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Abstract 
In this paper, we proposed a model-based abnormality detection scheme for a 
class of nonlinear parabolic distributed parameter systems (DPSs). The pro-
posed methodology consists of the design of an observer and an abnormality 
detection filter (ADF) based on the backstepping technique and a limited num-
ber of in-domain measurements plus one boundary measurement. By taking 
the difference between the measured and estimated outputs from observer, a 
residual signal is generated for fault detection. For the detection purpose, the 
residual is evaluated in a lumped manner and we propose an explicit expres-
sion for the time-varying threshold. The convergence properties of the PDE 
observer and the residual are analyzed by Lyapunov stability theory. Eventual-
ly, the proposed abnormality detection scheme is demonstrated on a nonli-
near DPS. 
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1. Introduction 

With the mechanization and intellectualization of production and life, complex 
nonlinear control system is widely used in chemical industry [1], transportation 
system [2] and other fields [3]. To improve the reliability and availability of com-
plex dynamic system in industrial assembly line, abnormality detection in in-
dustrial process described by distributed parameter system (DPS) is of vital im-
portance [4]. The DPSs are usually modeled by partial differential equation (PDE). 
The most unique characteristic of DPS is that the state variables change in both 
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time and space domains, which makes the traditional ordinary differential equa-
tion (ODE) unable to accurately describe its dynamic behavior. Distribution ab-
normalities have been extensively studied in the literature. For example, the dis-
tributed thermal failure of lithium-ion batteries studied by Dey et al. in [5] [6] 
may lead to battery degradation and failure, which belongs to distribution ab-
normality. 

For actuator failures in the domain, this is a special case of abnormal distribu-
tion. El-Farra and Ghantasala discussed in [7] that the actuator failures in the 
diffusion reaction process widely exist in chemical processes. Abnormal beha-
vior or events in DPS can lead to controller failures or unexpected system res-
ponses, which are detrimental to the safe and reliable operation of the system. 
Without loss of generality, according to the research results of Dey, Perez and 
Moura in [5] [6], the fault of the dynamic system in the model can be classified 
as the abnormal term ( ),s x t  in the equation. Considering the spatial distribu-
tion characteristics of state variables in DPS, we can regard the distributed ab-
normalities discussed in the above literature as general distribution faults in fault 
diagnosis (FD). 

In recent years, Dey et al. in [6] and Ghantasala et al. in [8] have made re-
markable research results on FD problems of DPS. Ferdowsi and Jagannathan 
constructed the fault diagnosis observer of DPS by using the direct representa-
tion of PDE of the system, and realized the fault diagnosis of DPS of a class of 
parabolic PDE [9]. At the same time, observer-based fault detection methods 
have been widely used in linear systems and some important studies have been 
made in [10] [11] [12]. For example, Cai, Ferdowsi and Sarangapani constructed 
a new model-based fault detection method in [13], in which a state observer was 
constructed based on the boundary measurements of the original PDE system. 
Later, through the unremitting efforts of scientific researchers, the observer-based 
fault detection method was introduced into the study of nonlinear system fault 
detection, and many remarkable research results were obtained in [14] [15] [16]. 
In [16], a comprehensive design scheme of observer-based fault detection system 
is proposed for a nonlinear system. The above mentioned fault diagnosis work is 
put forward under model-based. The existing model-based DPS fault detection 
and diagnosis methods can be roughly divided into two categories: one is the fi-
nite-dimensional ODE representation of DPS, that is, the early lumped design; 
the other is based on the original PDE system, that is, the late lumped design. 
However, the DPS fault detection and adjustment scheme using finite-dimensional 
ODE to approximate PDE model may lead to missed detection and false alarms 
due to the model reduction [17] [18]. In [19], Lei et al. studied the spatial-tem- 
poral fault detection problem of a class of nonlinear reaction-diffusion equations 
by using the linear matrix inequalities (LIMs) method. Feng, Li and Yang stu-
died the distributed fault estimation problem of parabolic DPS in [20] through 
cumbersome early lumped design. However, due to the neglect of the remaining 
infinite-dimensional dynamical system in the design stage, observation overflow 
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will occur, which will seriously affect the estimation performance. Although 
we need a large number of in-domain measurements to achieve satisfactory 
performance, it is almost impossible to achieve full-state measurements in in-
dustrial processes. Recently, Ferdowsi and Cai studied the problem of fault de-
tection and estimation for a class of nonlinear DPS in [21], in which the me-
thod of parameter updating law is adopted to estimate the fault function. Feng, 
Wang et al. in [22] studied a class of distributed anomaly location for linear 
DPS through a limited number of measurements. On this basis, the nonlinear 
term is introduced to further discuss the problem of abnormality detection in 
DPS. 

