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Abstract 
The results of studies by solving the inverse thermal conductivity problem of 
the heat capacity of evaporator of the short linear heat pipes (HP’s) with a 
Laval nozzle-liked vapour channel and intended for cooling spacecraft and sa-
tellites with strict take-off mass regulation are presented. Mathematical for-
mulation of the inverse problem for the HP’s thermal conductivity in one- 
dimensional coordinate system is accompanied by the measurement results 
using the monotonic heating method in a vacuum adiabatic calorimeter the 
HP’s surface temperatures along the longitudinal axis over the entire temper-
ature load range, thermal resistance, and arrays of thermal power data on the 
evaporator Qev and vortex flow calorimeter Qcond for the condensation surface 
allow us to estimate the average value of the evaporator heat capacity Cev by 
solving the inverse thermal conductivity problem in the HP’s evaporator re-
gion. Since at the beginning of working fluid boiling for a certain time inter-
val, the temperature of the capillary-porous evaporator remains close to con-
stant, and with the continuation of heating and by solving the inverse thermal 
conductivity problem, it becomes possible to calculate the heat capacity of the 
working evaporator and the evaporation specific heat of the boiling working 
fluid and compare it with the table values. 
 

Keywords 
Short Linear HP’s, The Inverse Problem of Thermal Conductivity,  
The Monotonic Heating Method, Thermal Resistance and Heat Capacity 

 

1. Introduction 

The current development level of the computer technology and computing tech-
nologies allows us to significantly expand the class of applied problems to be 
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solved. Those scientific and technical problems of the HP’s heat transfer that have 
traditionally been tried to be considered analytically are increasingly being ana-
lysed and solved with the help of numerical methods using specialized software 
for engineering calculations. We are talking about the application of computa-
tional programs for solving inverse problems of thermal conductivity of solids in 
one-dimensional formulation and the use of the obtained methods for analysing 
the operation of short HP’s with a Laval nozzle-liked vapour channel and a large 
amount of working fluid in the capillary-porous insert and evaporator. Numeri-
cal methods have received the greatest application due to a number of specific 
advantages, the main of which is their relatively simple implementation on com-
puters [1] [2] [3]. 

Inverse problems are characterized by instability of their solutions, which ma-
nifests itself in the occurrence of large numerical changes in the solution with 
small changes in the initial data. 

Tasks of this type are called incorrectly assigned tasks or ill-posed problems [4] 
[5] [6] [7] [8]. A large section of ill-posed problems consists of inverse problems 
that arise in cases where the necessary initial and boundary data for the formula-
tion of a direct correct problem, for example, the direct heat conduction prob-
lem, are not available, but there is some additional information about the solu-
tion that allows us to formulate the inverse problem. Such problems include in-
verse problems of thermal conductivity (IPTC) [9] [10] [11]. 

The general nonlinear problem of non-stationary HP’s thermal conductivity 
can be considered as a set of three nonlinear problems: a problem in which the 
nonlinearity arises due to the temperature dependence of the coefficients of the 
main equation; a problem in which the boundary conditions are nonlinear, for 
example, due to evaporation or boiling of the working fluid in the evaporator; 
and a problem in which the nonlinearity arises due to the temperature depen-
dence of internal heat sources (sinks). The boundaries between these problems 
are very conditional, since some transformations allow you to switch from one 
type of nonlinearity to another, which sometimes simplifies the use of certain 
methods for solving nonlinear problems. 

The main difficulty in the approximate solution of ill-posed problems is the 
choice of regularization parameters to achieve the stability of the solution. To 
determine it, the following approaches are most widely used [12] [13] [14] [15]: 
the choice of the regularization parameter by the remainder in the different func-
tional; the use of the variational method with the calculation of the Lagrange 
function (Lagrangian); an iterative method in which the regularization parame-
ter is the number of iterations corresponding to the error of the input data [15]. 
This latter well-known methodology of solving inverse heat transfer problems is 
quite effective and is widely used in space technology, military science, aviation, 
but its implementation requires a large amount of computational work [12] [13]. 

When solving inverse problems for equations of mathematical physics, gra-
dient iterative methods are widely used in the variational formulation of the in-
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verse problem [13]. In this paper, we consider the simplest gradient iterative me-
thod for approximate solution of the retrospective (with inverse time) inverse 
problem of the evaporator heat capacity of short HP’s with a vapour channel 
similar to a Laval nozzle with a known value of thermal resistance RHP or ther-
mal conductivity coefficient λHP. In addition, in our inverse problem, the initial 
condition is iteratively refined, i.e., at each iteration, the usual boundary value 
problem for the heat equation is solved.  

In addition the heat source in the HP’s evaporator depends only on the time τ, 
and the temperature field T(z) in the entire geometric space of the HP inside the 
adiabatic calorimeter is experimentally determined using copper-constantan 
surface thermocouples. These measurements guarantee that the inverse problem 
has an unambiguous solution, but this solution is unstable; therefore, additional 
regularization and the use of the variational method [14] [15] with Lagrange mul-
tipliers to determine the optimal values of the parameters in the different func-
tional are necessary to solve the problem. This method gives rapidly converging 
successive approximations of the exact solution.  

A simple algorithm for the numerical solution of a one-dimensional inverse 
problem by the coefficient of thermal conductivity for calculating the heat ca-
pacity of a short HP’s evaporator with a boiling working fluid has been devel-
oped and implemented in the FORTRAN system for a PC. In this case, an im-
portant factor is the temperature of the external surface of the capillary-porous 
HP’s evaporator, which is close to a constant value. With further heating, the 
level of boiling working fluid in the HP’s evaporator slowly decreases, and the 
temperature of the external surface also slowly decreases. And this allows us to 
calculate the extreme behavior of the evaporator heat capacity and estimate the 
specific heat of working fluid boiling in them. 

In addition, our simple algorithm is convenient for its implementation in the 
measuring scheme of an adiabatic vacuum calorimeter for the study of short 
HP’s. The capabilities of this algorithm are illustrated by solving several specific 
problems for calculating the heat capacity of short solids under monotonic heating 
at moderate temperatures, including a model problem with the evaporation of 
diethyl ether and, consequently, with variable initial conditions.  

Thus, the main purpose of this work is to expand the research capabilities of 
HP heat pipes, solve inverse problems of thermal conductivity with their help 
and clarify the thermophysical characteristics of working fluids when boiling 
occurs in an HP capillary-porous evaporator. The proposed new application of 
the developed mathematical ideas makes it possible to significantly increase the 
scope of HP and raise the depth and vastness of the results obtained. 

HP’s Thermophysical Analysis 

When analyzing short HP’s, the thermophysical characteristics are represented 
by the so-called effective properties, and the process of heat transfer along the 
vertically oriented z coordinate is described by the thermal conductivity equa-
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tion: 

( ) ( )( )HP eff HP HP eff
TС T L F T Tρ λ
τ
∂

= ∇ ∇
∂

.              (1) 

The specific heat capacity of the HP’s is determined additively by the formula 
(2) when the components and materials are characterized by the absence of 
chemical interaction between them. 

( ) ( )HP j jjC T C Tψ= ∑ .                     (2) 

where ψj is the mass fractions of the HP’s components, Cj is their heat capacity’s. 
The effective thermal conductivity λeff as an additive sum thermophysical cha-
racteristics of the components can be presented only in simple cases, in particu-
lar for HP’s in a non-working state. 

During the phase transformation of the fluid component, for example, during 
the working fluid boiling process in the HP’s evaporator, Equation (1) must be 
supplemented with an additional source function: 

( ) ( ) ( )j j
HP j HP j

TY T r T r T
T

ψ ψ
ρ ρ

τ τ
∂ ∂ ∂

= =
∂ ∂ ∂

.             (3) 

where rj(T) is the specific heat of the phase transformation of the j – th compo-
nent.  

Taking into account (2), Equation (1) can also be used in the presence of 
phase transformations in the HP with a new average heat capacity: 

( ) ( ) ( )HP eff spC T С T r T= − . 

The heat conduction equation in one-dimensional Cartesian coordinate sys-
tem for calculating the heat propagation in a vertically oriented short linear HP’s 
with a cylindrical body along the longitudinal z-axis, during monotonic heating 
in an adiabatic calorimeter without heat losses through the side walls is written 
as follows: 

( ) ( ) ( )
( )

( ) ( )

,1 1, ;

.

HP v HP HP HP HP
HP

HP
HP

HP HP

t z
С T L F T z L F

z z R T z
LR T
T F

τ
ρ τ

λ

∂∂
=

∂ ∂

=



        (4) 

The process of heating and heat transfer using HP’s is endothermic process, 
parameter Y(T) has a negative value, Y(T) ≤ 0, which implies the principle of 
maximum and the uniqueness of the thermal conductivity equation solution [4] 
[5]. However, if the parameter Y(T) is positive, Y(T) > 0 in general case it may 
turn out that the heat capacity cv(T) in some temperature range is negative, cv(T) 
< 0, which may lead to instability of the numerical solution and incorrectness of 
the direct problem for Equation (4). 

