2

max max

2 max

88e 0 .

t
Y h h

h

t h
Y

u z t A u t

z t A u t

CE h

θ θ

θ

δ

θ θ

θ θ

α ψ
δ

∈ − ∈ −

∈ −

− −

= + + +

 
 ≤ + + +
 
 

≤ + +
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It implies that there exists t tρ≥ , any ball ( )0,B B R=  with 2 2CR
δ

>  is a 

bounded absorbing set B of ( )( ),S t Y .                                

In order to prove ( ){ } 0t
S t

≥
 is asymptotically smooth, furthermore assume 

that there exists 0δ > , the delay term satisfies for any 0R > , , 1,2i iψ = , there 
exists 0RL > , such that i Y Rψ ≤ , one has  

( ) ( )
[ ]

( ) ( )( )
1
2

1 2 1 2,0
max .R h

L A
δ

θ
η ψ η ψ ψ θ ψ θ

−

∈ −
− ≤ −          (13) 

Remark In this paper, the one-dimensional suspension bridge equation with 
state-dependent delay is considered, but we still need to assume that state-dependent 
delay term satisfies condition (13), when we establish quasi-stability estimates (8) 
to verify asymptotical compactness of semigroup ( ){ } 0t

S t
≥

. 
Lemma 12 (Quasi-stability) Suppose that (2) - (6) and (13) hold true and 

( )2g L∈ Ω . Then there exists ( ) ( )1 2,c R c R  and λ , such that solutions 1 2,u u  
of (1), initial data 1 2,ψ ψ  satisfying  

( ) ( )
21

2 22 , , 1,2,t i iu t A u t R t h i∂ + ≤ ≥ − =            (14) 

and there holds the following quasi-stability estimates  

( ) ( ) ( ) ( )

( ) ( )
[ ]

( ) ( )( )

21 1
2 2 2

1 2 1 2

21
2 2

1 1 2 2 1 20,
e max ,

t t

t
Y r t

u t u t A u t A u t

c R c R A u r u r
ελ ψ ψ

−−

∈

∂ − ∂ + −

≤ − + −

     (15) 

where 0ε > . 
Proof Assume that 1 2,u u  are solutions of Equation (1), set ( ) ( )1 2w u t u t= −  

is solution of the following equation  

( )( ) ( ) ( )( ) ( ) ( )( )1 2 1 2 1 1 2 2 .

tt t

t t

w Aw w

k u u f u f u u t u u t u

µ

η η+ +

∂ + + ∂

   = − − − − − − − −   
 (16) 

According to Theorem 11, it is obviously that (14) i.e. true. 
We define energy functional  

( )
21

221 .
2w tE t A w w
 
 = + ∂
 
 

 

Multiplying (16) with ( )t w t∂  and integrating it on [ ],t T , it yields  

( ) ( ) ( )

( )( ) ( )( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

2

2 1 2 1

2 2 1 1

d

, d , d

, d ,

T
w w tt

T T
t tt t

T s s
tt

E T E t w s s

f u s f u s w s s k u s u s w s s

u s u u s u w s s

µ

η η

+ +

− + ∂

≤ − ∂ + − ∂

   + − − − ∂   

∫

∫ ∫

∫

  (17) 

By Differential mean value theorem and ( ) ( )3 3, 
L L

f u K f u K∞ ∞′≤ ≤ . 
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( )( ) ( )( )( ) ( )

( ) ( ) ( ) ( )

2 1

21
22

3 1 2

d

d ,
2 2

t

R
t t

f u t f u t w t x

CK u t u t w t x A w t wε
ε

Ω

Ω

− ∂

≤ − ∂ ≤ + ∂

∫

∫
     (18) 

where 0ε > , and  

( ) ( )( ) ( ) ( )

( ) ( )

2 1 1 2

21
22

d

.
2 2

t t

R
t

k u t u t w t kl u u w t x

CA w t w tε
ε

+ +

Ω Ω
− ∂ ≤ − ∂

≤ + ∂

∫ ∫
      (19) 

Applying condition (13), we obtain  

( ) ( )( ) ( )

( ) ( ) ( )

[ ]
( ) ( )

2 2 1 1

2 2 1 1

21
22

,0

d

max .

t t
t

t t
t

R th

u t u u t u w t x

u t u u t u w t

A w t C w t
ε

θ

η η

η η

θ

Ω

−

∈ −

   − − − ∂   

   ≤ − − − ∂   

≤ + + ∂

∫
            (20) 

Combining (18) - (20), from (17), there holds  

( ) ( ) ( )

( )
[ ]

( )

( )

2

2 21 1
2 2

,0

2

d

d max d

11 d .