Based on the works aforementioned, the nonlinear term is introduced into the 
system discussed in this paper, and the anomaly detection problem of the system 
is further discussed. This paper constructs an ADF for the detection of distribu-
tion abnormalities by using a finite number of in-domain measurements plus 
one boundary measurement. The distribution abnormality term ( ),s x t  is de-
fined as the unknown distribution term containing all functions of unknown 
form in the space. When there is an abnormality in the system, the dynamics of 
nonlinear DPS will change, resulting in the system output deviation from the es-
timated state given by the observer, and thus the detection residual will increase. 
Once the detection residuals exceed the predefined detection threshold, the sys-
tem is considered to be abnormal. According to the effectiveness of backstepping 
method in observer design in [23] [24] [25], this paper applies it to the design of 
ADF. Moreover, since early lumping technique is not used, there is no observa-
tion overflow problem at the design stage. Combined with the treatment of non-
linear term in the research of nonlinear DPS in [21], this method is extended to 
the system studied in this paper. 

In summary, this paper provides an abnormality detection scheme for a class 
of nonlinear parabolic DPSs. The main contributions of this paper are as follows: 

1) Abnormality detection of nonlinear DPS is realized by the assumption 
processing of the nonlinear function in the system; 

2) Based on backstepping method and finite measured values, an ADF with 
time-varying threshold is designed to avoid false alarms in abnormality detection; 

3) By Lyapunov function method instead of operator theory, the amount of 
computation is reduced effectively, which is more conducive to the application 
of practical engineering production. 

The rest of this paper is summarized as follows. In Section 2, relevant prepa-
ratory knowledge and the system problem statement are introduced. The ADF 
design and lumped residual evaluation are proposed in Section 3. In Section 4, a 
nonlinear DPS example is given to illustrate the effectiveness of the proposed 
scheme. Finally, we summarize this paper in Section 5. 

2. Problem Statement 

The notations used in this paper are standard.   and   represent the set of all 
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real numbers and n dimensional Euclidean spaces, respectively, and their norm is 
expressed as ⋅ . u  denotes the absolute value of u for any u∈ . The func-
tion1 ( )u x  is square integrable on the Hilbert space [ ]( ) [ ]( )2 20,1 0,1 ;L L   
with the corresponding norm 

( ) ( )1 2
2 0

du u x x⋅ = ∫  
The spatial L∞  norm is defined as ( )

[ ]
( )

2 0,1
max
x

u u x
∈

⋅ = . tu u t= ∂ ∂ , 

xu u x= ∂ ∂ , 2 2
xxu u x= ∂ ∂ . 

Now we recall some useful inequalities we will use in the following sections. 
• Young’s inequality: For , ,a b λ ∈  with 0λ > , then 

2 21
2 2

ab a bλ
λ

≤ + , 2 21
2 2

ab a bλ
λ

≤ − − . 

• Cauchy-Schwarz inequality: 

( ) ( ) ( ) ( )1
1 2 1 22 20

df x f x x f x f x≤∫ , 

where ( ) ( ) [ ]( )2
1 2, 0,1f x f x L∈ . 

• Agmon’s inequality: 

( ) ( )2 2
2 2[0,1]

max 0 2 xx
u x u u u

∈
≤ + , 

( ) ( )2 2
2 2[0,1]

max 1 2 xx
u x u u u

∈
≤ + , 

where ( ) [ ]( )2 0,1u x L∈ . 
In this paper, we consider a class of nolinear DPSs described by the following 

parabolic PDE in one spatial dimension: 

( ) ( ) ( ) ( ) ( ) ( ) [ ]
( ) ( ) ( )

( ) ( ) ( ) ( )

1

0
T

1

, , , , , , , 0,1 , 0

, d , 0,

0 , , , ,

t x

N

u x t u x t Q x t f u x d x t s x t x t

t x u x t x t

x x x x x xδ δ δ

 = + + + + ∈ >

 = ≥

  = − − − 

∫y c

c 

 (2.1) 

subject to the following boundary conditions 

( )
( )

0, 0, 0,

1, 0, 0,
xu t t

u t t

= ≥


= ≥
                    (2.2) 

and initial condition 

( ) ( ) [ ]0,0 , 0,1u x u x x= ∈ ,                 (2.3) 

where ( ) [ ]( )2, 0,1u t L⋅ ∈  denotes the state variable; ( ) [ ]( )2, 0,1f u x L∈  is Lip-
schitz continuous function. ( ),Q x t , ( ),d x t  and ( ),s x t  denote a continuous 
distributed input, an unknown continuous distributed disturbance and an unknown 
continuous distributed abnormality. ( )δ ⋅  is a Dirac distribution [26];  
( ) ( )1 1Nt N+∈ ≥y   is N in-domain pointwise measurements  

( 10 1Nx x< < < < ) plus one boundary measurement ( )0,u t . 
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Assumption 2.1. The distributed disturbance ( ),d x t  in the system is bounded 
in the sense of 2L  norm, i.e. 

( )
2

,d t d⋅ ≤ , 

where 0d >  is a known constant. 
Assumption 2.2. The nonlinear function ( ),f u x  satisfies the following con-

ditions: 
• ( ),f u x  is Lipschitz continuous in u and [ ]0,1x∈ , 0t ≥ , ( ) [ ]( )2 0,1u x L∈ . 
• ( ),f u x  should satisfy 

( ) ( ) ( ) ( )
,

, , ,f

f u x
f u u x f u x u u x

u
ε

∂
+ ∆ − = ∆ + ∆

∂
         (2.4) 

where Δu represents a small change in u and ( ),f u xε ∆  is the approximation 
error satisfying 

2,f fn
ε ε≤ , and note that fε  is a constant. 