The measurement part of our method consists in a system for measuring the 
thermal power entering to the evaporator, the thermal power entering in the 
vortex flow calorimeter and the temperature distribution of the HP’s surface in-
side the adiabatic calorimeter. In the case of using a vacuum adiabatic calorime-
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ter with slow monotonous heating, the temperature distribution along the HP’s 
body makes it possible to distinguish characteristic areas (zones) of the HP’s, for 
example, the zone of the evaporator, the temperature in which, under a high 
temperature load, is close to constant for a fairly long boiling time (several tens 
of minutes), the time when the level of the working fluid in the capillary-porous 
evaporator decreases from the initial value h = 3.5 mm to the final value h = 0.02 
– 0.01 mm and even less than this value. 

The monotonic heating mode is extremely informative for the study of the 
short HP’s with the phase transformation (boiling) of the working fluid in the 
evaporator [3] [6], since it maintains the temperature difference required by the 
monotonicity conditions between the evaporator and the condensation surface 
inside the HP and, in addition, contains the thermophysical characteristics of the 
HP in an implicit inverse form.  

At the working fluid boiling beginning during a certain time interval, the tem-
perature of the capillary-porous evaporator remains close to constant and with 
the continuation of heating and by solving the inverse problem of thermal con-
ductivity, it becomes possible to calculate the heat capacity of the working eva-
porator and the heat of evaporation. 

The mathematical description of the monotone heating mode contains and 
implies several simplifying assumptions, which as a result lead to analytical rela-
tions for the direct calculation of the IPTC. 

Heating mode contains and implies several simplifying assumptions, which as 
a result lead to analytical relations for the direct calculation of the IPTC. How-
ever, it is necessary to introduce some specific adjustments to take into account 
several interfering factors. It is necessary to take into account the final longitu-
dinal dimensions of the HP, which lead to a distortion of the HP’s temperature 
field due to the heat exchange of the condensation end surface and the nearby 
side section with the cooling running water in the calorimeter, while analytical 
expressions imply the one-dimensionality of the temperature field in the HP. 

The relatively large noticeable temperature differences within the HP during 
the boiling of the working fluid in the evaporator also require certain adjust-
ments to the calculations. The values of the corrections will (can) be estimated in 
a special way. 

The direct problem of the HP thermal conductivity is to find the HP’s tem-
perature (surface temperature for the thin HP’s in a one-dimensional model of 
heat propagation in an adiabatic calorimeter) that satisfies the differential equa-
tion of thermal conductivity and has the specified boundary and initial condi-
tions of unambiguity [9] [10] [11].  

The solution of the direct problem for the HP’s evaporator in the case of large 
temperature load and the boiling process beginning in the temperature region of 
the working fluid phase transition is accompanied by a nonlinear dependence of 
the intrinsic properties (heat capacity CHP and thermal resistance RHP) to tem-
perature and leads to large error as the averaged results and the ambiguity of the 
resulting solutions.  
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At the same time, the average values of the obtained heat capacity results CHP 
are not of great interest and make it absolutely necessary to isolate the zone of 
the HP’s evaporator at the working fluid boiling beginning, thereby allocating 
the heat capacity Cev of the HP’s evaporative fragment. 

The inverse problem of thermal conductivity (IPTC) in this case is to deter-
mine the parameters of internal heat transfer also in a one-dimensional model of 
heat propagation in an adiabatic calorimeter, the thermal resistance RHP (or 
thermal conductivity λHP) and the heat capacity Cev of a short linear HP’s evapo-
rator at high thermal loads and the working fluid boiling beginning. 

IPTC is an incorrect problem in the sense of Hadamard [3] [4] [5] [6] [7], i.e. 
one whose numerical solution is unstable. This instability manifests itself in a 
significant and abrupt change in the solution itself with a small change in the in-
itial conditions. To solve such problems, regularization methods have been de-
veloped and sustainable solutions have been proposed [9]-[13]. 

Formulation and solution of coefficient inverse problems of heat conduction 
in a one-dimensional coordinate system with one-dimensional temperature field 
are the theoretical basis of the main experimental methods for the evaporator’s 
heat capacity study of short linear HP’s (HP’s evaporative fragment), using the re-
sults of thermal resistance measurement and the transferred heat power qev along 
the longitudinal axis to reflect a decrease in transmitted power due to losses on 
internal friction and heat transfer losses due to the nonabsolute adiabatic mode 
in the calorimeter [11] [12] [13] [14]. 

Thus, we have a coefficient inverse problem of thermal conductivity, when the 
known experimental data on the thermal resistance RHP and the side surface 
temperature THP in adiabatic conditions, as well as the measured heat flow on 
the surface of the evaporator Qev (and condensation Qcond), it is possible to re-
store the values of the heat capacity Cev of the evaporative fragment depending 
on the temperature load δt.  

2. Method and Materials 

To conduct the experimental studies of the linear HP’s thermal characteristics, 
we used previously developed and used in many previous studies short stainless 
steel HP’s with a Laval nozzle-shaped vapour channel, the detailed description of 
which was repeatedly given in previous publications [16] [17] [18]. A schematic 
diagram of the experimental test setup is shown in Figure 1. In the upper cover 
capacitive sensors are installed to measure the working fluid condensate film 
thickness and temperature [19] [20] [21].  

The capillary-porous evaporator 7 together with insert 4 forming a unified 
hydraulic working fluid delivery system, are made of layers of a thin stainless 
steel mesh with 0.07 mm thick each layer, with a cell size of 0.04 mm. The diethyl 
ether C4H10O is used as the working fluid, which has the boiling temperature 
under the atmospheric pressure of TB = 308.65 K (35.5˚C), freezing temperature 
TF = 156.95 K (−116.2˚C) and critical parameters TC = 466.55 K (193.4˚C), PC = 
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3.61 MPa. The volume of the insertion pores is determined during manufacture, 
and in our case it is equal to 16.62 × 10−6 m3, mass of diethyl ether with the den-
sity of 713.5 kg/m3 (20˚С) in the insert pores is equal to 11.858 × 10−3 kg. The re-
striction in the HP’s filling amount is made so that the evaporator is not flooded 
with ether at a high temperature load and the film boiling beginning on the low-
er cover surface of the HP (the evaporator surface). 

The charging ratio of the HP with Laval-liked vapour channel (ratio of the di-
ethyl ether volume to the total volume of the HP) is equal to 16.62 × 10−6 m3/3.14 
× 10−5 m3 = 0.529.  

The length of our HP’s is LHP = 0.1 m, diameter d = 2 × 10−2 m, when filling it 
with diethyl ether the average density is 3 31.871 kg m10HPρ = × , ~HP evρ ρ , 
the average isochoric heat capacity 1.15 kJ kg KHPC = ⋅  is a slightly varying 
temperature function due to the uniform distribution of the working fluid die-
thyl ether in the condensation, transport and evaporation areas of the HP and 
close to the total specific heat capacity Ceff(T) of diethyl ether and stainless steel 
with the mass fractions of the components (2). 

 

 
Figure 1. HP’s diagram: 1: top cover; 2: cylinder body of the HP’s; 3: 
locking element; 4: multilayer mesh capillary-porous insert with uni-
form dense radial cross-linking; 5: bottom cover; 6: capillary injector 
channels with a diameter of 1 mm; 7: bottom flat multilayer mesh eva-
porator. There are capacitance sensors 8, 9, 10 installed inside the top 
cover [16] [17] [18], two of which are intended for a condensate film 
thickness measurement, while the third with a welded on its electrodes 
microthermistor CT3-19 to measure the film temperature.  
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The defining parameter of the entire capillary-porous insert and the evapora-
tor is a small longitudinal interlayer gap (clearance) between layers of the metal 
mesh, which does not exceed 0.007 mm, and developed by a porous system the 
capillary pressure, which is sufficient for the HP’s work when the external iner-
tial effects.  

The last row of Table 1 shows the characteristics of a porous system, imple-
mented in our HP’s with a diethyl ether as a working fluid and the interlayer gap 
thickness is used as the average pore diameter.  

The orientation of the longitudinal pores (clearances) with the liquid diethyl 
ether coincides with the skeleton wires of the capillary-porous insert and the di-
rection of the heat flux propagation, therefore, the effective value of the thermal 
conductivity coefficient of a diethyl ether-saturated evaporator and insert can be 
calculated as follows: 

( )1ev l scλ λ λ= Π ⋅ + −Π ⋅ .                    (5) 

At the porosity value П = 0.72 and values λl = 0.136 W/m K, λsc = 24 W/m∙K, 
λev = 6.82 W/m∙K. The evaporator temperature Tev (maximum value) is equal to 
the Tev = 329.75 ± 0.01 K (56.6˚C).  

