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Abstract

In this paper, we discuss virtual element method (VEM) approximation of
optimal control problem governed by Brinkman equations with control con-
straints. Based on the polynomial projections and variational discretization of
the control variable, we build up the virtual element discrete scheme of the
optimal control problem and derive the discrete first order optimality system.
A priori error estimates for the state, adjoint state and control variables in L

and H' norm are derived. The theoretical findings are illustrated by the
numerical experiments.
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1. Introduction

In this paper we consider virtual element discretization of the following optimal
control problem: find (Y, p,u)eV xQxU,, satisfying

) 1 2 7 l?
uTJ?d J(y,u)=§"y_yd |||_2(Q)+E||u"L2(Q) (1.1)
subject to
_Ay_i_vp-{-Kily: f+u |nQ|
V'y:O iﬂ Q, (1.2)
y=0 onr,

where J(y,u) is the objective functional, y, is the desired state, y >0 is
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the regularization parameter, and Q is a bounded domain in R® with the
boundary I'. We suppose that the K is a uniformly symmetric positive defi-
nite tensor, Ze. there exist two positive constants 4,4, >0 such that

An'n <n'K7n < An'n.
The admissible control set U, is defined by
U, ={u e *(Q):u, <u(x)<u,ae.in Q}.

The quantities U_,U, € R® are constant vectors and the inequality
U, <u(Xx)<u, isunderstood componentwise.

Flow control problems have important applications in aerospace, chemical
engineering and so on. The Brinkman equations can be viewed as a parame-
ter-dependent combination of the Darcy and the Stokes equations [1]. In the
past decades, developing numerical methods for optimal control model go-
verned by Brinkman equations has become a hot topic. For example, a disconti-
nuous finite volume method for the approximation of distributed optimal con-
trol problems governed by the Brinkman equations was derived in [2]. In [3] the
author investigated adaptive hybridizable discontinuous Galerkin methods for
the gradient-velocity-pressure formulation of Brinkman equations and extended
to solve the Brinkman optimal control problem. In [4] the author studied an op-
timal control problem constrained by the unsteady Stokes-Brinkman equation
involving random data. For more models, we can refer to [5] [6].

The virtual element method (VEM), first introduced in [7], is regarded as an
extension of finite element method. Unlike finite element method, the VEM has
the advantages including: it can deal with highly general polygonal/polyhedral
meshes; the basis function needn’t to be explicit expression, etc. VEM has been
widely applied to approximate various PDEs [8] [9] [10] [11] [12]. There are
many crucial literatures about the VEM framework for Brinkman problems. A
mixed virtual element method for the Brinkamn equations was discussed in [13].
In [14], the divergence free virtual element space in [11] was extended to solve
the Brinkman equations. In [15], the authors presented two stable virtual ele-
ment methods for the Brinkman equations.

For the literature on the application of virtual element method to optimal
control problem, we can refer to [16] and [17]. The authors study the virtual
element discrete scheme of the elliptic optimal control problem and give a priori
and a posteriori error analysis. There is still a gap in combination of the virtual
element method and optimal control problem governed by Brinkman equations.
Thus, in this paper, we aim to apply the VEM to approximate optimal control
problem governed by Brinkman equations with pointwise control constraint. By
making use of the virtual element projection operators the virtual element dis-
crete scheme of the optimal control problem is developed, where the piecewise
L* projection of the discrete state is used in the cost functional to guarantee the
computability of the discrete adjoint state equation. Then, we derive a priori er-

ror estimates for state, adjoint state and control variables in L° and H' norm.
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Finally numerical experiments on three polygonal meshes are given to verify the
theoretical findings.

The structure of this paper is as follows. In Section 2, we give the continuous
first order optimality condition of problem (1.1)-(1.2). Then, some basic con-
cepts about VEM are introduced. In Section 3, we derive the virtual element dis-
crete scheme for (1.1)-(1.2) and the discrete first order optimality condition. In
Section 4, a priori error estimates of the state, adjoint state and control variables
are proved. In Section 5, we show numerical results to verify the theoretical re-
sults.

Throughout this paper, for an open bounded domain K, we will denote scale
and vector Sobolev space by H°(K) and H®(K) equipped with seminorm
will denote the L° (K) or L° (K) in-

[ and norm |, while (),

ner product for scale and vector.