T
w w tt

T T

t t h

T
R tt

E T E t w s s

A w s s A w s s

C w s s

ε

θ

µ

ε θ

ε

−

∈ −

− + ∂

≤ + +

 + + ∂ 
 

∫

∫ ∫

∫

           (21) 

For any 0ε > , choosing µ  is enough large, such that  

11 .
2RC µ

ε
 + < 
 

                      (22) 

Multiplying (16) with ( )w t  and integrating it on [ ]0,T , it yields 

( ) ( )( ) ( ) ( )( ) ( )

( ) ( ) ( )( )

( )( ) ( )( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( )( )

2

0
21

2
0 0

2 1 2 10 0

2 2 1 10

, 0 , 0 d

d , d

, d , d

, d .

T
t t t

T T
t

T T

T s s

w T w T w w w s s

A w s s w s w s s

f u s f u s w s s k u s u s w s s

u s u u s u w s s

µ

η η

+ +

∂ − ∂ − ∂

+ + ∂

≤ − + −

   + − − −   

∫

∫ ∫

∫ ∫

∫

  (23) 

Similar to (18) - (20), we have  

( )( ) ( )( )( ) ( ) ( ) ( )
21

22
2 1

1d ,
4 Rf u t f u t w t x A w t C w t

Ω
− ≤ +∫  

( ) ( )( ) ( ) ( ) ( )
21

22
2 1

1d ,
4 Rk u t u t w t x A w t C w t+ +

Ω
− ≤ +∫  

and 
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( ) ( )( ) ( )

( ) ( ) ( )

[ ]
( ) ( )

2 2 1 1

2 2 1 1

21
22

,0

d

max .

t t

t t

R Rh

u t u u t u w t x

u t u u t u w t

C A w t C w t
ε

θ

η η

η η

θ

Ω

−

∈ −

   − − −   

   ≤ − − −   

′≤ + +

∫
 

Substitute above inequalities into (23),  

( ) ( )( ) ( ) ( )( ) ( )

( ) ( ) ( )( )

( )
[ ]

( ) ( )

2

0
21

2
0 0

2 21 1
22 2

0 0 0,0

, 0 , 0 d

d , d

1 d max d d ,
2

T
t t t

T T
t

T T T
R Rh

w T w T w w w s s

A w s s w s w s s

A w s s C A w t s C w s s
ε

θ

µ

θ
−

∈ −

∂ − ∂ − ∂

+ + ∂

′′ ′′≤ + + +

∫

∫ ∫

∫ ∫ ∫

  (24) 

Furthermore, by using Young and Hölder inequalities, we have  

( ) ( )( ) ( ) ( )
2

2 2

0 0 0

1, d d d .
2 2

T T T
t tw s w s s w s s w s sµµ ∂ ≥ − ∂ −∫ ∫ ∫  

By the definition of energy functional and from (24), it implies that  

( ) ( ) ( ) ( )( )

( )
[ ]

( )

21
22

0 0

21
2

0 ,0

1 3d d 0
2 2

max d .

T T
t w w

T
R h

A w s s w s s C E E T

C A w s s
ε

θ
µ θ

−

∈ −

≤ ∂ + +

′′+ +

∫ ∫

∫

      (25) 

Integrating (21) on [ ]0,T , combining with (22), we obtain  

( ) ( ) ( )
[ ]

( )
2 21 1

2 2
0 0 0 ,0

d d max d .
T T T

w w h
TE T E s s T A w s s T A w s s

ε

θ
ε θ

−

∈ −
≤ + + +∫ ∫ ∫  (26) 

Set 0t =  in (21) and combining with (22), we can see that  

( ) ( ) ( ) ( )

[ ]
( )