The measuring calorimeter for the HP’s studies is shown in Figure 2. The ex-
ternal heat exchange surfaces of the HP’s condensation zone are provided with 
insulated thermocouples and installed at a depth of 1 diameter in a vortex flow 
calorimeter with a stable water flow. To ensure accurate measurement of heat 
power and increase the HP’s heat transfer coefficient, the jet stream of incoming 
water in the flow calorimeter is spun, the values of flow velocity and vorticity are 
recorded using air bubbles. The Reynolds number Recal in a calorimeter with 
water temperature Tcal = (293 ± 0.03) K is equal to Recal = 3.68 × 103, Nusselt 
number Nucal = 77.3, heat exchange coefficient acal = 2.4 × 103 W /m2∙K.  

The HPs evaporators, also equipped with 0.1 mm diameter copper constantan 
wire thermocouples, is heated using a flat resistance heater, and the temperature 
is maintained at δТ, K higher than the diethyl ether boiling temperature of 
308.65 K under atmospheric pressure. The heater temperature is stabilized and 
HP’s evaporators overheat value is set in the range of δТ = 0 ÷ 20 К, herewith 
heat power of single HP does not exceed 200 W.  

 
Table 1. Characteristics of the mesh wick with diethyl ether as a working fluid. 

Average  
pore 

diameter,  
μ 

Cell size, 
μ 

The average 
diameter 

of the wire, 
μ 

Porosity, 
% 

The height  
of capillary  

rise of diethyl  
ether, mm 

Permeability, 
Kwick, 

10−10 m2 

120 400 15 78 8 7.25 

30 30 10 72 81 0.2 

7 30 10 72 400 0.15 
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Figure 2. Scheme for the pulsation, heat conductivity and thermal resistance measuring of 
the short HP’s in a vacuum adiabatic calorimeter, combined with a vortex flow calorimeter. 
1: vortical continuous-flow calorimeter; 2: HP’s bolting flange; 3: glass cover; 4: cover fas-
tening; 5: HP’s; 6: flat resistance heater; 7: outlet stub tube for water flow; 8: inlet stub tube 
swirler for water flow; 9: silicone sealant of the sensing wire; 10: capacitive sensors for 
measuring the thickness of the condensed layer of the working fluid; 11: the measuring 
and reference generators of the capacitive transducer; 12: external digital generator; 13: 
the amplifier; 14: digital oscilloscope; 15: computer; 16: commutation switch; 17: digital 
voltmeter; 18: container for constant water head; 19: source of air bubbles; 20: water flow 
meter; 21: vacuum-jacketed zero temperature container. 

 
To reduce heat loss when working with HPs, they are placed in a stainless steel 

vacuum chamber 22 (10−3 torr), where they are further surrounded by thin- 
walled copper adiabatic screen 23, the inner surface of which is covered with a 
layer of nickel, and on the outer surface placed 4 sections guard heaters 24. The 
value of nonadiabaticity near the middle of the HP’s does not exceed ~2 × 10−2 K, 
in the field of the resistive heater H2 and HP’s evaporators nonadiabaticity is 
about ~10−1 K. 

The main HP, called measuring, is filled with diethyl ether and the reference 
one, which is completely identical to the main HP, is filled with dehumidified air 
at a pressure of 1 bar with dew point temperature lower than 233.15 К (−40˚С). 
The heat transfer coefficient KHP2 of the second HP does not exceed 0.15% from 
the first one (measuring one) KHP1 and is not taken into account. The second HP, 
completely identical to the first one, performing the reference function in mea-
surements the condensate film thickness in the first HP [20] [21].  

Conducted measurements of the condensate film thickness on the internal 
surface of the HP upper cover, using capacitive sensors and developed high fre-
quency generators [16] [17] [18], give interesting results. Increased film thick-
ness (and HP’s high thermal resistance) at low temperature load and a sharp de-
crease in film thickness (and significantly reduced HP’s thermal resistance) with 
increasing temperature load can be associated with a toroidal vapour vortex ro-
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tation direction change [20] [21]. All the details of the indirect experimental 
confirmation of the vapour vortex rotation direction change near the flat con-
densation surface inside the HP’s vapour channel and the condensate film 
thickness as a function of the temperature load are given in [16] [17] [18]. The 
results of condensate film thickness measuring are shown in Figure 3. 

2.1. The Heat Balance Equation of the Evaporator 

The most general and informative non-stationary energy equation for the work 
description of the HP’s flat evaporator in the monotonous heating mode is the 
Fourier-Kirchhoff equation [5], which contains the isochoric heat capacity Cev, 
J/kg∙K, and the average evaporator density evρ , kg/m3, the vapour and liquid 
phases flow velocity in vector form v, m/s, inside the capillary-porous evapora-
tor, dissipative functions Φdf, the energy change as the moving vapour expands 
Pvpdiv(v), the increase in pressure Pev in the vapour channel and without taking 
into account the mass diffusion fluxes as follows: 

( )

( ) ( ) ( ) 1
2

ev
ev ev ev

e
i

v ev HP i dfii

T
C L F T

L F div P diz v T

zρ
τ

λ µ
τ =

=

 ∂
+ ⋅ ∂ 

∂ = + + + Φ ∂ 
∑

v

v

∇

∇

.        (6) 

The dimensionless length z  and the average heat capacity Cev of the HP’s 
evaporator calculate in the usual way: 

( )1 ;ev sc ev vp ev fev w
HP

zC C x C x zC C
L

= + + − + = .            (7) 

 

 

Figure 3. The average values of the diethyl ether film thickness on 
the HP’s condensation surface, depending of the evaporator over-
heating δT = Tev − TB, K relative to the boiling point of the diethyl 
ether at atmospheric pressure, in a semi-logarithmic coordinate 
system. 
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With an increase in the temperature load in the initial heating period of a ca-
pillary-porous HP’s mesh evaporator the wetting of the grid frame with diethyl 
ether deteriorates sharply, since the wetting angle increases with an increase in 
temperature. This effect is thermosensitive and already with a relatively small 
increase in temperature δT = Tev – TB ~ (3 - 5) K wetting deteriorates, the level of 
diethyl ether in the grid evaporator decreases and further HP’s heating δT = Tev 
– TB ≥ 10 K through the flat surface of the bottom cover occurs in a thin layer of 
boiling diethyl ether.  

The thickness of the diethyl ether layer decreases from ~3.5 mm at the heating 
beginning to the most intense boiling, while the vapour flow becomes stationary, 
and the thickness of the ether micro-layer does not exceed (1 - 2) × 10−2 mm. 
This fact greatly simplifies the conduct of assessments and the maximum 
achievable result in our conditions is as follows: 

( ) ( )

2
2 2 2

0

2
1 118.4 W.

H
ev H H H ev

fevc wev
H fev ev

c w fev ev

z

TQ E C T

T T F z

z
λ

δδ δ
λ λ λ α

=

∂ = − = − ∂ 

 
= − + + + =  

 



      (8) 

( )

5.4 K, 18.8 K,

35 0.55 K.

ev c ev w
c wev

c ev w ev

ev fev
fev

fev ev

Q Q
T T

F F
Q

T
F

δ δ
λ λ

δ
λ

∆ = = ∆ = =

∆ = = …
            (9) 

The equation of the thermal energy of a working HP’s evaporator in a mono-
tonic heating mode in the approximation of small heat losses ( )sh

HP HP shelk T T−  
in the adiabatic calorimeter can be represented using enthalpy equation as fol-
lows: 

( ) ( ) ( )2
1

i sh
ev ev i dfi HP HP sheliQ H k T Tτ τ µ=

=
= + Φ + −∑ .           (10) 

and the actual enthalpy equation of an evaporator in a monotonous heating 
mode also can be represented using this thermodynamic equation: 

( ) ( ) ( ) ( ) ( ) ( ) ( )ev vp B vp vp ev sc l pl ev fevH G r T G С T T G C T Tτ τ τ τ= + − + − .   (11) 

The expression for the thermal energy released in the HP’s condensation re-
gion is written similarly using the heat balance equation: 

( ) ( ) ( ) ( )

( )

2

2

2
1

dd d
1 1

d d d
.

fevev sc
cond vp B vp ev vp sc ev ev

i sh
i dfi HP HP sheli

Tx T
Q G r T G x C F z L

k T T
z z z

λ

µ=

=

= + − + −Π

− Φ − −∑
 (12) 

The performed measurements and calculations make it possible to estimate 
the heat transfer coefficient in the vortex flow calorimeter αcal = 2.3 × 103 
W/m2∙K, αcond ≥ 5 × 103 W/m2∙K, and the final expression for the maximum val-
ue of the condensation heat in our HP is the follows: 

( ) 1 1 115.4 Wfcond w
cond fcond cal cond

l w cal cond

Q T T F
δ δ
λ λ α α

 
= − + + + = 

 
.(13) 
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The thickness parameters in parentheses are equal to the following values: 

( )

1 3

3 2 3 2

10 -10 mm, 1 mm,

2.4 10 W m K , 5 -10 10 W m K.
fcond w

cal cond

δ δ

α α

− −= =

= × ⋅ ≥ × ⋅
 

To solve the complex Fourier-Kirchhoff Equation (6), it is necessary first to 
determine the velocity field of the liquid and vapour phases in a capillary-porous 
evaporator using the Navier-Stokes equations. The results of this study will be 
presented later in a separate report. 