2. Preliminaries

In this section, we firstly recall the continuous first order optimality condition
for problem (1.1)-(1.2). Then we introduce the definitions of virtual element
space and two projection operators.

We consider the spaces:
Vi=Hi(Q), Q=1(Q)={gel(Q)st [ ada=0}.
We endow the space V with the norm

VI o= vV %2

and the space Qwith L?-norm.
Then the weak formulation of the optimal control problem (1.1)-(1.2) is given
by seeking (Y, p,u)eV xQxU,, satisfying

rind (v.v)
s.t.
A(y,v)-b(v,p)=(f+uyv) vveV,
{b(y,q)=0 vqeQ,
where

A(y,v)=a(y,v)+d(y,v), a(y,v)= IQVy 1vvdQ,
d(y,v)= IQK’ly vdQ, b(v,p)= IQ pdivwdQ.
Additionally, we introduce the kernel:
Z={veVsth(v,q)=0vqeQ}.

Following [14], we can obtain that:

e A(.) and b(,-) arecontinuous, ie.

A <Cllulll, vk, vuvev,
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|b(v,q)| <Cl|vIIl ||q||Q vweV,qeQ.

. A(-, ) is coercive on the kernel Z , ie.

A(v,v) 2]l vvez.

. b(-, ) satisfies the inf-sup condition, i.e.

3B >0,such that max b(v’p)zﬁ"puo VpeQ.

Ao vl
We introduce the following Lagrangian functional:
L(y,puz,¢)=3(y,u)-A(y,z)+b(z,p)-b(y.¢)+(f +u,z).

Then the following continue first order optimality condition can be obtained

{A(y,w)—b(w, p)=(f+uw) vweV,

(2.1)
b(y,w)=0 vy eQ,
{A(W,z)+b(w,¢)=(y—yd,w) Yw eV,

(2.2)
b(z,y)=0 Vy eQ,
(yu+z,v-u)>0 Vvel,, (2.3)

where (Z,¢) is the adjoint state variable. Following [18], the variational in-

1
u= PUad (—;Zj,

(u) =max{u,,min{u,u, }}

equality (2.3) is equivalent to

where

P

Uag

denotes the projection onto the admissible set U, .
Let 7, be a sequence of decompositions of €2 into general polygonal ele-

ments Kwith

hy =diameter(K), h:= max hy.

Assumption 2.1. We assume that there exists two positive constants ¢ and p
such that, every K €7, satisfies the following assumptions:

(A1) Each element Kis star-shaped with respect to a ball of radius >ch,,

(A2) The distance D, between any two points of each element K satisfies
D, = ph, .

The bilinear forms A(--) and b(--), the norms |||, and |fl» can be
decomposed into local contributions, 7.e.:

A(y.v)= K;h A (y,v)= > (aK(y,v)+dK(y,v)) vy,veV,

KeTy

b(v,p)= > b“(v,p) WveV,peQ,

KeTy,

and

DOI: 10.4236/eng.2023.152010

117 Engineering


https://doi.org/10.4236/eng.2023.152010

Y.W. Li

1
2 2
|||v|||v=:[z|||v|||v,KJ wev, ||q||o=:[z||q||;Kj va<Q
KeTy, KeTy,

Definition 2.1. For all K €7,, we define the energy projection operator
II;: HY(K)> [P, (K)}2 as follows:
a* (v, ~II3v,, p) =0, Wv, e H'(K),pe[B,(K)T .
J.thdK = IKHthdK.
It obviously holds TI;p=p forall pe[P,(K )]2

Definition 2.2. For all K eT,, we define the |* projection operator TI:

L*(K)—> [P (K )]2 as follows:
(Pv,—v,., p)=0, Wy, eL*(K),pe[P,(K)].

For k e N, we define the following spaces:

B, (K) : the set of polynomials on Kof degree <k, usually, P, = {0} ,

B, (K):= {v eC’(6K)s.tv, P, (e), Vec aK} ,

G (K)=V (P, (K)) <[P (K)]

G (K) < [P (K )]2 is the L*-orthogonal complementto G (K).

In [14] the following local virtual element space was introduced

Vo= {v eUfst. (v—HZv, gj):o, Vg, egz(K)L/go(K)L},

where
UK = {v e H'(K)stvy €[B,(0K) ] ,~Av+Vseg, (K)"
and diw e P, (K), for some s LZ(K)},
and G,(K) /G, (K)" denotes the polynomials in G,(K)" that are L°

-orthogonal to all polynomials in G, (K )L .