In particular, when the nonlinear function ( ),f u x  satisfies 

( ) ( ) ( ),
, ,

f u x
f u u x f u x u

u
∂

+ ∆ − = ∆
∂

              (2.5) 

i.e. ( ), 0f u xε ∆ = , and from that 0fε =  can be obtained. 
Assumption 2.3. The system (2.1) is controllable, and there is a control ( )Q t , 

which can guarantee system stability before and after abnormality. 

3. Abnormality Detection Scheme 

In this paper, we design an ADF for abnormality detection in time domain by 
using a limited number of measurements (including a boundary measurement) 
on system (2.1) with boundary condition (2.2) and initial value (2.3). This sec-
tion mainly includes two parts, one is the design of observer, the other is the de-
sign of ADF and lumped residual evaluation. 

3.1. Observer Design 

We construct the following observer for system (2.1): 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) [ ]
( ) ( ) ( )
( ) ( ) ( )( )
( )

1

1

0

10

ˆ ˆ ˆ ˆ, , , 0, 0, , , 0,1 , 0,

ˆ ˆ , d , 0,

ˆ ˆ0, 0, 0, , 0,

ˆ 1, 0, 0,

t xx

x

u x t u x t Q x t p x u t u t f u x x t

t x u x t x t

u t p u t u t t

u t t

 = + + − + ∈ >

 = >

 = − >


= >

∫y c

(3.1) 

where ( )1p x  and 10p  denote the observer gains to be determined. Then we can 
design an ADF for time domain detection first by constructing the following re-
sidual ( )tr : 

( ) ( ) ( )ˆ , 0t t t t− ≥r y y .                  (3.2) 

By introducing the error variables 

( ) ( ) ( )ˆ, , ,u x t u x t u x t= − , 
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and combining (2.1), (2.2), (3.1), we can obtain the following error system  
( ),u x t : 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ]
( ) ( ) ( )
( ) ( )
( )

1

1

0

10

, , 0, , , , , , 0,1 , 0,

, d , 0,

0, 0, , 0,

1, 0, 0.

t xx

x

u x t u x t p x u t s x t d x t f u x f u x x t

t x u x t x t

u t p u t t

u t t

= − + + + − ∈ >

= >

= − >

= >

∫r c

   



 



 

(3.3) 

It should be noted that from Assumption 2.2, we can have ( ) ( )
ˆ

,
,

u u

f u x
A x t

u
=

∂
=

∂
 

through ( ) ( ) ( ) ( ) ( )
ˆ

,
ˆ, , , ,f

u u

f u x
f u x f u x u x t u x

u
ε

=

∂
− = +

∂
  . So the above error 

system (3.3) can be rewritten as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) [ ]
( ) ( ) ( )
( ) ( )
( )

1

1

0

10

, , 0, , , , , , , 0,1 , 0,

, d , 0,

0, 0, , 0,

1, 0, 0.

t xx f

x

u x t u x t p x u t s x t d x t A x t u x t u x x t

t x u x t x t

u t p u t t

u t t

ε= − + + + + ∈ >

= >

= − >

= >

∫r c

    



 



 

(3.4) 

Note that the term ( ) ( ), , tA x t u x  in the observer error dynamics described 
by (3.4) can make the system to be unstable when ( ) ( ), , tA x t u x  become posi-
tively large. 

We can eliminate ( ) ( ), , tA x t u x  by the Volterra integral transformation [25] 
and obtain the observer gain by the following lemma. 

Lemma 3.1. ([25]) By the following Volterra integral transformation: 

( ) ( ) ( ) ( )1

0
, , , , , d ,u x t x t L x t tω τ ω τ τ= − ∫               (3.5) 

where ( ), ,L x tτ  is the unique solution of (3.7), the error system (3.4) is trans-
formed into the following target ω  system 

( ) ( ) ( ) ( ) ( ) ( )
( )
( )

, , , , , , ,

0, 0,

1, 0,

Mt xx M M f

x

x t x t b x t d x t s x t u x

t

t

ω ω ω ε

ω

ω

= − + + +
 =
 =

   





    (3.6) 

where 0b >  is an constant; [ ]0,1x∈  is the spatial coordinate; [ ]0,t∈ ∞  is the 
time and 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0

0

0

, , , , , d ,

, , , , , d ,

, , , , , d .
M M

x
M M

x
M M

x
f f f

s x t s x t L x t s t

d x t d x t L x t d t

x t x t L x t t

τ τ τ

τ τ τ

ε ε τ ε τ τ

= −

= −

= −

∫

∫

∫  
Lemma 3.2. ([25]) The gain kernel ( ), ,L x tτ  is the solution to the well-posed 

PDE given by 
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( ) ( ) ( ) ( ) ( ) ( )

( )

( ) ( )

2 2

2 2

, , , , , ,
, , , , , ,

1, , 0,
1, , , ,

2

L x t L x t L x t
A x t L x t bL x t

t x
L t

xL x x t A x t b

τ τ τ
τ τ

τ
τ

∂ ∂ ∂
= + + −

∂ ∂ ∂ =
 − = +  

  (3.7) 

where 0b >  is an constant and ( ),A x t  is defined in (2.4). The observer gains 
can be obtained as obtained 

( ) ( )

( ) ( )
1

10

,0,
, ,

0,0, .