To simplify all subsequent calculations, the average cross-section HP’s tem-
perature at any point at altitude i i HPz z L=  inside the vapour channel can be 
considered equal to the surface temperature of the HP, measured at this height 
( ),i sur

T z τ  in the vacuum chamber of the adiabatic calorimeter: 

( ) ( ) ( ) ( )1 dHP i HP i HPsur
T F T

F
z z z

z
T= =∫ .            (14) 

The vapour flow can be estimated according to the interphase mass transfer 
gives in case of small departures from equilibrium by the Hertz-Knudsen equa-
tion [22] [23]: 

1 22
2 2

fcondev
vp

fev fcond

PPMG
R T T

ξ
ξ

    = −   − π   
.            (15) 

where the diethyl ether C4H10O, selected as the working fluid has a molar mass 
M = 74.1216 g/mol, R is the universal gas constant and ξ is the condensation 
coefficient, ξ ≤ 1, defined as the ratio of the number of vapour molecules con-
densing over the total number of molecules which strikes the liquid film surface. 

There is a redistribution of the liquid mass of diethyl ether inside the HP, 
while the heat capacity of the evaporator increases due to the liquid film boiling. 
In this case, the temperature Tfev of the diethyl ether layer and its dependence on 
time are determined using external thermocouples that control the temperature 
of the HP external surface inside the vacuum chamber. The results of the ther-
mocouple measurements are shown in Figure 4 and Figure 5 in section 2.2. 

2.2. Temperature Distribution Inside the Vapour Channel  

Earlier calculations of the flow velocity and vapour density of diethyl ether using 
the Navier Stokes equation system in a short HP’s vapour channel similar to the 
Laval nozzle [16] [18], allow us to calculate the temperature distribution in this 
channel. The ratio between the pressure, density and temperature of the con-
densing vapor in the first approximation can be given by the equation of state of 
an ideal gas in the following form [19] [20] [21]: 

( )

1

12 2 2 2

;

.

; ~ ;

1 11
2 2

kmix
vpmix

vp v fcond
v v

k k

v v

v v

P P P P
RT P

u u v vP k
P k RT m

ρ
ρ

ρ
−

 
= =  

 

  − −−
= + +  
   

           (16) 

where k = 1.31 is the value of the adiabatic index of diethyl ether vapour. 
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Figure 4. Comparison of the experimental values of the HP’s surface tem-
perature along the generatrix, and the calculated diethyl ether vapour tem-
perature inside the Laval nozzle-liked formed vapour channel. A: is the up-
per part of the Figure 4. 1: black dots, the experimental values of the HP’s 
surface temperature Tsur with a vapour channel made in the Laval nozzle- 
liked form, K; 2: the solid curve, the calculated temperature values T, K, in 
the Laval nozzle-liked formed HP’s vapour channel. B: is the lower part of 
the Figure 4, which shows the half part of the vapour channel cross section 
along the longitudinal axis Oz. 

 

 

Figure 5. The experimental values of the HP’s surface temperature of the 
evaporator with maximum filling by the diethyl ether at the boiling begin-
ning on a large scale. It is clearly visible the weak evaporator temperature 
drop (<1 K) and a sharp drop of the vapour temperature inside the Laval 
nozzle-liked formed vapour channel above the evaporator, coinciding with 
the calculated vapour temperature values.  
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Calculations of moving vapour temperature in a short HP’s vapour channel, 
made in the form of Laval nozzle, were performed using the program code 
ANSYS\CFD Fluent 6.3.26 -20090623 [24] and using Equation (16) and other 
more complete calculation equations given in [19] [20] [21]. Taking into ac-
count the tabular values [25] [26] [27] of the diethyl ether vapour pressure at the 
humidity coefficient γdr = 0.2, the temperature distribution inside the vapour 
channel along the longitudinal z axis was obtained at the beginning of boiling in 
the HP evaporator, as shown in Figure 4 and Figure 5 during overheating δt = 
Tev – TB = 11 K: 

( )1k k

v
v

PT T
P

−
 

=  
 

.                       (17) 

The calculated values of the vapour temperature along the longitudinal axis of 
the HP vapour channel at the temperature of lower layer of the diethyl ether in 
the evaporator ( )329.75 K 56.6 CfevT =  . The calculation error is 0.3%, the 
measurement error of the HP’s surface temperature is less than 0.1 K. Heating 
and all calculations were carried out in the temperature range of the evaporator 
(298 - 348) K (25˚C - 75˚C). 

The outer surface of the HP’s body in the region of a 3.5 mm high multilayer 
mesh evaporator, filled with boiling diethyl ether is characterized by a close to 
constant temperature under monotonous heating, which is clearly seen in Fig-
ure 4 and Figure 5. With further heating, the thickness of the diethyl ether layer 
in the evaporator and, accordingly, the width of the constant temperature region 
decreases.  

Inside the vapour channel, the temperature decreases sharply, the temperature 
drop reaches ΔT = 35 K, due to the cooling in the condensation region and the 
influence of the Laval nozzle shape of the vapour channel. The results of the ex-
perimental analysis of the HP’s surface temperature distribution along the gene-
ratrix also confirmed the nonlinear nature of the temperature distribution as a 
function of the channel length in the Laval-liked vapour channel. 

Experimental data shows a close to constant temperature of the evaporator 
when diethyl ether boils in it, a weak nonlinearity in the confuser part of the 
nozzle, and a strong nonlinearity in the behavior of the temperature near the 
HP’s condensation surface. With a further increase in the heat load, the length of 
the constant temperature region in the evaporator is reduced. 

The results of numerical analysis of the vapour axial temperature distribution 
inside the Laval-liked HP’s vapour channel of compressible moist vapour at high 
heat loads confirm the nonlinear character of the temperature distribution as 
function of the channel length, which is due to the joint influence of the channel 
shape in the form of a Laval-liked nozzle and a sharp gradient vortex formation 
near the HP’s condensation surface, taking into account an additional tempera-
ture decrease inside the vortex ring of the condensing vapour [18] [21], which 
makes it extremely difficult to solve the heat equation for our HP’s. 
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2.3. Thermal Resistance Results  

Experimental values in the stationary state of the thermal resistance RHP of a 
short HP’s are defined as the thermophysical characteristic of the heat transfer 
device as a whole [28], at a constant value of the temperature load (pressure) on 
the evaporator δt = Tev – TB and calculated using formula (18) and a vacuum 
adiabatic calorimeter, Figure 2, in which all parameters of the working HP, in-
cluding temperature and transmitted thermal power, are measured using ther-
mocouples. 

The full temperature load on the evaporator δt = Tev – TB = (0 - 20) K [16] 
(relative to the boiling point of ether at atmospheric pressure) is set and main-
tained using a precision temperature controller with a temperature step of δt = 
0.5 K, the long-term instability does not exceed 1 × 10−2 K. 

Experimental values of thermal resistance RHP obtained during monotonic 
heating of the HP’s evaporator with a speed close to linear in time 3 × 10−3 K/s 
using a special precision temperature controller and a system of computer- 
controlled switches, surface thermocouples, heater power measurements form 
arrays of data on HP surface temperatures in a vacuum adiabatic calorimeter, 
condensation surface, heater power EH2 and heat flows Qev and Qcond for solving 
thermal conductivity equations and calculating thermal resistance according to 
formula (18) from [28]: 

( ) ev cond
HP

ev

T T
R t

Q
−

= .                      (18) 

The small size and the low heating rates ensured that the measurements of the 
RHP were carried out under homogeneity conditions and local thermal equili-
brium. The obtained values of the thermal resistance RHP, K/W in the conti-
nuous heating mode refer to the direction of the heat flow that coincides with 
heat flow direction in the stationary states measurements. 

The polynomial Equation (19) describing in dimensionless form the experi-
mental values of the thermal resistance RHPk for a time moment τk of the short 
HP with a Laval nozzle-liked vapour channel, depending on the overheating 
value of the evaporator δt: 0 ≤ δt ≤ 20 (and also in dimensionless form) looks 
like this: 

( ) ( )
( ) ( )
( ) ( )

( ) ( )

1
1

7 68 6

5 45 4

3 2

2.0795621 10 1.6029662 10

4.9921411 10 8.0489929 10

0.0071936 0.03633406
0.1113127 0.2702057, 8

R in
HPk HPkii

R

R t R t

t t

t t

t t
t n

δ δ

δ δ

δ δ

δ δ
δ

−

=

− −

− −

=

= − × + ×

− × + ×

− +

− + ≤

∑

       (19) 

Standard deviation σ = 0. 0024929, Fisher criterion R2 = 0.9980243.  
The obtained experimental results of thermal resistance at temperature load 

δt > 10 K allow us to estimate the characteristic total thickness of the diethyl 
ether film on the evaporator surface (boiling in the evaporator) and the conden-
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sation surface of short HP’s with a Laval nozzle-liked vapour channel and flat 
upper and lower covers as follows (without the thermal resistance of covers): 

2 2 4 2

6

~

4 10 K W 0.136 W m K 3.14 10 m

1.7 10 m.

ev cond HP lR Fδ δ λ
− −

−

+

= × × × ×

≤ ×

⋅  

From the analysis of Figure (6), it follows that the film thickness on the eva-
porator is close to a constant value in the range of thermal loads δT = (10 - 20) K, 
and with a further increase in the temperature load δT, the evaporator begins to 
dry out and there is a sharp increase in the thermal resistance RHP.  