For the pressure space we adopt the finite-dimensional space
Qx =B (K).
Then we define the global virtual element spaces:

V, = {v eVsty| eV, vK e’]’h}

and
Q.:={geQstql, eQ, VKeT}.
We remark that the above spaces have the following relation
divv, cQ,.

This implies an exactly divergence-free discrete velocity.
Lemma 2.3. (See [8]) There exists a positive constant C such that, for all
K €7, and all smooth enough functions ¢ defined on K, it holds:

||(0— |:’k0¢||va <Ch{"|g| » m=01seNm<s<k+l.
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3. Virtual Element Approximation

The virtual element discrete scheme of (1.2) can be defined as follows:

A, (Yn (). ) =b(Vy, b, (u)) = KZ (f +u,1‘[2vh)0’K W, €V,

€Ty

b(y,(u).6,)=0 va, €Q,,

where

A](yh(u)7vh):: Z AhK(yh(u)’Vh)

KeTy

= T (A (0 (W) 05 (0 (0).,)).

KeTy
ay (yn(u),v,)=a" (Hth (u),l‘Ith)+SK (yh (u)-TI3 y, (u),v, —Hth),
A (Ya (U),Vy )= d* (T3, (u),TT5v,, )+ Ry, (u) ~TI3y, (u),v, —TIV, ).
Here, R (,) and S" (,) are symmetric stabilizing bilinear forms satis-
fying
ca” (vy,v, ) < S (v, vy ) 6,85 (v, vy ), WV, €V, with I v, =0,
¢ d" (v, v ) SR (v, vy ) <6, d" (v, v,), Vv, €V, with ITjv, =0.
where ¢, C,,C, and c, are positive constants independent of 4. One can refer
to [14] for the example of construction of R (,) and SX (-, ) Moreover, the

bilinear form AjK (,) satisfies:

e Consistency:
A< (pvy)=A(pv,),  Ype[B(K)] v, eViX.
o Stability:
A A (Vi V) S A (Vv ) S @ A (v, vy), WY, eV

Here, a. and « are two positive constants independent of A. By the stabil-
ity of A (~-) and the coercive of A(--), we obtain that the bilinear form
A (-) is coercive, ie:

A, (Vv ) ZClIva e v, eV, (3.1)
Next, the bilinear b(-,-) satisfies the inf-sup condition [14].

Lemma 3.1. Given the discrete spaces V, and Q,, there exists a positive

constant J3 independent of h with

b
sup (thQh)

wevhvnz0 [V [lly

2 B"qh"Q v, € Q.

Then the virtual element approximation of optimal control problem (1.1)-(1.2) is
to find (yh, ph,uh) eV, xQ,xU,, such that

. 1 2
min ‘](yh’uh):zzKZ;_.[K(Hgyh_yd) dK +%J'QuﬁdQ
€Ty

UpeUgy

subject to
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A (Ynivi)=b(vi py) = 2 (f +uh’r‘[gvh)

KeTy

b(yh-qh):() V@, € Q.

Vv, eV,,
ok h € Vh

(3.2)

Here the control variable is implicitly discretized (see [19]), and the minimi-
zation problem is defined on infinite dimensional set U, , instead of virtual
element space. In order to balance the convergence rates of state and control va-
riables, in the discrete state equation we adopt the L* projection Hg.

We introduce the following Lagrangian functional:
L(Yn PosUni 2oyt )= 3 (Voo Un ) = A (Y 20) +0(20, ) =b(Vi 64)
+ > (f+u,z,)

K, 0K

Then the following discrete first order optimality condition can be obtained

by computing the derivatives of E(-, Y -,‘) with respect to (yh, Prs U Zh,¢h) :
A (YW, )=b(w,, p,)= Z(f+uh,ngh)0K vw, eV,
KeTh ' (3.3)
b(yhv':”h):o Vi, €Qp,
A, (W, 2, ) +b(W,, ¢, ) = Z(yh_yd'ngwh)OK vw, eV,
KeTh ' (3.4)
b(z,,¥,)=0 Vi, €Qp,
> (7uh+1'[§zh,vh—uh) >0 Wy, eU,. (3.5)
KeTy, 0K

4. A Priori Error Estimates

Lemma 4.1. (See [20]) For the state equation, there exists a positive constant C,

the state variables admit the following estimates
¥l + [Pl <€ s

To achieve a priori error estimates, we introduce some auxiliary problems:
V(W py ) eV, xQ,,