L x t
p x t

p t L t
τ

 ∂
=

∂
 =

                    (3.8) 

Lemma 3.3. ([25]) ( ), ,M x tη  is the gain kernel of the following inverse trans-
formation 

( ) ( ) ( ) ( )
0

, , , , , d .
x

x t u x t M x t u tω η η η= + ∫  

 
Remark 3.1. By the inverse transformation in Lemma 3.3, we can deduce the 

explicit representation of Md , 
Mf

ε  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
0

0

, , , , , d ,

, , , , , d .
M

x
M

x
f f f

d x t d x t M x t d t

x t x t M x t t

η η η

ε ε η ε η η

= +

= +

∫

∫  
By trigonometric inequality, we have 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 0 2

022 2

, , , , , d ,

, , , , , d .
M

x
M

x
f f f

d x t d x t M x t d t

x t x t M x t t

η η η

ε ε η ε η η

≤ +

≤ +

∫

∫
 

Moreover, it can be derived that 

( ) ( )
0 2

, , , d
x

fM x t t Mdη ε η η ≤∫ , 

where ( )
20 1

max , ,
x

M M x tη
≤ ≤

= . Hence we can have 

( ) ( ) ( ) ( )2 2
, 1 , , 1 .

MM f fd x t M d x t Mε ε≤ + ≤ +
 

Lemma 3.4. ([27]) Suppose V(t) and g(t) are real functions. If 

( ) ( ) ( ) , 0,V t V t g t tβ≤ − + ∀ ≥

 
then 

( ) ( ) ( ) ( )1

0
e 0 e d , 0,ttV t V g tβ τβ τ τ− −−≤ + ∀ ≥∫

 
where β is a finite constant. 

Theorem 3.1. Considering the error dynamics (3.6), we have 
1) In the presence of no disturbance and no abnormality, i.e. ( ), 0Md x t =  and 
( ), 0Ms x t = , ω  is bounded. In particular, when the nonlinear function  
( ),f u x  satisfies (2.5), then error dynamics (3.6) can be exponentially stable. 
2) In the presence of disturbance, i.e. ( ), 0Md x t ≠  and ( ), 0Ms x t = , ω  is 

bounded. 
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The bounds on ω  discussed above can be written as the following expres-
sion: 

( ) ( ), mx t tω ω
∞
≤  , 

where 

( ) ( ) ( ) ( ) ( )

( ) ( )

22 1 2

2 2
0 02 2

12e 0 1 ,
1

10 ,
2

b t
m

x

t V M D
b

V

ω
γ

ω ω

− −
= + +

−

 = +



 

          (3.9) 

with 0 1γ≤ ≤  and 

( ) ( )
( ) ( )

, , 0, , 0

, , 0, , 0
M M

f M M

d d x t s x t
D

d d x t s x tε

 = == 
+ ≠ =

          (3.10) 

Proof. We consider the following Lyapunov function to analyze the error dy-
namics (3.6) 

( ) ( ) ( )( )1 2 2
0

1 , , d .
2 xV t x t x t xω ω= +∫                 (3.11) 

In general, from the aspects of physical meaning, Lyapunov function (3.11) 
represents the energy of the system we are studying. In addition, from the point 
of view of the mathematical calculation process, the function in the form of 
(3.11) can be selected to eliminate or avoid some unexpected items in the specif-
ic calculation, making the result more concise and clear. 

By the integration by parts and (3.6), the derivative of V(t) can be written as 

( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

2 2 2

2 2 2
1

0
1

0

1 , , ,

, , , d

, , , d

M

M

x xx

M f

M f xx

V t b x t b x t x t

d x t x t x t x

d x t x t x t x

ω ω ω

ε ω

ε ω

= − + − −

+ +

− +

∫

∫



  





       (3.12) 

Note that both the fourth and fifth items of (3.12) contain 
MM fd ε+ , which is 

not always zero. Considering the boundness of Md  and 
Mf

ε , we first discuss 
the case when there exist disturbances, i.e. ( ), 0Md x t ≠  and ( ), 0Ms x t = . 