In addition, when the HP’s evaporator is monotonically heated, the diethyl 
ether layer thickness inside the evaporator δfev(τ) also decreases monotonically 
and within the range of the coordinate z: 

0 < z < Lev = 0.035∙LHP limited by the longitudinal dimensions of the evapora-
tor Lev, the functional dependence of the thermal resistance RHP on the coordi-
nate z: RHP = RHP(z) is of practical interest, and has a positive sign: 

1

0; 0 0.035HP HP HP
ev HP

R R Rt z z L L
z t z t t

−∂ ∂ ∂∂ ∂   = = > ≤ < = ⋅   ∂ ∂ ∂ ∂ ∂   
.    (20) 

The distributions of the experimental values of the HP’s surface temperature 
shown in Figure 4 and Figure 5 ((∂t/∂z) < 0) at the diethyl ether boiling begin-
ning in a saturated evaporator under the monotonic heating, and the decreasing 
values of the thermal resistance on a global evaluation between evaporator and 
condenser ((∂RHP/∂t) < 0) in Figure 6, show a positive value of the derivative in 
Equation (21). And this authorizes the hypothesis that the thermal resistances 
RHP associated with each z position 0 < z < Lev confirms the dependence on RHP = 
RHP(z) and apply it in the thermal conductivity equation. The same can be said 
or concluded about the heat capacity of the evaporator. 

3. Mathematical Model of the Inverse Thermal Conductivity  
Problem  

Let’s formulate a mathematical statement of the inverse problem of restoring the 
heat capacity of working HP’s. Let there be a vertically oriented HP with the 
length LHP = 100 mm and diameter of 20 mm, DHP/LHP ≤ 0.2 and the temperature 
field inside can be viewed in one-dimensional axisymmetric mode and located at 
the bottom of HP the capillary-porous evaporator with a thickness of Lev = 
0.035∙LHP. At the lower end of the HP the evaporator is supplied with a flow of 
heat ( )0evQ z =  from a flat heater H2, Figure 2. At the upper end of the eva-
porator there is a heat exchange ( )0.035evQ z =  and at the upper HP’s end 
there is a heat exchange ( )1ev condQ Qz = =  with an external fluid with a con-
stant temperature Tcal.  

The classical equation of spatial thermal conductivity for the linear HP’s as a 
solid rod (solid body) is looks like this [4] [5] [6]: 

( ) ( ) ( )HP v HP HPz Tс t L F div grad Tρ λ
τ
∂

=
∂

.              (21) 
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Figure 6. Thermal resistance RHP, depending on the evaporator 
overheating δt = Tev – TB relative to the boiling point of diethyl eth-
er at atmospheric pressure. 1: black dots, experimental stationary 
RHP values of short HP’s with a vapour channel made in the Laval 
nozzle-liked form; 2: solid lines, the experimental values of the 
thermal resistance RHP of the same HP obtained in the continuous 
heating mode with close to linear in time speed of 3 × 10−3 K/s. 

 
In a working HP with monotonous heating the heat capacity Cev of the evapo-

rator can be considered and analyzed only as the heat capacity of the HP’s lower 
fragment ( )0.035ev HP zС С= =  with a thickness of Lev = 0.035∙LHP and thermal 
resistance ( )0.035ev HP zR R= = . 

The distribution of the one-dimensional axisymmetric temperature field 
( )HP i sur

t z  and ( ), k sur
t z τ  along the longitudinal dimensionless z -axis of a 

short linear HP’s is used to solve the heat conduction Equation (22) for the eva-
porator fragment without internal sources [4]: 

( )
( ) ( ) ( )

,1 1 , ; 0.035ev
ev HP

t zС t
z

z z
z z

t
t zR L

τ
τ

∂∂
= = ≤

∂ ∂
 .       (22) 

The thermal resistance of the evaporator (evaporative HP fragment) is an 
integral part of the thermal resistance RHP of the entire HP, and the value of the 
thermal resistance of the evaporator during the diethyl ether boiling at tempera-
ture load (pressure) > 11 K can be estimated using the experimental results pre-
sented in Figure 6. Given the close thicknesses of diethyl ether films in the eva-
porator and on the condensation surface of HP ~ev condδ δ  during film boiling, 
the thermal resistance of the evaporator (evaporative fragment) will be no more 
then Rev ≤ 0.02 K/W. 

Energy losses due to friction in the vapour channel and non-absolute calori-
meter adiabaticity lead to the fact that the thermal power of Qev and Qcond differ 
from each other: 
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( ) 2.6%ev cond evQ Q Q− ≤ . 

And the heat power becomes a function of the dimensionless vertical coordi-
nate z  and time with monotonous heating: 

( ),ev evQ Q z τ= .                        (23) 

One of the possible formulations of the coefficient inverse problem (CIP) for 
Equation (23) consists in setting redefined boundary conditions, with the help of 
which the definition unicity of three functions – temperature ( ),sur kt z τ , heat 
capacity ( ),ev kC z τ  and thermal resistance ( ),ev kR z τ  (or thermal conductiv-
ity ( ),ev kzλ τ ), moreover all functions must be analytical functions, for exam-
ple, represented as polynomials or piecewise smooth spline functions. For expe-
rimentally determined boundary conditions, the inverse heat conduction prob-
lem for Equation (22) is usually incorrect in the classical sense [9] [10] [11]. To 
bring it to a conditionally correct formulation, we restrict the class of acceptable 
solutions to a set of piecewise regular approximating dependencies and apply the 
step – by step principle of natural regularization for IPTC solution [6] [9]. 

The temperature distribution of the cylindrical HP’s housing inside the va-
cuum chamber with an adiabatic shell near the flat resistive heater is symmetric-
al: 

( ) ( )
0 0

, ,
0

z z

z zt t
x y
τ τ

= =

∂ ∂   
= =   ∂ ∂   

.                 (24) 

The initial boundary conditions [29] [30] [31]: 

( ) ( ) ( ) ( )0, ev ev c w fev evt t T R R R Qτ τ τ≡ = − + + .           (25) 

( ) ( ) 3
0 00,0 ; 0, 3 10 K sk kt t t tτ τ −× ×= = + .           (26) 

( ) ( ) ( ) ( ),HP k cond cond k cal w fcond cond cond kt L t T R R R R Qτ τ τ≡ = + + + + .   (27) 

( ) ( )2 20, ,ev k H H ev kQ E C Tz zτ τ= = −  .                (28) 

The Qcond energy transmitted by HP to the vortex flow calorimeter during va-
pour condensation is determined using the experimental stand shown in Figure 
2 and Equation (13). 

We write down the dimensional equation of thermal conductivity to estimate 
the heat capacity of a capillary-porous evaporator with a finite height of 0.035∙LHPi 
in the following standard form: 

( ) ( ) ( ) ( )
( ),

, ; 0.035kHP
evk k

HP HP

t zL zzС t t z
z R t F z z L

τ
τ

 ∂∂
= ≤ 
∂ ∂  

 .      (29) 

And we introduce a general expression for the heat flow ( ), kq z τ  inside the 
short HP along the longitudinal z axis: 

( ) ( ) ( ) ( )2 2

, ,
, ,HP k HP kHP

k HP H H ev k
HP HP

T z T zLq z z z E C T z
z R F z
τ τ

τ λ τ
∂ ∂

= = = −
∂ ∂

 .(30) 

In the first approximation, in which the heat flow is determined only by the 
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HP’s capillary-porous evaporator without taking into account heat losses, the 
heat propagation equation in the vapour channel using the thermal resistance 
RHP of a short HP’s as a whole can be written in the following form:  

( )
( )

( ) ( ) ( )
2

2

,

dd d
1

d
.

d d

HP kHP

HP ev

fevev sc
vp B vp vp sc ev ev

TLz
R t F

Tx T
G r T G

z
z

z z
C F z L

z

τ

λ

∂

∂

= + + −Π

       (31) 

The solution of the Equations (29) and (31) is possible only with positive val-
ues of time τk and heat capacity ( )evkC T : 

( )0; 0k evkC Tτ > >  

To simplify all subsequent calculations, it is possible to take the initial tem-
perature value equal to zero: 

( ),0 0t z =  

Equations (30) and (29) of the heat flow propagation ( ), kq z τ  can be rewrit-
ten in the dimensionless form ( ),ev kq z τ  as the heat flow of the evaporator 
(without taking into account heat losses) along the z-axis at time moment τk and 
presented as a system of two energy equations for calculating the heat capacity 
Cevk(t) and the heat flow of the evaporator ( ),ev kq z τ , the value of which is re-
lated to the thermal resistance RHP of a short HP’s as a whole and for the time τk 
can be represented as follows: 

( ) ( ),
0ev k

evk

q
tzC t

z
z
τ∂

+ =
∂

 .                  (32) 

( )
( ) ( )

,
, 0HP

ev k
HP

t z
z

z z
Lz q

R F
τ

τ
∂

+ =
∂

.              (33) 

The values of the variable thermal power ( ),ev kq z τ  on the lower HP’s flat 
borders, on the upper boundary of the flat evaporator and on the upper flat bor-
ders are equal to: 

( ) ( ) ( )0.0350, ; 0.035, ; 1,ev k ev ev k ev k condq Q q Q q Qτ τ τ= = = .     (34) 

and Equation (33) for determination the transmitted thermal power by the HP’s 
capillary-porous evaporator at a height of z = 0.035∙LHP is made using the HP’s 
surface temperature distribution in the adiabatic calorimeter: 

( ) ( )
( )

( )
( )

0.035

2

0.035

,
0.035,

,
0.035 .