A, (Y, (u),w,)=b(w,,p, (u))= > (f +u,1‘I2Wh)OK,
= | 4.1)
b(Yh(u):‘//h)ZO’
A (Wh’zh (y))+b(Wh!¢h (y)): ZT (y_ ydlngwh)ovK ,
KeTy (4.2)
b(zh(y)!l//h):ol
A1-|(Whlzh(u))+b(wh'¢h(u)): > (yh(u)_yd’ngwh) '
Ky a (4.3)
b(z, (u),¥,)=0.
Additionally, we introduce the discrete kernel:
Z, ={v, €V, st.b(v,,q,)=0 Vg, €Q,}.

Lemma 4.2. (See [14]) Let y,zeV N HS+1(Q) with 0<s<2. Under the
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Assumption (2.1) on the decomposition T,, there exist Y,,z, €V, such that
"y —Y ||O,K + hK ”l y—y, |”V,K < Ch}s<+1|y|5+1,K ’

"Z -z ||0,K + hK |||Z —Z ”lv,K S Ch}s<+1|2|s+1,K !

where Cis a positive constant independent of A.
Lemma 4.3. Let (Y,p) and (Y (u),p,(u)) be the solutions (2.1) and
(4.1), respectively. Under the Assumption 2.1, we have the following estimates

lly =y, (Wlll, <Ch? (| f +ul, +]y],),
[p—pu ()|, <ch?(|f +ul, +[yl, +[pl, ).
"y_yh(u)"o SChS(“ +u|1+|y|3+|p|2)'

Proof. Note that (yh(u), ph(u)) is the virtual element approximation of
(y, p). We observe that, if yeV is the velocity solution to Equation (2.1),
then it is also the solution to the following problem: find Yy € Z , such that

A(y,w)=(f+uw) vweZ.

Analogously, if Y, (U) €V, is the velocity solution to Equation (4.1), then it
is also the solution to problem: find Y, (u) € Z, , such that

A (Yo (u)wy )= X (f +u,TTw, )

KeT,

Yw, € Z, .
oK h h

Therefore, by using the same techniques of Theorem 4.6 and Theorem 4.7 in
[11], we can derive the first and second estimate in this lemma. Now we just give
the proof of the last one.

Let (r,t) €V xQ be the solution to the dual problem

—Ar-Vt+K'r=y-y,(u) inQ,
V-r=0 inQ, (4.4)
r=0 onT.

From Lemma 4.1 we know that r satisfies the regularity bound
Il <Cly =y (W),

and consequently for any interpolation r, asin Lemma 4.2, we have

1

2

=1 [ S - |||5,K]
KeTh

21,2 %
<Cl 2 helrly,e
KeT,

< Chlr|,
gCh"y— yh(u)"O.

Because of divV, c Q,, we obtain that the discrete velocity solution of state
equation is divergence-free. Thus, we get V~(y— A (u)) =0. Further, multip-
lying (4.4) by y-Y, (U) and integrating leads to
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ly=yu (W], =(y=yn(u),-Ar -Vt +Kr)

u).r ) (4.5)
+

We label these as T,,T,, T, and T, respectively, and bound them separately.

Firstly, we can bound T, as follows
T, =A(y-y,(u).r-r)
<Cllly = yu (u)lll Mllr =, [l
<Ch? (| +ul, +]y|;)-Chly -y, (u)],
<on’(|Fu Iy =y (w-
Dueto V.r=0 theestimate ofterm T, follows
T, =b(r,, p)-b(r,, p, (u))
=b(r, p-py (u))
=b(r, —r,p-p,(u))
<[l =l [~ py (w)],
<Chlly =y, (u)l,-Ch* (|F +ul, +[yl; +[pl,)
< Ch’ (| £+l + [y, + ol )y =y (W)
For the inconsistency term T, we have
o= A (Yn (U).n ) =AY (U).1)
= (Af(yh(u),r,)—AK(yh(u),r, ))

KeTy

-y (Af (Vo (U)-IIy, 1, —IIr )= Ay, (u)-IL3y,r, —Hfr)).