Applying the Cauchy-Schwarz inequality and Young’s inequality on the fourth 
term of (3.12), we have 

( ) ( )( ) ( )

( ) ( ) ( ) ( )

( )( ) ( )( ) ( )( ) ( )( )
( ) ( ) ( ) ( )

( ) ( ) ( )

1

0
1 1

0 0
1 1 1 1

1 1 1 12 2 2 22 2 2 2
0 0 0 0

2 2 22

22 2

2 22

, , , d

, , d , , d

, d , d , d , d

, , , ,

1 , , , ,
2

M

M

M

M

M

M f

M f

M f

M f

M f

d x t x t x t x

d x t x t x x t x t x

d x t x x t x x t x x t x

d x t x t x t x t

d x t x t x t

ε ω

ω ε ω

ω ε ω

ω ε ω

ε γ ω
γ

+

= +

≤ +

= +

 ≤ + +  

∫

∫ ∫

∫ ∫ ∫ ∫



 

 

 



 (3.13) 

where 0γ >  is a positive constant. Similarly, it can be obtained that 
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( ) ( )( ) ( )

( ) ( ) ( )

1

0

22 2

2 22

, , , d

1 , , , .
2

M

M

M f xx

M f xx

d x t x t x t x

d x t x t x t

ε ω

ε γ ω
γ

+

 ≤ + +  

∫ 



         (3.14) 

Next, considering (3.13) and (3.14), we can write an upper bound for ( )V t  
from (3.12) 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2 2 2

2 2 2

22

2 2

1 , , 1 ,

1          , , .
M

x xx

M f

V t b x t b x t x t

d x t x t

ω γ ω γ ω

ε
γ

= − + + − − −

 + +  



  

   (3.15) 

Let γ  satisfy 0 1γ< ≤ , then (3.12) can be further written as 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

22 2 2

2 2 2 2

22 2 2

2 2 2 2

22

2 2

11 , 1 , , ,

11 , 1 , , ,

12 1 , , .

M

M

M

x M f

x M f

M f

V t b x t b x t d x t x t

b x t b x t d x t x t

b V t d x t x t

ω ω ε
γ

ω ω ε
γ

ε
γ

 ≤ − + + − + +  

 ≤ − + − + +  

 ≤ − + +  

 

  (3.16) 

Since 1b > , combining Remark 3.1 with Lemma 3.4, we have that 

( ) ( ) ( ) ( ) ( )22 1 21e 0 1 ,
2 1

b tV t V M D
bγ

− −≤ + +
−

           (3.17) 

where D is defined in (3.10). 
Then, applying the Agmon’s inequality and Young’s inequality, we have 

( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

2

2 2
2 2

2 2

22 1 2

, 2 , ,

, ,

12e 0 1 .
1

x

x

b t

x t x t x t

x t x t

V M D
b

ω ω ω

ω ω

γ

∞

− −

≤

≤ +

≤ + +
−

  

           (3.18) 

Thus, it can be concluded that 

( ) ( ) ( ) ( ) ( )22 1 21, 2e 0 1
1

b tx t V M D
b

ω
γ

− −

∞
≤ + +

−
         (3.19) 

where fD d ε= + . 
For another case, i.e. ( ), 0Md x t =  and ( ), 0Ms x t = , same conclusions can be 

obtained by the same method and notice that D in (3.19) is d . 
From (3.8) and (3.10), we can deduce that ( ), tω ⋅ → ∞  as t →∞  when the 

nonlinear function ( ),f u x  satisfies (2.1), i.e. 0fε = . In other words, ω  sys-
tem is exponentially stable in L∞  under ideal operating conditions ( ( ), 0Md x t =  
and ( ), 0Ms x t = ). 

3.2. ADF Design and Lumped Residual Evaluation 

Following the discussions above, we use the lumped method to design the resi-
dual evaluation function and detection threshold. The residual evaluation func-
tion ( )R t  and detection threshold ( )d

thR t  are defined as follows 
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( ) ( )
( )

( )
( )

2

, 0

d ,

max ,

t T

t
d
th s x t

R t r

R t R t

τ τ
+

=

 =


=

∫
                   (3.20) 

where 0T >  is the length of the evaluation time window. 
Theorem 3.2. If the conditions in Theorem 3.1 are satisfied, by using the 

lumped residual evaluation function in (3.20), the time-varying detection thre-
shold ( )d

thR t  for abnormality detection can be computed as 

( ) ( )( ) ( )21 1 d ,
t Td

th mt
R t N L ω τ τ

+
= + +∫               (3.21) 

where ( )
20 1

max , ,
x

L L x tτ
≤ ≤

= . 
Proof. Considering the boundary measurements ( )0, tu  and N in-domain 

measurements ( )( ), 1, 2, ,ix t i Nu = 
 , we can obtain 

( ) ( ) ( ) ( ) ( )( )1 12 2 2 2 2
10 0

d 0, , , d .Nt t t u t u x t u x t x= = + + +∫ ∫r r   
    (3.22) 

It can be verified that ( ) ( )0,0,u t tω=   holds for all 0t ≥  by the transfor-
mation in (3.5), so (3.22) can be written as 

( ) ( ) ( ) ( )( )
( ) ( )

( ) ( ) ( )

( )( ) ( )