HP
ev k

HP

HP

zHP

z

z
z

tLq z
R F

tL
R F

z z

z
z z

τ
τ

τ
=

=

∂ 
= = −  ∂ 

∂ 
= −  ∂ 

       (35) 

The heat capacity of the evaporator allows us to evaluate the work of the HP. 
To calculate the  

HP’s evaporator heat capacity Cevk, the heat output in the evaporator volume 
can be considered as reduced by the temperature reduce from the Equation (31) 
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and (35), and an illustration of the experimental temperature distribution data 
from Figure 4 and Figure 5: 

( ) ( )
0.035

,
0.035 k

ev

z

k

zq
C t t

z
τ

=

 ∂
= −  ∂ 
 .              (36) 

Figure 4 and Figure 5 show the close to the constant experimental tempera-
ture distribution inside the evaporator with boiling diethyl ether at a high heat 
load and further temperature drop in the HP’s Laval nozzle-liked vapour chan-
nel up to the condensation surface. 

3.1. Performing Calculations of the Inverse Thermal Conductivity  
Problem  

The inverse thermal conductivity problem (ITCP) solution for the HP’s evapo-
rator is a method of stepwise continuation of the known solution, for example 
equal to zero at the initial moment, for the next time interval Δτk = (τk, τk+1) and 
the corresponding temperature interval tk = (tk, tk+1) to calculate the heat capacity 
of a capillary-porous evaporator with a height (thickness) of 0.03·LHP.  

The solution of the equations system (32) and (33) is carried out using expe-
rimentally determined surface temperature values ( ), kt z τ  in the range HP0.03 = 
(τk, τk+1) × (0, 0.035∙LHP), experimental thermal resistance values ( ),HP kR z τ  in 
the range HP1 = (τk, τk+1) × (0, 1∙LHP), and calculated values of the evaporator 
volumetric heat capacity Cevk(δt) in the range (τk, τk+1) × (0, 0.035∙LHP) and satis-
fying the thermal conductivity equations (22) and additional conditions (25) - 
(28), provided that the thermal resistance defined in stationary states is known 
as a polynomial (19).  

Crank-Nicholson calculation scheme, Figure 7 with temperature averaging on 
the previous calculation layer and taking into account the temperature depen-
dence of the thermal conductivity coefficient can be used to improve the calcula-
tions accuracy. The equation for the Crank-Nicholson scheme calculation of the 
evaporator heat capacity is as follows: 

1 1 1 1 1
1 1 1 1

2 2

2 2
2 2 2

n n n n n n n n n n
i i i i i i i i i i

evi evi evi
T T T T T T T T T T

C
h h

ρ λ
τ

+ + + + +
− + − +  − + − + − +

= +  
∆   

.(37) 

 

 
Figure 7. A six-point difference scheme in which three 
points are taken from the next (new) time layer n + 1, 
and three from the old (previous) time layer n. 
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The coefficient λevi of the evaporator thermal conductivity can be estimated by 
the Equation (5). 

Experimental temperature tk at time τk inside the HP’s vapour channel with 
monotonous heating relative to the boiling point tB of diethyl ether at atmos-
pheric pressure is determined as follows: 

( ) ( ) ( ), , ; ,k k k B k k k Bt t t t t tz z z t tτ δ τ δ δ τ= = + = = − .         (38) 

At the initial time moment τk and at the initial temperature value tk, we should 
consider that the HP’s evaporator heat capacity Cevk(δt) with the initial temper-
ature load value ( ), kt zδ τ  are known and is equal zero, so the heat capacity 
from now on further heating can be represented as a polynomial with a variable 
(δt):  

( ) ( ) ( ) 1
1 ; 10.c in

evk evki CiC t C t nφ ξ δ −

=
= ⋅ ≤∑              (39) 

Approximation function Φ(ξ) is a mandatory regularizing parameter in the 
form of monotone increasing function, Φ(ξ) = ξ, or maybe exp(ξ). The value of 
numerical parameter Φ(ξ) determines the stability and the range of acceptable 
heat capacity properties, and smoothes out non-linearity’s in a blurred thermal 
transformation in the HP’s evaporator. With the change from linear to an expo-
nential dependence, the error in calculating the heat capacity decreases markedly, 
especially when the polynomial heat capacity function leaves the peak, see Fig-
ure 8. This is due to the fact that exp(ξ) provides a limit on the range of HP’s 
permissible properties in a positive value with Cevk and RHPi(λHPi) > 0, and the 
solution for Cevk is significantly much improved, especially at the exit from the 
heat capacity peak, corresponding to the blurred phase transition at the boiling 
beginning in the HP’s evaporator. In the case of Φ(ξ) = ξ, the error in the heat 
capacity recovery in the temperature range (298 - 348) K (25˚С - 75˚С) reaches 
25%, and when replaced by exp(ξ) falls to 2%. 

The temperature time derivative is a constant value for time values τ > τk and 
is a coordinating (synchronizing) parameter of all measurements in a time in-
terval Δτk:  

3
0

3

0, 0, , 2, ; 3 10 K s;

3 10 K s.
i k k k

k k

t i t t

t

τ τ τ

τ

−

−

> = > = + × ×

∆ = ∆ × ×





         (40) 

The experimental distribution of the HP’s surface temperature tk at time τk 
along the HP’s body is known, are positive and can be written as follows: 

( ) ( ) ( ) ( )
( ) ( )

0 0.035 0

1 0

0 0; 0.035 0;

1 0.
ev k k k k

k k

t t z z

z

t t

t t

τ τ

τ

= = > = = >

= = >
       (41) 

The accounting and synchronization of the thermal resistance RHPk equili-
brium values (33) in a linear slow heating process to the moments of time mea-
surements τk is performed using the value of the temperature load δtk from (38) 
and (40)-(41). The thermal power from the Equation (30) is calculated as fol-
lows: 

( ) ( ) ( )0 0.035 0.035 1: ; ;z z z zk k ev k k condQ Q Q q q Qτ τ τ τ τ= = = => = = = .    (42) 
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Figure 8. The calculated values of the HP’s evaporator heat capacity 
Cev/Cev0: Cev, the heat capacity of the diethyl ether-saturated evaporator, 
J/K; Cev0, the heat capacity of the reference HP evaporator filled with 
dried air, J/K. 1-black dots, values of the relative heat capacity of the 
HP’s evaporator with a Laval nozzle-shaped vapour channel, obtained 
by solving the inverse problem using Equation (44) with a temperature 
step of 0.5 K. δt = Tev-TB, when the diethyl ether boiling process begins; 
2-a polynomial function of the tenth degree for smoothing the ob-
tained points of the evaporator heat capacity. 

 
When the ITCP problem at time τk is solved and the temperature at time τk+1 

of the evaporator 0z = : ( ) ( )0 0ev k kt t zτ = = , at a height 0.035z = :  
( ) ( )0.035 0 0.035k kt t zτ = =  and the temperature of the HP condensation surface 

1z = : ( ) ( )1 0 1k kt t zτ = =  becomes measured and known, this solution be-
comes the temperature and thermal power initial distribution at transition to the 
next τk+1 time interval, Δτk+1 = (τk+1, τk+2). From the solution of the problem on 
the time interval Δτk+1, the function Ck+1(t) is determined on the temperature in-
terval tk+1 = (tk+1, tk+2). 

To reduce the number of Ck+1 parameters, defined at each time interval Δτk+1, 
the crosslink should be performed with the polynomial (39) from the previous 
calculation at the boundary point of the temperature tk by the function and its 
derivatives, this greatly simplifies all calculations. 

The total number of equations for crosslinking Nc = 2 (heat capacity and tem-
perature derivative of heat capacity), and the maximum degree of the polynomi-
al nc = 10 are primarily the main regularizing parameters of calculation, and 
were determined in accordance with the estimated accuracy of the heat capacity 
and experimental error of the temperature measuring.  