KeTy
Note that

=z |||yh<u>—n2y|||s,Kf

KeTy,

1

2

[ 5 |||yh<u)—y+y—n3y|||s,Kj
KeTy

2
SC[ 2 My (w-yllvw + 2 |||y—H2y|||€,KJ
€Ty

KeTy

sc[ > |||yh<u)—y|||s,Kf+c( S fly-mylE, j;

KeTy KeTh
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2
<y, (u)-vlll +c[ > h:|v|§,K]
KeTy

<Cllly, (u)-ylll, +ch?|y],
<Ch?(|f +ul, +|y,)

and

1
2
[ Sl —nfrms,K]

KeTy,

1
2
{ S i —r+r—nfr|||aKj

KeTy,

1

2

sc[ S -l .+ 3 |||r—nfr|||s,K}
KeTy

KeTy

1 1
2 2
sc[ S flr-r, |||5,K] +c[ 5 |||r—nfr|||s,Kj

KeTy, KeTy,

1
2
<c|lr, ~rlll +c( > hé|r|§,Kj
KeT,
<Clllr, =r|ll, +Ch|r
< Ch||y— Vi (u)||0

2

Then applying the Cauchy-Schwarz inequality [21], the following conclusion

can be drawn

> (A (va (u)-T1y,r, —IIr) - A (y,, (u) T3y, 1, ~I{r )

KeTh
< 3 (M (W)=Yl flr <2l )
KeT;
' 1 1
2 2
s[ 5 |||yh(u>—n2y|||s,K] [ Sl —nfr|||aK]
KeTh KETh

< Ch3(|f +ul, +|y|3)||y— Y, (u)"0

Finally, the definition and estimate of the L* projection operator leads to the

estimate of T,

To=(f+ur)- Y (I(f+u)r, )O,K

KeT,
:KZT(f+u—Hg(f+u),r, )O,K
€Ty
= Z;(f+u—1‘12(f+u),r, -ILY, )
KeTy !

< 2|t u-m(f+u),, Jr-mn,,
KeT,

1 1
2 2

<[z Irewntcre, | 3 o -nef, |
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<o Z e, [
KeTy '
<Ch|f +u| -Ch?|r|,
<Ch?|f+ul [y -y, (u)],-

1

2

2
Here, the estimate of [ > ||r, ~ILr, "0 Kj is derived as follows:
KeTy ’

1
[zl |

KeTy

1
0 0 o 2
= Z||r,—r+r—1‘[lr+1'[1r—1'[1r,||
0,K
KeTy
1

2 2 2
T P o I N ||0K]
KeT, KeTy ' KeTh '
1
2 0 2 E
<C|2 Z "rl _r”O,K + Z ||r_nlr||0K
KeTy KeT, '

1
2

1
e 5 Iu-rk | v £ Ir-nef,
KeT, KeTy '

1 1
4 2 2 4 2 2
<o > hK|r|z,D(K)j +c[z hK|r|z,K]

KeT, KeT,

sCh2|r|2.

Inserting above bounds into (4.5) yields the third estimate.

For the adjoint state variables, we have the following results.

Lemma 4.4. Let (2,4) and (zh (y).4, (y)) be the solutions (2.2) and (4.2),
respectively. Under the Assumption 2.1, we have the following estimates

llz—=z, (¥l < Ch?(|y - yal, +[2], ).
||¢_¢h (y)"o <Ch? (|y_ Ya |1+|Z|3 +|¢|2)’
lz=2a (W), =ch® |y = val, + 2], +1gl,)-

Proof. Note that (z,(y).4,(y)) is the virtual element approximation of
(Z, ¢) . In a similar way to state variables, the Equation (2.2) can be rewritten as:

finding z e Z, such that
A(w,z)=(y-ys,w) YweZ,

while, the Equation (4.2) can be rewritten as: finding z,(Y) € Z,, such that
Aq(wh,zh(y))= > (y—yd,l'I‘z’wh)oyK vw, € Z,.