12 2 2 2
10

22

2 22

2 2

0, , , d

0, ,

, 1 ,

1 1

N

m

t t u x t u x t x

t N u t

t N L t

N L t

ω

ω

ω ω

ω

∞

∞ ∞

= + + +

≤ + ⋅

≤ ⋅ + + ⋅

≤ + +

∫r   


 

 



        (3.23) 

by combining (3.5) and the results in Theorem 3.1 
Remark 3.2. From the conclusion of the above theorem, we design a new 

time-varying detection threshold for abnormality detection. The characteristic of 
“time-varying” is caused by exponential decreasing term ( ) ( )2 1e 0b tV− −  in (3.9). 
In addition, we consider the influence of initial errors ( )0ω  and ( )0xω  on the 
bounds of ( ),x tω

∞
 . Therefore, false alarms in abnormality detection can be 

avoided. This feature will be demonstrated in a later numerical simulation. 
Hence, we can give the specific evaluation logic of abnormality detection. 
Theorem 3.3. Comparing the functional relationship between ( )R t  and  
( )d

thR t , we can get the following abnormality detection evaluation logic: 

( ) ( )
( ) ( )

abnormal at time 

abnormality-free at time .

d
th

d
th

R t R t

R t t

t

tR

> ⇒

⇒ ≤





，
           (3.24) 

4. Numerical Simulations 

To evaluate the effectiveness of the proposed abnormality detection scheme, a 
class of nonlinear DPS whose system states can be expressed by parabolic PDE is 
considered. 

For the purpose of numerical simulations, the distributed input ( ),Q x t , Lip-
schitz continuous function ( ),f u x  and distributed disturbance ( ),d x t  can 
be defined as follows: 
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( ) ( ) ( ) ( ) ( )0.5 0.5 0.5 0.5, e sin ,    , sin ,     , 0.005e sin .x xQ x t t f u x x t d x t t− − − −= = =  
Furthermore, to demonstrate the abnormality localization performance, we de-

fine ( ),s x t  as a piecewise function as follows: 

( ) ( )0.3 15

150sin10 ,                         0 15,
,

150sin10 1 e ,     15.t

x t
s x t

x t− −

≤ <=   − ≥    
We use the finite element method (FDM) for numerical simulation the error 

system of (3.6), where 2b = , 1
2

γ = , and the evaluation time window length T 

is 0.01 s. 
Firstly, the performance of the error system ( ),x tω  is analyzed. The bounds 

of ( ),x tω  of the system with or without disturbance or abnormality is discussed 
respectively, as shown in Figure 1. 

 

 

Figure 1. The performance of the error system ( ),x tω . 
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It can be seen from Figure 1(a), ( ),x tω  is bounded when the system has no 
disturbance and no anomaly. For the special case of Figure 1(a), i.e. 0fε = , 
( ),x tω  decays to zreo, as shown in Figure 1(b). If the system has disturbance 

and no abnormality, it can be seen from Figure 1(c) that ( ),x tω  is bounded. 
Furthermore, when an abnormal function ( ),s x t  is imposed on the system, 
( ),x tω  is eventually bounded although it does not decay to zero, as shown in 

Figure 1(d). 
Based on the proposed method, abnormality detection results are shown in 

Figure 2. 
It can be seen from Figure 2(a) that the abnormal occurrence time 15 st =  

can be well detected. Then, we compared the detection scheme based on time- 
varying threshold proposed in this paper with the traditional method based on 
constant threshold, and the results are shown in Figure 2(b). In Figure 2(b), the 
blue dotted line represents the constant threshold. When 15 st > , the residual 
function exceeds the constant threshold, and the system detects an abnormality. 
However, before the actual abnormal occurrence time, i.e. 15 st ≤ , there are 
still some moments when the residual function exceeds the constant threshold, 
so that the false alarm occurs. 

Based on the results in Figure 2, the scheme in this paper adopts time-varying 
threshold, which is different from the previous constant threshold, and it can 
well avoid false alarms in the process of abnormality detection. 

5. Conclusion 

In this paper, the abnormality detection problem of a class of nonlinear parabol-
ic DPS is studied by using backstepping method. The proposed scheme mainly 
includes two steps: firstly, the boundary observer is designed and the residual 
convergence is analyzed; secondly, the comprehensive residual evaluation function  

 

 
Figure 2. Abnormality detection results. 
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is designed to realize abnormality detection and the threshold calculation for-
mula is given. For the purpose of detection, the traditional “lumped” method is 
used for residual evaluation. The method based on filter is important when deal-
ing with the implementation of the scheme in practical systems. The scheme pre-
sented in this paper realizes the abnormality detection of nonlinear distributed 
parameter system in time domain, and the simulation results confirm the re-
quirements of the theory. Furthermore, we can extend the ADF in the time do-
main of nonlinear DPS system to the abnormality location in the space domain 
in the future. 

Conflicts of Interest 

The author declares no conflicts of interest regarding the publication of this pa-
per. 