In addition, the method of numerical solution of ITCP for short linear HP’s 
using a polynomial expansion of the heat capacity, the size of each time Δτk step 
is an important regularizing parameter [12] [13] [14] [15] [32] [33]. The optimal 
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time step size Δτk is the determining parameter of the calculations accuracy, de-
pends on many HP’s parameters, and it was chosen experimentally. The charac-
teristic time of all measuring sensors survey of the experimental stand, Figure 2 
is Δτmeas = 21 s, so the time step Δτk in the area of boiling beginning of the die-
thyl ether in the HP evaporator changed from Δτk = 30 s up to Δτk = 60 s, and 
the temperature step reached the value of Δtk ≤ 0.2 K. In the initial heating re-
gion the temperature step could be greater and reached the value of Δtk ≤ 0.5 K. 

The program that controls the operation of the measuring stand, Figure 2, has 
two operating modes: “control” and “measurement”. In the “control” mode, all 
sensors are cycled, including thermocouples, thermistors, capacitive sensors, 
controls the power of the main resistive heater and protective heaters of the 
adiabatic calorimeter system, the regime of “zero heating” mode of the HP’s 
evaporator is specified, the measurement results are processed and output on the 
display screen.  

In this mode, the parameters of the control program are specified such as the 
duration of the sensors readings measurement, the measurement times of digital 
voltmeters, oscilloscopes, frequency meters, etc. After the HP evaporator and the 
vortex flow calorimeter reach stationary isothermal states, the program switches 
to the “measurement” mode.  

The main resistive heater H2 and control system are switched on, and the li-
near time heating of the HP’s evaporators begins, the adiabatic system and all 
measuring sensors start working. In this mode, the temperatures distribution on 
the outer surface of the measuring HP, the evaporator heat power, the condensa-
tion surface temperature, the heat output of the adiabatic system and all other 
thermal characteristics, including the heat transfer characteristics of the HP, are 
measured. The obtained experimental data arrays are saved and a measurement 
library is formed. 

3.2. Performing Calculations of the Evaporator Heat Capacity  

We analyze the case when the thermal resistance RHP, Equation (19) of the entire 
HP as a whole is known, have a positive value and it is necessary to calculate the 
heat capacity of a capillary-porous evaporator with a height of 3.5 mm and satu-
rated with diethyl ether. We integrate Equation (22) with respect to z  and, 
taking into account the experimental boundary conditions (25), (26), (27) and 
(28) we obtain a nonlinear integral equation for calculating the evaporator heat 
capacity at the time moment τk: 

( ) ( ) ( )0.035

0
, d 0.035 ,evk k ev kz zC t t qz zτ τ=∫  .             (43) 

To solve such integral equations, the finite difference method is used, based on 
replacing the derivatives with their approximate values expressed in terms of the 
functions differences at individual discrete points (nodes) of the finite-difference 
grid, Equation (37).  

We will solve the functional Equation (43) by the iterative method, for which 
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it is necessary to proceed to the variational formulation of this task. We define 
the target functional as the discrepancy, corresponding to the difference between 
the left and right sides of Equation (43), and the calculation problem for each 
time interval Δτk will look like the task of minimizing the discrepancy function-
al: 

( ) ( ) ( ) ( )

( )

1
20.035

0

1 , d 0.035 d
2
inf .

k

k
evk evk k ev kk k

i
evk

C t C t t q

С t

z z z
τ

τ
δ τ τ τ+  = −  

=

∫ ∫∑ ∑ 

  (44) 

The most suitable way to minimize the functional is the conjugate gradient 
method [34] [35] [36]. To calculate the gradient components of the functional 
(44) (Frechet derivatives) at the points of minimizing sequence, the method of 
the optimal process control theory [35] [36] is used, described by partial diffe-
rential equations [35]. In this method, an important role is played by the so-called 
conjugate boundary value problems corresponding to the original optimal con-
trol problem. 

The Lagrange functional L for minimization the problem (44) with additional 
conditions (22), (25), (26) and with the values of the heat flow at the boundaries 
of the evaporator (32), (36) is as follows: 

( ) ( ) ( )

( ) ( )
( )

1

1

0

0

0.035

0.035

,
d d

,
, d d .

k

k

k

k

evk kk
evk k

i

HP
ev k k

HP

z
z z

z

z
z z

z

C t q
C t t

c

z
tLq z

R F

τ

τ

τ

τ

δ τ
η τ

τ
χ τ τ

+

+

 ∂   ∂
= + +     ∂ ∂       

  ∂
+ +   ∂   

∫

∫

∑
∫

∫

L

   (45) 

where the domain of variables τk and ( ),ev kq z τ  is kept the same as HP0.035 and 
HP1, and η and χ are Lagrange multipliers corresponding to the first and second 
Equations (32) and (33). 

To obtain the gradient expression of the functional L [35], Lagrange multip-
liers and formulate the conjugate task of calculating the heat capacity, we present 
a variation of the Lagrange function with respect to the variables τk and 

( ),ev kq z τ  and the heat capacity parameters ( )i
evkС t , and taking into account 

the boundary conditions (25) and (26) and the initial conditions (32), (33), (40) 
and expressions for the heat flow (30), (35): 

( ) ( )

( ) ( )

( ) ( )

( )

1

1

1

0

2
0.035

2
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0.035 0 035

0

.
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, d d d
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z z
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τ
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=       

  ∂
− +   ∂   

 ∂  − − +  ∂  
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∫

∫

∫

∫

∫ ∫


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( ) ( ) ( )1 0.03

0

5
, d 0.03 d .k

k

i
evk k ev k kz t zС t q tz

τ

τ
η τ τ δ τ+  

− − 
  

∫∫ 

(46) 

where the value gk denotes the derivative of the heat capacity components in the 
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following form: 

( )
( )

( )
( )

( )1 0 5

0

.03,
; , d d

, ,
k

k

evkevk k k
i k i ki i

evk k k

C tC t
g

t
zt z g

С t С
τ

τ

δτ
η τ τ

τ τ
+∂∂  = =   ∂ ∂ ∫ ∫

∑
 .   (47) 

where η, is the solution of the conjugate problem completely corresponding to 
the original problem (22), (25) and (27). In the reverse time, τ = τk+1 – τk the 
conjugate problem is written using Equations (32) and (33) and the HP’s ther-
mal conductivity coefficient ak: 

( )
( ) ( ) ( )

1;
, ,

kk k k HP
k

evk k evk k HPk

La a
C t C t zR

z
z

z F
zη λ

η
τ τ

∂ ∂ ∂
= = =

∂
.   (48) 

Both the initial and boundary conditions of the conjugate task are written in 
the usual way, and at the upper boundary of the evaporator, the conjugate value 
is equal to the caloric residual from the square brackets in the Equation (44): 

( ) ( ),0 0; 0, 0kzη η τ= = . 

( ) ( ) ( ) ( ) ( )
20.035

0 10.035, , d 0.035k evk k ev k kC t t qz z z zη τ τ τ τ τ+
 = = − −  ∫  .  (49) 

the inverse problem for the heat capacity ( ),evk kC t τ  at each k-th interval is re-
duced to finding the minimum of the functional by the method of conjugate 
gradients.  

The solution of the HP’ evaporator thermal conductivity inverse problem 
(32), (37) and (46) and the solution of the integral Equation (44) for determining 
the evaporator heat capacity was carried out using the developed program in 
Fortran [3] [4] [5].  

In the conjugate gradient method, one-dimensional minimization in the per-
missible direction was carried out using the interpolation-extrapolation method 
[35]. The described algorithm for determining the piecewise function Cevk(δt) 
with a known thermal resistance function RHP(t) was previously tested on several 
classical models of the inverse problems in thermal conductivity. The obtained 
results of these problems solving show that the heat capacity function Cevk(δt) 
can be restored in all cases with an error of less than 5%. Table 2 shows the re-
sults of solving the inverse problem of thermal conductivity for two cylindrical 
samples, a measuring sample with conductive heat transfer and a model sample 
with a local phase transition, with the same sample length of 3 × 10−3 m. The 
heat capacity is C0 = 1 × 106 J/m3∙K, thermal resistance Rsample = 0.25 × 102 K/W, 
the heat of evaporation Qvp = 345 kJ/kg (C4H10O ) at the evaporator temperature 
Tev = 328.75K (55.6˚C) and pressure 5~ 6.13 10 PaP × , Qev = 210 W, heating 
velocity 3 × 10−3 K/s.  