KeT,

Then by using the same techniques of Theorem 4.6 and Theorem 4.7 in [11],

we can derive the first and second estimate in this lemma. The last one can be
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derived by the similar argument to Lemma 4.3.
Theorem 4.5. (A priori error estimate) Suppose that (y, p,u, Z,¢) Is the so-
lution of (2.1)(2.3), and (yh, P Ups Zh,¢h) Is the solution of (3.3)-(3.5). Under

the Assumption 2.1, we derive
Iy =val, +hllly=yulll <Ch*, [lp—pyf, <Ch?,
|2z, +hlllz-z, Il <Ch*, |6, < Ch*,
Ju—u,, <ch’,
where Cis a positive constant independent of A.
Proof. We decompose the errors y—VY,,p—p,.z—2, and ¢—¢, into
Y=Yn =Y =Y (U)+ ¥ (U) =V, P=Py=P=Py(u)+p,(u)-py,
2-2,=2-2,(Y)+2,(Y)~2,, -6 =0-4(Y)+4(Y)-¢.
Recalling Lemma 4.3, we know
1y =y (lllo<Ch®, lly =y, (u)lll, < Ch%,|p—p, (u)], <Ch*.
Moreover, by the governing equations of Y, (U) and y, we have:
V(W wy ) €V, xQ,,
A, (Y (U) = Yo, Wy ) =b (W, py (U) =Py ) = 3 (u—uh,ngh)oyK ’

b(Yh(U)_Yh’V/h):O-
Setting W, = yh(u)—yh and y, = ph(u)— P, gives
A (Y (W)= Yo Yo (W)= ¥n) = 3 (u=up I (v, (U)= W) -

KeTy

It follows from (3.1) that
Cllyn (u)=yulllZ <A (Ya (W)= Vi Vo (U) = Vi)

= > (u=u, T (v (W)= W),
KeTy '

< z "u_uh"o,K "yh (u)_ yh"o,K
KeTy

<Jlu=uy My (u)=yalll -

We can deduce

Iy (u) =y lll < Cllu-uy],

Combining above inequalities leads to

Iy =Yaly <€ (" +Ju=-u,) (4.6)

and
lly=yulll, <C(h*+[u=u,,)- (4.7)

Next we estimate " p, (u)-p, "O . Based on Lemma 3.1, we get
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b(Wh! Pr (U)_ ph)

Blp (u)=p,[, < sup

Wh €V, Wy #0 |”Wh ”lv
A, (yh (u)- ythh)+ > (uh —u,ngh)OvK

_ sup KeTy,

Wh €Vh,Wp #0 ”lWh ”lv
s C(”l Yh (U)— Yh "lv + "uh - u"o)
<clu-ul,.

By the triangle inequality, it holds
o= pul, <C(h* +[u-u,,)- (4.8)

In a similar way, from Lemma 4.4, we have
lz=2, (), <ch®.lllz=z, (V)llk, <ch? J¢—4, ()], <Ch®.
By the governing equations of Z, (y) and z, wehave: V(w,, (//h) eV, xQ,,
A, (Whlzh(y)_zh)+b(wh’¢h (Y)_¢h): ZT (y_ yh!ngh)
KeTy
b(z,(Y)~2y.9,)=0.

Choosing W, =2,(Y)-2, and w, =@, (Y)—4,, we obtain
Aq(zh(Y)_Zh-Zh(y)_Zh): Z (y_thHg(Zh(y)_zh))ovK-

KeTy

oK'

Further, it follows that
C ”lzh(y)_zh |”\2/ < ﬂ(zh(Y)_zh’Zh(Y)_Zh)
= Z (y— yhan(z)(zh(y)_zh))QK

KeTy

< Z1y=Yalos 2 ()= 2
<[y =allo Mo (y) =2 lll -
This implies
2, (v) =2l <Clly=yall, < C(n* +Ju-u,).
Combining above inequalities gives
lz=2.], <C(0*+[u-u,],) (4.9)
and
lz-z, |||Vsc(h2+||u—uh||0). (4.10)

Using Lemma 3.1, we can derive

b(Whv%(y)_%)

Al (v)-di], < sue

Wh €Vh,Wh #0 ”lWh ”lv
A (Wh’zh I (y))+ z (y_ yh'HgWh)o,K
_ sup KeTy
Wh €V, Wi, 20 |”Wh |||V

SC(”lzh_zh(Y)Hlv + ||y_yh||0)
sC(h3+||u—uh||0).
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By the triangle inequality, we have
[6=dill, <C(n*+Ju-us,)- (4.11)

Since the estimates of state and adjoint state variables both depend on the es-

timate of control variable, now it remains to estimate ||u -u, ||0 . Define

3 (u)(v-u) ZJ' (yu+TD)z, (u))(v-u)dK.