21
2 2

0 0

21
2

0 ,0

30 d d
2

max d

T T
w w t

T

h

E E T w s s A w s s

A w s s
ε

θ

µ ε

θ
−

∈ −

≤ + ∂ +

+ +

∫ ∫

∫

        (27) 

and  

( ) ( ) ( )
[ ]

( )
2 21 1

2 2 2
0 0 0 ,0

d 0 d max d .
2

T T T
t w h
w s s E A w s s A w s s

ε

θ

µ ε θ
−

∈ −
∂ ≤ + + +∫ ∫ ∫  (28) 

Adding (25) (28), and supposing that 6µ ≥ , it yields  

( ) ( )

( ) ( ) ( )( ) ( )
[ ]

( )

2

0 0

2 21 1
2 2

0 0 ,0

2 d d
2

d 0 max d .

T T
t w

T T
w w R h

w s s E s s

A w s s C E E T C A w s s
ε

θ

µ

ε µ θ
−

∈ −

 − ∂ + 
 

′′≤ + + + +

∫ ∫

∫ ∫
(29) 
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Adding ( )1
2 wTE T  to (29) and substituting (21) into (29),  

( ) ( ) ( )

( ) ( ) ( )( )

( )
[ ]

( )

2

0 0

21
2

0

21
2

0 ,0

1 12 d d
2 2 2

1 d 0
2

1 max d .
2

T T
t w w

T
w w

T
R h

w s s E s s TE T

T A w s s C E E T

TC A w s s
ε

θ

µ

ε

µ θ
−

∈ −

 − ∂ + + 
 

 ≤ + + + 
 

 ′′+ + + 
 

∫ ∫

∫

∫

           (30) 

Valuation ( ) ( )0w wE E T+ , from (27)  

( ) ( ) ( ) ( ) ( )

[ ]
( )

21
2 2

0 0

21
2

0 ,0

30 2 d d
2

max d .

T T
w w w t

T

h

E E T E T w s s A w s s

A w s s
ε

θ

µ ε

θ
−

∈ −

+ ≤ + ∂ +

+ +

∫ ∫

∫

    (31) 

substituting (31) into (30),  

( ) ( )

( ) ( )

( )
[ ]

( )

0

21
2 2

0 0

21
2

0 ,0

1 1d 2
2 2

d 1 d
2

1 max d ,
2

T
w w

T T
t

T
R h

E s s T C E T

TC w s s c A w s s

TC A w s s

µ

ε

θ

ε

µ θ
−

∈ −

 + − 
 

 ≤ ∂ + + 
 

 ′′+ + + 
 

∫

∫ ∫

∫

          (32) 

where 0Cµ >  depends on µ . 
Set  

1 2 1,
2

T C− >  

from (32),  

( ) ( ) ( )
[ ]

( )

( ) ( )

21
2

0 0 ,0

21
22

0 0

1 d 1 max d
2 2

2 1 d d .
2

T T
w w R h

T T
t

TE T E s s C A w s s

T A w s s C w s s

ε

θ

µ

µ θ

ε

−

∈ −

 ′′+ ≤ + + 
 

 + + + ∂ 
 

∫ ∫

∫ ∫

 (33) 

Subsequently, we compute the last term, set 0t =  in (21) and combining 
with (22),  

( ) ( ) ( ) ( )

[ ]
( )

21
2 2

0 0

21
2

0 ,0

d 0 d
2

max d .

T T
t w w

T

h

w s s E E T A w s s

A w s s
ε

θ

µ ε

θ
−

∈ −

∂ ≤ − +

+ +

∫ ∫

∫

 

Substituting above inequality into (33),  
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( ) ( ) ( ) ( )( ) ( )

( )
[ ]

( )

21
2

0 0

21
2

0 ,0

1 d 0 2 1 d
2 2

1 max d .
2

T T
w w w w

T
R h

TE T E s s C E E T C A w s s

TC C A w s s

µ µ

ε

µ θ

ε

µ θ
−

∈ −

 + ≤ − + + 
 

 ′′+ + + 
 

∫ ∫

∫

 