References 
[1] Dong, J., Wang, Q., Wang, M. and Peng, K. (2018) Data-Driven Quality Monitoring 

Techniques for Distributed Parameter Systems with Application to Hot-Rolled Strip 
Laminar Cooling Process. IEEE Access, 6, 16646-16654.  
https://doi.org/10.1109/ACCESS.2018.2812919 

[2] Khan, F.A., Imran, M., Abbas, H. and Durad, M.H. (2017) A Detection and Preven-
tion System against Collaborative Attacks in Mobile Ad Hoc Networks. Future Gen-
eration Computer Systems, 68, 416-427.  
https://doi.org/10.1016/j.future.2016.07.010 

[3] Chen, J. and Patton, R.J. (2002) Robust Model-Based Fault Diagnosis for Dynamic 
Systems. Automatica, 38, 1089-1094.  
https://doi.org/10.1016/S0005-1098(01)00290-4 

[4] Liu, J., Song, K., Feng, M., Yan, Y., Tu, Z. and Zhu, L. (2021) Semi-Supervised 
Anomaly Detection with Dual Prototypes Autoencoder for Industrial Surface In-
spection. Optics and Lasers in Engineering, 136, Article ID: 106324.  
https://doi.org/10.1016/j.optlaseng.2020.106324 

[5] Dey, S., Perez, H.E. and Moura, S.J. (2017) Model-Based Battery Thermal Fault Di-
agnostics: Algorithms, Analysis, and Experiments. IEEE Transactions on Control Sys-
tems Technology, 27, 576-587. https://doi.org/10.1109/TCST.2017.2776218 

[6] Dey, S., Perez, H.E. and Moura, S.J. (2019) Robust Fault Detection of a Class of Un-
certain Linear Parabolic PDEs. Automatica, 107, 502-510.  
https://doi.org/10.1016/j.automatica.2019.06.014 

[7] El-Farra, N.H. and Ghantasala, S. (2007) Actuator Fault Isolation and Reconfigura-
tion in Transport-Reaction Processes. AIChE Journal, 53, 1518-1537.  
https://doi.org/10.1002/aic.11177 

[8] Ghantasala, S. and El-Farra, N.H. (2009) Robust Actuator Fault Isolation and Man-
agement in Constrained Uncertain Parabolic PDE Systems. Automatica, 45, 2368-2373. 
https://doi.org/10.1016/j.automatica.2009.06.024 

[9] Ferdowsi, H. and Jagannathan, S. (2014) Fault Diagnosis of a Class of Distributed 
Parameter Systems Modeled by Parabolic Partial Differential Equations. 2014 Amer-
ican Control Conference, Portland, 4-6 June 2014, 5434-5439.  
https://doi.org/10.1109/ACC.2014.6858836 

[10] Du, D. (2017) Fault Detection for Discrete-Time Linear Systems Based on Descrip-

https://doi.org/10.4236/eng.2022.147023
https://doi.org/10.1109/ACCESS.2018.2812919
https://doi.org/10.1016/j.future.2016.07.010
https://doi.org/10.1016/S0005-1098(01)00290-4
https://doi.org/10.1016/j.optlaseng.2020.106324
https://doi.org/10.1109/TCST.2017.2776218
https://doi.org/10.1016/j.automatica.2019.06.014
https://doi.org/10.1002/aic.11177
https://doi.org/10.1016/j.automatica.2009.06.024
https://doi.org/10.1109/ACC.2014.6858836


L. Chen 
 

 

DOI: 10.4236/eng.2022.147023 298 Engineering 
 

tor Observer Approach. Applied Mathematics and Computation, 293, 575-585.  
https://doi.org/10.1016/j.amc.2016.08.052 

[11] Li, S., Chen, Y. and Zhan, J. (2021) Simultaneous Observer-Based Fault Detection 
and Event-Triggered Consensus Control for Multi-Agent Systems. Journal of the 
Franklin Institute, 358, 3276-3301. https://doi.org/10.1016/j.jfranklin.2021.02.009 

[12] Zhao, Z., Yang, Y., Ding, S.X. and Li, L. (2018) Robust Fault Detection for Observ-
er-Based Feedback Control Systems. Circuits, Systems, and Signal Processing, 37, 
3364-3382. https://doi.org/10.1007/s00034-017-0726-z 

[13] Cai, J., Ferdowsi, H. and Sarangapani, J. (2016) Model-Based Fault Detection, Esti-
mation, and Prediction for a Class of Linear Distributed Parameter Systems. Auto-
matica, 66, 122-131. https://doi.org/10.1016/j.automatica.2015.12.028 

[14] Han, H., Yang, Y., Li, L. and Ding, S.X. (2018) Observer-Based Fault Detection for 
Uncertain Nonlinear Systems. Journal of the Franklin Institute, 355, 1278-1295.  
https://doi.org/10.1016/j.jfranklin.2017.12.021 

[15] Li, L., Ding, S.X., Qiu, J., Yang, Y. and Zhang, Y. (2016) Weighted Fuzzy Observ-
er-Based Fault Detection Approach for Discrete-Time Nonlinear Systems via Pie- 
cewise-Fuzzy Lyapunov Functions. IEEE Transactions on Fuzzy Systems, 24, 1320- 
1333. https://doi.org/10.1109/TFUZZ.2016.2514371 