We can prove that

i (vV)(v—u)=J; (u)(v-u)z y|v-ul}. (4.12)
Note that

5 (v)(v-u)-Ji (u)(v-u)

- z [ (v + Tz, (v) - yu-Tz, (u))(V—u)dK

= zj (v-u) 20K + zj ( zh(u)))(v—u)dK
:ng (v—u) dQ+K;th(n2 z,(v) —zh(u)))(v—u)dK.
Using (4.1), we can derive: V(W,, )€V, xQ,,
A (0 (V)= (1)) =0 (wh. o (v) = o () = 3 (v—u T
{b(yh(V)yh(U),vfh)—O-

Let W, =2,(v)-2z,(u) and y, =4 (v)—¢,(u), then we obtain

A (Yo (V)= Y (), 2, (V) =2, (u)) =b(2, (v) =2, (u), Py (V) = P, (u))
= 2 (v-uTt(z, (v) -2, (w)),, (4.13)

b(yi (V) Yo (1), (v) ~ i (1)) =0
Using (4.3), we can obtain: V(Wh,(//h ) eV, xQ,,
{/\1 (W2, (V) =2, (U))+b(Wy, 4 (V) — ¢ (1)) = KEZT (0 (V)= o (0). TEw, )
b(zh (V)_Zh (U),l//h) =0.

Taking W, = yh( ) yh(u) and vy, = (V) (u) yields

A (Yn (V) = Y (1), 2, (V) =2, (U)) + B (¥ (V) = i (). 64 (V) = 44 (u))
= 3 (W (V)= ¥ (W) I (Y (V)= (), - (4.14)

KeTy
b(zh (V)=2,(u), py (V)= Py (U)) =0
According to (4.13)-(4.14) and the property of the L2 projection, we deduce

2 (V - U,Hg (Zh (V)_ Zp (u)))o,K

KeTy

=A, (Yh (V)_ yh(u)’zh (V)_Zh (u))
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= 2 (T (5 (V)= 3 (W) T (3 (V)= s (1), =0

KeTy, N
Therefore, from (4.12), it follows
ylu=u,lf < 3; (u)(u-u,) =35 (u,)(u-u,)
- ZT J-K(j/u-i_ngzh (u)_7uh —Hglh(uh))(u—uh)dK
KeTy
= u+z+I13z, (u)—z)(u—u,)dK
K;_hj.K(}/ 2 h( ) )( h)

+K; J.K (7uh +ILz, (uh))(uh —u)dK

=(yu+z,u-u,)+ > (ngh(u)_z*”_uh)

KeTy, 0K
+ 3 (ru, +1M32, (u,). 4, —u)OK
KeTy, !
<0+ K;h (M52, (u)-z,u-u, )O‘K +0.
This shows
1
2
Ju-uy], < C[ > ||1'I§zh(u)—z||ZKj . (4.15)
KeTy ’
Note that

"ngh (u)_ Z”O‘K = ”ngh (u)_HgZ"o,K +||1_[22 - Z”O‘K (4.16)
<[an ()7,  + 227,

By Lemma 2.3, we have "ng—Z”(JK <Ch®. We decompose the error
z,(u)-2 into |

z,(u)-z=z,(u)-z,(y)+z,(y)-2
Applying Lemma 4.4 yields
|l2=2. (y)|, <ch®.
By governing equations of Z,(U) and z,(y) wehave: V(W,,p,)eV, xQ,
Aw(Whvzh(u)_zh(y))"‘b(wh'@w(u)_%(y)): Z[ (yh(u)_ yaHgWh)
KeTy
b(z, (u)-2, (¥)¥,)=0.

Setting Wy, =2, (u)-2,(y) and ¥, =4, (u)—¢,(y), we obtain

A](zh(u)—zh(y),zh(u)—zh(y))+b(zh(u)—zh(y),¢h(u)—¢h(y))

oK'

b(z, (U) =2 (), (U) =4 () =0.

It can be deduced immediately by (3.1)
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Clllzy (u)=z (VI < A (20 (u) =20 (y). 2, (u) -2z, (y))
= K;h<yh (u)-y.I13(z, (u)—zh(y)))o’K

< K; "yh (U)— y"o,K ”Zh (u)_ zh(y)"o,K
<[y (w)= vl Jzn (W) =20 (v,

Then we can derive
|z (u)-2, (y)"0 <[llz, (u)=z, (Y)llly <C|lya (u)- y||0 <Ch?
Using the triangle inequality leads to
||z—zh(u)||0 <Ch. (4.17)

Combining (4.15), (4.16) and (4.17) results in

Ju—u,], <ch’.