By the definition of energy functional ( )wE t , we have ( ) ( )
21

2 2 wA w s E s≤ , 

choosing 0ε > , such that 

12 1 .
2 4
TCµε
 + < 
 

 

So we obtain that  

( ) ( ) ( )( ) ( )
[ ]

( )
21

2
0 ,0

0 1 max d .
2

T
w w w R h

TE T C E E T C A w s s
ε

µ θ
µ θ

−

∈ −

 ′′≤ − + + + 
  ∫

 

Furthermore,  

( ) ( ) ( )
[ ]

( )
21

2
0 ,0

0 , max d .
1

T
w w R h

C
E T E C T A w s s

C
εµ

θ
µ

µ θ
−

∈ −
′′≤ + +

+ ∫  

set 1
1

C
C
µ

µ

ω = <
+

, there exists 0β > , such that  

( ) ( ) ( )
[ ]

( )
21

2
0 ,0

e 0 , max d .
Tt

w w R h
E T E C T A w s s

εβ

θ
µ θ

−−

∈ −
′′≤ + +∫  

By using reference [16], Repeat the above steps, we conclude that (15) is true.  
 

Remark Maximize (15) on [ ],t h t− , it has  

( ) ( )

( ) ( )
[ ]

( )

2
1 2

22
1 1 2 2 1 20,

e e max , ,
Y

h t
Y s sY s t

S t u S t u

c R h c R h n u u t hλ λ ψ ψ−

∈

−

 ≤ − + − ≥ 
    (34) 

where Yn  is compact semi-norm in Y, taking ( ) ( )1 e eh tb t c R h λ λ−= ,  
( ) ( )2c t c R h= . 
Theorem 13 (Global attractor) Suppose that (2) - (6) and (13) hold true and 

( )2g L∈ Ω . Then the dynamical system ( )( ),S t Y  generated by problem (1) 
has a compact global attractor with finite fractal dimension. 

Proof By Theorem 11, ( )( ),S t Y  is dissipative. So we only need to prove 
( )( ),S t Y  is asymptotically smooth. Firstly, by Lemma 12 and (34), quasi-stability 

inequality (8) holds true, that is ( )( ),S t Y  is quasi-stable on any bounded posi-
tively invariant sets. According to Proposition 2, then ( )( ),S t Y  is asymptoti-
cally smooth. It follows from Theorem 3 that dynamical system ( )( ),S t Y  has a 
compact global attractor. 

Secondly, we introduce the auxiliary space  

( ) [ ]( ) [ ]( )1
2, , ; , ; , 0,Y h T C h T V C h T H T− = − ∩ − >  
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its norm  

( ) [ ]
( )

[ ]
( )

1
2

, , ,
max max .tY h T s h T s h T

A s sψ ψ ψ
− ∈ − ∈ −

= + ∂  

Notice that when 0T = , ( ),0Y h Y− = , so the space ( ),Y h T−  is an extended 
space Y. 

Let B Y⊂ , denote TB  the set of functions ( ),u Y h T∈ −  which solve (1) with 
initial data [ ],0t hu Bψ∈ − = ∈ . We also define the mapping ( ): ,T TB Y h T−  
by the formula  

( )( ) ( ) [ ], , ,T u t u T t t h T= + ∈ −                 (35) 

where u is the solution of (1) with initial data from B. Then the following in-
equality holds true 

( )

( )  ( )
( ) ( ) ( ) ( )

1 2 ,

1 1 2 2 1 2 1 2,e ,

T T Y h T

T h
T TY h Tc R c R n nλ

ψ ψ

ψ ψ ψ ψ ψ ψ

−

− −
−

−

 ≤ − + − + − 

 

 
  (36) 

where 1 2, TBψ ψ ∈ , ( ) [ ] ( )
1
2

0,supr Tn A r
δ

ψ ψ
−

∈=  is a compact seminorm on the  

space ( ),Y h T− . The proof of inequality (36) can see reference [9]. We take 
B =  and choose T h>  such that ( )  ( )

1 e 1T h
T c R λξ − −= < , where   is the 

global attractor. One can see that set T  is strictly invariant. So we can get the 
finite dimensionality of the set T  in ( ),Y h T−  ([16], Theorem 2.15). Finally, 
we consider the restriction mapping  