For a measuring sample with conductive heat transfer, all details are from 
Equation (22). For a model sample, the boundary conditions are given below in 
Equations (50) and (51): 

:ev cond
TL Qz
z

λ ∂= =
∂

.                      (50) 
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Table 2. Calculated values of the relative heat capacity when heating two samples with 
different heat transfer parameters and the influence assessment of the various mathemat-
ical processing. 

sample type Φ(ξ) C/C0 

measuring sample 
with heat transfer by the 

thermal conductivity 

Φ(ξ) = ξ, 3.3 

Φ(ξ) = exp(ξ), 3.3 

model sample 
with heat transfer by the 
liquid evaporating and  

vapour condensing 

Φ(ξ) = ξ, 9.5 

Φ(ξ) = exp(ξ), 11.8 

 

0 : ev ev vp
T Q Gz
z

Qλ ∂= = −
∂

⋅ .                   (51) 

where the evaporation rate and the saturated vapor pressure are estimated as 
follows: 

; exp
2

vp vp
ev vp

P P Q
G const P P

RTRT M

−  
= = − 

π  
 

To calculate the heat capacity of the evaporator, a rather complex program 
was developed in FORTRAN, using computational equations based on the 
Simpson method [37] [38] [39] and Equation (37), which represents the most 
complete numerical iterative Crank-Nicholson scheme [37] [38] and for brevity 
is shown in Figure 7. All calculation details are given in [29] [30] [31], the itera-
tive process is completed when the result δCev/Cev is obtained, which does not 
exceed the random error of the temperature growth rate and thermal power da-
ta: 

22

0.3 J Kev ev

ev ev

C qt
C t q
δ δδ   = + ≤  

   





.               (52) 

The results of the calculated solution of equation (44) in the range of temper-
ature load on the HP’s evaporator δt = Tev − TB = (−5 … +25) K are shown in 
Figure 8, the random error in calculating the heat capacity of the diethyl ether 
saturated evaporator does not exceed (2 - 3)%. The analysis of the calculated re-
sults Cev/Cev0 of the capillary-porous evaporator heat capacity heated linearly in 
time can be carried out using the previously obtained equation for calculating 
the enthalpy (11), which takes into account all the details of heating and evapo-
ration of diethyl ether.  

The evaporation enthalpy of the working evaporator with boiling diethyl ether 
was estimated earlier in Equation (11), therefore we can substitute the known 
table values for diethyl ether [25] [26] [27] and can get an expression for the ef-
fective heat capacity of a linearly heated capillary-porous HP’s evaporator at the 
ether boiling beginning: 
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( ) 4

3

345 kJ kg 1.75 kJ kg K 11 K 2.34 kJ kg K 16 K 1.57 10 kg s
3 10 K s

21.02 kJ K.

ev
ev

H
С

t
−

−

=

+ ⋅ × + ⋅ × × ×
=

×
=



(53) 

The ratio of the heat capacity of the evaporator with diethyl ether to the dry 
evaporator Cev/Cev0 taking into account the heat capacity of the resistive heater 
CH2 = 1.2 kJ/K at the diethyl ether boiling beginning is as follows: 

0

0 0 0

21.02 1.21 18.5
1.2

ev ev ev ev

ev ev ev

С С H t H t
С С С

+ +
= = + = =

 

.         (54) 

which is very close to the maximum numerical value of the heat capacity of the 
HP’s evaporator. 

Equations (53) and (54) confirm the correspondence of the experimental and 
calculated thermophysical characteristics of diethyl ether located in the evapo-
rator at a high temperature load. 

4. Conclusions 

1) The measurements of the surface temperature of short linear HP’s with li-
near heating of the evaporator in time make it possible to unambiguously record 
an uneven drop in surface temperature. The HP’s surface temperature values 
around the evaporator, which are close to constant, allow us to estimate a small 
drop in the transmitted thermal power in the HP’s vapour channel. The con-
stancy of the surface temperature around the evaporator also allows us to apply 
the method of solving the inverse problem of thermal conductivity (IPTC), and 
numerically obtain the extreme value of the heat capacity of the area (fragment) 
of the HP’s evaporator. This calculated result was obtained for the first time. 

2) The HP’s external surface temperature of the capillary-porous evaporator, 
which is close to a constant value with monotonous heating, confirms the boil-
ing process beginning and allows us to estimate the complex thermophysical pa-
rameters of diethyl ether in the evaporator. 

3) With step-by-step regularization of the inverse problem solution of the 
HP’s thermal conductivity and piecewise smooth polynomial approximation of 
unknown coefficients, it is possible to minimize the error in restoring the eva-
porator heat capacity using a polynomial-exponential approximation function 
that restricts the range of acceptable heat capacity values by only positive values. 
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Nomenclature 

a = λ/CP∙RHP—coefficient of HP’s thermal diffusivity; 
ak = k-th calculated component of the thermal diffusivity coefficient, m2/s; 
Ceff: effective heat capacity of the HP, J/K;  
CHP(t)—HP’s heat capacity as a whole, J/K; 
cv(t)—HP’s volume heat capacity, J/m3∙K; 
cv(T)—HP’s specific isochoric heat capacity, J/kg∙K; 
Cev0—heat capacity of the dry evaporator, J/K;  
Cev—heat capacity of the evaporator with diethyl ether, J/K; 
Cev—calculated heat capacity of the evaporator, J/K; 
Cl—diethyl ether heat capacity, J/kg∙K; 
Cvp—heat capacity of diethyl ether moist vapour, J/kg∙K; 
Cfev—heat capacity of diethyl ether on the evaporator surface, J/kg∙K; 
EH2—thermal power of the resistive heater, W; 
FHP(sz)—HP’s cross-sectional area, m2; 
Gl—mass flow rate of diethyl ether liquid phase in the evaporator, kg/s;  
Gmix—mass flow of the moist saturated vapour over the evaporator, kg/s; 
Gvp—mass flow rate of dry saturated vapour over the evaporator, kg/s; 
(1 – xev) = G’/(G’ + G) —the degree of moisture vapour in the evaporator; 
gk—the derivative of the heat capacity components; 
Hev—enthalpy of the HP’s evaporator, W; 
LHP—HP’s length, m; 
Lev—the thickness of the capillary porous evaporator, m; 
P —the average pressure in the vapour channel, Pa; 
Pev—pressure above the evaporator, Pa; 
Pfcond—pressure on the condensation surface, Pa; 
Pv—the vapour pressure inside the toroidal vortex, close to the condensation 
pressure Pfcond; 
Pr—the Prandtl number of the diethyl ether vapour; 
Qev—heat input to the evaporator, W; 
Qcond—heat of condensation, W;  
Rc—thermal resistance of the lubricant layer, K/W; 
Rev—thermal resistance of the evaporator, K/W; 
Rw—thermal resistance of the metal cover, K/W; 
RHP(T)—HP’s thermal resistance, K/W; 
r(TB) —specific heat of evaporation of diethyl ether, kJ/kg; 
TB—boiling point of the diethyl ether, K; 
Tcal—the temperature of the flowing water in the vortex calorimeter; 
Tcond—condensation surface temperature T, K; 

fcondT —the average temperature of the diethyl ether film on the HP’s condensa-
tion surface, K;  

fevT —the average temperature of diethyl ether boiling microlayer on the HP’s 
lower cover surface, K; 
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( )HPT z —the temperature inside the HP’s vapour channel at a height of z  
above the evaporator, K; 
Tev—stationary temperature of the grid evaporator saturated with the diethyl 
ether, K; 
Tsc—stationary temperature of the evaporator metal mesh, K;  
Tv—he vapour temperature inside the toroidal vapour vortex, K; 
t—temperature growth rate, K/s;  
v—vapour (and liquid) phases flow velocity inside the capillary-porous evapo-
rator, m/s; 
xev—the degree of vapour moisture in the evaporator; 
Y—parameter of the additional source function, J;  

HPz z L= —dimensionless longitudinal coordinate; 
uv, vv—axial and tangential components of the vortex velocity in the HP’s vapour 
channel, m/s; 
Greek 
αcal—heat transfer coefficient in the vortex flow calorimeter, W/m2∙K; 
αcond—heat transfer coefficient in the HP’s condensation region, W/m2∙K; 
δfcond—the average thickness of the diethyl ether film on the condensation sur-
face, m; 
δw—the thickness of the flat metal bottom cover, m; 
η—Lagrange multiplier; 
λeff—effective thermal conductivity, W/m·K; 

HPλ —effective thermal conductivity of the HP, W/m∙K; 
λl—thermal conductivity of diethyl ether, W/m∙K; 
λ(t)—HP thermal conductivity coefficient, W/m∙K;  
λsc—thermal conductivity coefficient of metal mesh evaporator frame, W/m∙K; 
λw—thermal conductivity coefficient of metal top and bottom covers, W/m∙K; 
μi—friction coefficients; 
ξ—condensation coefficient defined as the ratio of the number of vapour mole-
cules condensing over the total number of molecules which strikes the surface; 
Π—the porosity of the evaporator and insert (wick) in the HP’s vapour channel; 
ρHP—HP’s density, kg/m3; 

mix
vpρ —the density of moist vapour inside the vapour channel, kg/m3;  

ρv—the vapour density inside the toroidal vortex, kg/m3; 

evρ , kg/m3—average evaporator density, kg/m3; 
τ—time, s;  
Δτk—time step for calculations and measurements, s; 
Φdf—dissipative functions;  
χ—Lagrange multiplier;  
ψ—the mass fractions of the HP’s components; 
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