Inserting above estimate into the estimates of state and adjoint state yields the

final results.

5. Numerical Results

In this section, we present an example on domain Q= [0,1]><[0,l] to validate
the performance of our error analysis presented in this paper.

For the convergence test we consider the following two sequences of meshes
that are shown in Figure 1. The first sequence of meshes (labeled Distorted
square) is the distorted square mesh. The second sequence of meshes (labeled
Lloyd) is obtained by the Voronoi mesh generator (see [22]).

Example 5.1. Consider the optimal control problem (1.1)-(1.2) on the square
domain Q. Let u, =(~0.015,-0.015)", u, =(0.015,0.015)", K=1, y=1.
The exact solutions are chosen to be

yiylexf (1-%) % (1-%) (1~ 2x,)
Yo) | ~10x (1-%)(1-2%)¢ (1-%, ) )

p=10(2x, -1)(2x, -1),

(a) Distorted square

Figure 1. Two meshes.
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z=0.5y, ¢=-05p.

The control variable is given u=R,

(—lzj. f and y, can be deter-
v

mined from the exact solutions Y, p,z,4,U.

In Tables 1-3, we show the numerical results about the state variables vy, p,
the adjoint state variables z,¢ and the control variable U on three different
meshes. We can observe that the convergence rate is consistent with the previous
theoretical analysis. In the following tables, NE is the number of mesh elements.

We observe that both errors have optimal convergence rates, which satisfies the

Table 1. Errors and convergence rates of state variables on two meshes.

Distorted square mesh

NE h [y=vil,  Rate  fly-yll.  Rae  [p-p),  Rate
100 1.000E-01 9.31208E-04 3.55874E-02 5.30223E-03
400 5.000E-02 1.06371E-04 3.13 8.65357E-03 2.04 8.65357E-03 2.07
900 3.333E-02 3.20232E-05 296  3.89233E-03 1.97 3.89233E-03 1.97
1600 2.500E-02 1.33977E-05 3.03  2.18359E-03 2.01 2.18359E-03 2.02
Lloyd mesh
NE h ly=vil,  Rae llly-wll,  Rae  [p-pf,  Rate
100 1.000E-01 8.13421E-04 8.51484E-02 2.51368E-03
400 5.000E-02 9.54153E-05 3.09  2.05802E-02 2.05 6.45030E—-04 1.96
900 3.333E-02 2.89133E-05 2.94  8.99788E-03 2.04 2.80872E-04 2.05
1600 2.500E-02 1.22585E-05 2.98 5.04953E-03 2.01 1.58005E—-04 2.00
Table 2. Errors and convergence rates of adjoint state variables on two meshes.
Distorted square mesh
NE h ||Z - Zh"0 Rate lz -zl Rate Hl// -, HO Rate
100 1.000E-01 2.53147E-03 1.23694E-01 5.24139E-03
400 5.000E-02 2.97297E-04 3.09  3.04978E-02 2.02 1.27452E-03 2.04
900 3.333E-02 8.95017E-05 2.96 1.36622E-02 1.98 5.73271E-04 1.97
1600 2.500E-02 3.74454E-05 3.03  7.66446E-03 2.01 3.21603E-04 2.01
Lloyd mesh
NE h Ilz-2,, Rate  [lz-z[ly  Rate  |w-w,[,  Rate
100 1.000E-01 6.51423E-04 2.54301E-02 1.48532E-03
400 5.000E-02 7.69442E-05 3.08  6.14640E-03 2.05 3.81145E-04 1.96
900 3.333E-02 2.32217E-05 2.95  2.69819E-03 2.03 1.66370E-04 2.04
1600 2.500E-02 9.84543E-06 2.98 1.51420E-03 2.01 9.33767E-05 2.01
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Table 3. Errors and convergence rates of control variable on two meshes.

Distorted square mesh

NE h Jlu=u,], Rate
100 1.000E-01 5.82184E-03

400 5.000E-02 6.98085E-04 3.06
900 3.333E-02 2.03451E-04 3.04
1600 2.500E~02 8.66004E-05 2.97

Lloyd mesh

NE h lu=u,], Rate
100 1.000E-01 2.65768E-03

400 5.000E—02 3.18677E-04 3.06
900 3.333E-02 9.55500E-05 2.97
1600 2.500E—-02 4.04384E-05 2.99

conclusion in Theorem 4.5.
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