( ) [ ]{ } ( ) [ ]{ }: , , , ,0 ,hr u t t h T u t t h∈ − ∈ −  

it is clear that mapping hr  is Lispschitz continuous. Since h Tr =   and 
Lispschitz do not increase fractal dimension of a set, we can deduce that  

( ),dim dim .Y h TY
f f T

−≤ < ∞   

 

5. Exponential Attractor 

Theorem 14 (Exponential attractor) Let the assumptions of Theorem 13 be in 
force. Then the dynamical system ( )( ),S t Y  possesses a generalized fractal ex-
ponential attractor exp  whose dimension is finite in extended space Y   

[ ] [ ]( )
1

12, ; , ; ,  0,Y C h T D A C h T H
δ

δ δ
−

−

  
≡ − ∩ − ∀ >      

 

where , 0sH s− > , denotes the closure of H with respect to the norm sA− ⋅ . 
Proof Let B be a forward invariant bounded absorbing set for ( )( ),S t Y . 

Then according to (36), we can obtain quasi-stability property for the mapping 

T  defined in (35) on TB . Choosing T h>  in (36) such that  
( )  ( )

1 e 1T h
T c R λξ − −= <  and deduce that the mapping T  possesses a fractal 

exponential attractor T  ([16], Corollary 2.23). Subsequently, using (1) we can 
see that 

2tt Ru c
−

∂ <  for all t∈ . This allows us to show that ( )S t ψ  is a 
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Hölder continuous in t in the space Y ,  

( ) ( ) [ ]1 2 , 1 2 1 2, , 0, , ,0 1.B TY
S t S t C t t t t t y Bγψ ψ γ− ≤ − ∈ ∈ < ≤     (37) 

Now we consider the restriction mapping hr  and sets h Tr Y= ⊂  ,  
( ) [ ]{ }: 0,exp S t t T Y≡ ∈ ⊂



  . On can see that exp  is forward invariant. 
Since   is finite dimensionality, hr  is Lipschitz from ( ),Y h T−  into Y . So 
the property in (37) implies that exp  has a finite fractal dimension in Y  and 

exp  is an exponential attracting set for ( )( ),S t Y .                      

6. Conclusion and Suggestions 

In the last several decades, many engineers, physicists and mathematicians in-
tensely focused on studying the collapse of the Tacoma narrow bridge. They 
tried their best to explain such an amazing event. Lazer and McKenna [17] sug-
gested that a one-dimensional simply supported beam suspended by hangers 
was modelled as a suspension bridge, which described the vibration of the 
roadbed in the vertical direction, and the long-time behavior of this suspension 
bridge model without delay effects were studied by many authors. But we consi-
dered the long-time behavior of suspension bridge equation model with state- 
dependent delay in the paper, compared with constant delay and time-varying de-
lay, differential equations with state-dependent delay are more complex, but they 
are closer to simulating the real phenomena. However, the theoretical methods 
of differential equations with state-dependent delay are not as rich as those of 
other types of delay differential equations, so there are relatively few studies on 
PDE with state-dependent delay, and they mainly investigated the long-time be-
havior of the solution of parabolic equations with state-dependent delay. Under 
suitable assumptions, we consider the long-time behavior of the system by estab-
lishing quasi-stability inequality, and obtain the existence of global attractor, 
exponential attractor, and also discuss the fractal dimension of the attractor in 
this paper. Therefore, our work can provide theoretical support for the numeri-
cal calculation and simulation of suspension bridge equations, viscoelastic beam 
equations and nonlinear hyperbolic equations in engineering and mathematical 
physics, and ensure that the numerical calculation and simulation of the prob-
lems studied can be carried out smoothly. However, when proving the existence 
of the global attractor, compared with the contractive function method used in 
[10], the damping coefficient (22) needs to be large enough. On the other hand, 
the existence of attractors is proved in weak topological spaces, but the regularity 
or asymptotic structure of attractors in strong topological Spaces needs further 
consideration. Finally, in this paper, we only consider one of the factors affecting 
the suspension bridge—time delay factor, and then we should consider other 
factors affecting the stability of the suspension bridge subsequently, such as 
random factors. 
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