[16] Yang, Y., Ding, S.X. and Li, L. (2015) On Observer-Based Fault Detection for Non-
linear Systems. Systems and Control Letters, 82, 18-25.  
https://doi.org/10.1016/j.sysconle.2015.05.004 

[17] Demetriou, M.A., Ackleh, A.S. and Reich, S. (1998) Detection and Accommodation 
of Second Order Distributed Parameter Systems with Abrupt Changes in Input 
Term: Existence and Approximation. In: Theory and Practice of Control and Sys-
tems, World Scientific Publishing, Singapore, 720-725.  
https://doi.org/10.1142/9789814447317_0119 

[18] Armaou, A. and Demetriou, M.A. (2008) Robust Detection and Accommodation of 
Incipient Component and Actuator Faults in Nonlinear Distributed Processes. AIChE 
Journal, 54, 2651-2662. https://doi.org/10.1002/aic.11539 

[19] Lei, Y., Li, J. and Zhao, A. (2022) Spatiotemporal Fault Detection, Estimation and Con-
trol for Nonlinear Reaction-Diffusion Equations. Applied Mathematics and Computa-
tion, 418, Article ID: 126859. https://doi.org/10.1016/j.amc.2021.126859 

[20] Feng, Y., Li, H.X. and Yang, H.D. (2021) Abnormal Source Identification for Parabolic 
Distributed Parameter Systems. IEEE Transactions on Systems, Man and Cybernetics: 
Systems, 51, 5698-5707. https://doi.org/10.1109/TSMC.2019.2956985 

[21] Ferdowsi, H., Cai, J. and Jagannathan, S. (2019) Fault Detection and Estimation for 
a Class of Nonlinear Distributed Parameter Systems. 2019 IEEE International Con-
ference on Prognostics and Health Management (ICPHM), San Francisco, 17-20 June 
2019, 1-8. https://doi.org/10.1109/ICPHM.2019.8819432 

[22] Feng, Y., Wang, Y., Wang, J.W. and Li, H.X. (2022) Backstepping-Based Distributed 
Abnormality Localization for Linear Parabolic Distributed Parameter Systems. Au-
tomatica, 135, Article ID: 109930. https://doi.org/10.1016/j.automatica.2021.109930 

[23] Smyshlyaev, A. and Krstic, M. (2004) Closed-Form Boundary State Feedbacks for a 
Class of 1-D Partial Integro-Differential Equations. IEEE Transactions on Automatic 
Control, 49, 2185-2202. https://doi.org/10.1109/TAC.2004.838495 

[24] Smyshlyaev, A. and Krstic, M. (2005) Backstepping Observers for a Class of Para-
bolic PDEs. Systems and Control Letters, 54, 613-625.  
https://doi.org/10.1016/j.sysconle.2004.11.001 

https://doi.org/10.4236/eng.2022.147023
https://doi.org/10.1016/j.amc.2016.08.052
https://doi.org/10.1016/j.jfranklin.2021.02.009
https://doi.org/10.1007/s00034-017-0726-z
https://doi.org/10.1016/j.automatica.2015.12.028
https://doi.org/10.1016/j.jfranklin.2017.12.021
https://doi.org/10.1109/TFUZZ.2016.2514371
https://doi.org/10.1016/j.sysconle.2015.05.004
https://doi.org/10.1142/9789814447317_0119
https://doi.org/10.1002/aic.11539
https://doi.org/10.1016/j.amc.2021.126859
https://doi.org/10.1109/TSMC.2019.2956985
https://doi.org/10.1109/ICPHM.2019.8819432
https://doi.org/10.1016/j.automatica.2021.109930
https://doi.org/10.1109/TAC.2004.838495
https://doi.org/10.1016/j.sysconle.2004.11.001


L. Chen 
 

 

DOI: 10.4236/eng.2022.147023 299 Engineering 
 

[25] Meurer, T. (2013) On the Extended Luenberger-Type Observer for Semilinear Dis-
tributed-Parameter Systems. IEEE Transactions on Automatic Control, 58, 1732-1743. 
https://doi.org/10.1109/TAC.2013.2243312 

[26] Balakrishnan, V. (2003) All about the Dirac Delta Function. Resonance, 8, 48-58.  
https://doi.org/10.1007/BF02866759 

[27] Ioannou, P.A. and Sun, J. (2012) Robust Adaptive Control. Courier Corporation, New 
York. 

 
 

https://doi.org/10.4236/eng.2022.147023
https://doi.org/10.1109/TAC.2013.2243312
https://doi.org/10.1007/BF02866759

	Backstepping-Based Distributed Abnormality Detection for Nolinear Parabolic Distributed Prameter Systems
	Abstract
	Keywords
	1. Introduction
	2. Problem Statement
	3. Abnormality Detection Scheme
	3.1. Observer Design
	3.2. ADF Design and Lumped Residual Evaluation

	4. Numerical Simulations
	5. Conclusion
	Conflicts of Interest
	References

