
Engineering, 2022, 14, 155-162 
https://www.scirp.org/journal/eng 

ISSN Online: 1947-394X 
ISSN Print: 1947-3931 

 

DOI: 10.4236/eng.2022.143015  Mar. 28, 2022 155 Engineering 
 

 
 
 

Numerical Study Using Statistical  
and Quantum Approaches for Solving  
Energy and Navier Stokes Momentum 
Equations (PDEs) 

Saeed J. Almalowi 

College of Engineering, Mechanical Engineering Department, Taibah University, Al Madinah Almunwwarah, KSA 

 
 
 

Abstract 
Statistical and Quantum numerical method was implemented in this study to 
solve various cases in partial differential equations (PDEs) in engineering ap-
plications. One-dimensional with two lattices arrangements as well as 
two-dimensional with nine lattices arrangements is employed. The stability 
and the accuracy have been investigated either using statistical technique or 
using Euler’s method. The numerical limitations of using LBM method have 
been obtained and compared with those obtained by Euler’s method finite 
difference method. The main goal of this study is to investigate the ability of a 
statistical method in solving various ODEs or PDEs in energy and momen-
tum equations and comparing them with those obtained by a classical nu-
merical technique. The results show the ability of the statistical method for 
solving ODEs and PDE’s with more stable and accurate results. Therefore, the 
motivation of utilizing the statistical technique is the stability and it is easy for 
a complex fluid flow application. 
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1. Introduction 

The Austrian physicist, Boltzmann is the first physicists who applied the statis-
tical method for solving ODEs or PDEs. He had the greatest achievement in the 
development of statistical methodology, which based on the statistical and 
probability of behavior of a group of particles. This technique is quiet new tech-
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nique and recently applied for various applications in order to predict macros-
copic properties of matter such as the viscosity, thermal conductivity, and diffu-
sion coefficient from the microscopic properties of atoms and molecules [1] [2] 
[3]. The probability of finding particles within certain range of velocities at a 
certain range of locations replaces tagging each particle as in molecular dynamic 
simulation. The statistical technique belongs to the molecular dynamics, filling 
the gap between the microscopic and macroscopic phenomenology. It generated 
from the lattice-gas cellular automata method [1]. The statistical technique 
which is known as the lattice Bhatnagar-Gross-Krook (BGK) method has been 
developed rapidly and applied for many studies. The nonlinear term in the lat-
tice Boltzmann is approximated by BGK to become linear term, and this term is 
known as the collision term in the lattice BGK governing equation. The main 
idea of LBM is to embank the gap between micro-scale and macro-scale by not 
considering individual behavior of particles alone but behavior of a group of 
particles as a unit. The property of particle is represented by a distribution func-
tion. The distribution function acts as a representative for collection of particles. 
This scale is unknown as microscopic scale. In nature, the two immiscible fluids 
are multicomponent fluids. This type of technique is based on the interaction 
between each fluid molecule naturally as well as the interface region for mul-
ti-phase flow [4] [5] [6].  

2. Mathematical Model  

The statistical approach has been employed to predict macroscopic properties of 
matter such as the viscosity, thermal conductivity, and diffusion coefficient from 
the microscopic properties of atoms and molecules [7]. The probability of find-
ing particles within certain range of velocities at a certain range of locations rep-
laces tagging each particle as in molecular dynamics simulation. The Boltzmann 
transportation of single fluid has been modeled by several investigators includ-
ing the present authors recently [4]. Statistical technique will be considered in 
the present study using one and two-dimensional with two and nine directional 
lattices arrangements. Statistical approach is a relatively recent technique that 
has been shown to be as accurate as traditional CFD methods having ability to 
be implemented to simulate complex flows. The statistical technique can be uti-
lized for different arrangements which can give a more stable and accurate re-
sults [8] [9] [10]. The collision of particles takes place between the molecules; 
there will be a net difference between the numbers of molecules in the interval. 
The rate of change of the distribution function is expressed as: 
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Here k denotes the direction, c is the lattice discrete velocity and F is external 
forces applied. ( )eq

k kS Sω −  and ( )eq
k kh hω −  denote the source or the colli-
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sion term for each phase. Equation (1) is known as the BGK LB governing equa-
tion. ω1 = 1/τ1 and ω2 = 1/τ2 are the relaxation frequency and the τ1 and τ2 are 
the relaxation time of each phase eq

kS  and eq
kh  are the equilibrium value of 

distribution function for each phase. They need to be selected carefully to ensure 
that each of the components obeys the Navier’s Stokes Law: 

( )2
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where ck is the discrete velocities vector, V is the bulk fluid velocity and wk is the 
weight factor. 
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The momentum statistical technique assigns the directional velocities to the 
particles, in D2Q9 model, the particle at the origin is at rest and the remaining 
particles move in different directions with different speed [11]. Each velocity 
vector is a lattice per unit step. These velocities are very convenient in that all x 
and y-components are either 0 or ±1. Mass of particle is taken as unity uniform-
ly throughout the flow domain. The macroscopic fluid density is governed by 
conservation of mass for each phase (Table 1) 

1
Q

kk Sρ
=

= ∑                         (4) 
 
Table 1. Investigated Cases: diffusion heat energy equations and momentum equations (Navier Stokes equation). 

CASE (1) 
1D Diffusion Energy 
Equation 

2

2α
 ∂ ∂

=  ∂ ∂ 

T T
t x

                               (5) 

BCs are taken as: at x = 0, ( )0 100 C= = T x  & at x = 3 m, ( )3 m 20 C= = T x  

CASE (2) 2D Energy Equation 

2 2

2 2α
 ∂ ∂ ∂

= + ∂ ∂ ∂ 

T T T
t x y

                             (6) 

BCs are taken as: at x = 0, ( )0 100 C= = T y  & at x = 3 m, ( ) 100 C= = T y H  
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Continued 

CASE (3) 
Navier Stokes Equation 
in x &y direction 
(Momentum Equation) 

0∂ ∂
+ =

∂ ∂
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                               (7) 
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BCs are taken as: Left: u = vRe/D, lower and upper BCs are no-slip boundary conditions. 
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Solving of Naiver stokes equation is one of challenging problem in fluid beha-
vior applications. The different methodologies have been developed. The stabili-
ty and the accuracy of these methodologies are the most researchers concern 
[12]. The geometry of a problem and the type of the interaction fluid need dif-
ferent simulation tools [13]. In this part of study, the diffusion heat transfer equ-
ation as well as the momentum equation for a single-phase fluid flow has been 
solved using statistical and quantum approach. The stability and accuracy have 
been investigated for various number of nodes/lattices. Table 1 shows the three 
study cases which are selected for comparison purposes between statistical ap-
proach and quantum approach. 

Study Cases (For Comparsion Purposes) 
Explicit Method of Case (3): 
The combining of vorticity formulation and stream function formulation with 

Equation (8) lead to:  
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Using central difference scheme in order to linearize the Equation (12) leads to:  
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Now, the Equation (1) can be expnaded for two-dimentional lattices as: 
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where: 
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3. Results and Discussions 

Figure 1(a) illustrates the solution of one-dimensional energy equation using 
statistical and quantum approach with absent of heat source. Statistical approach 
can be derived from the extension of quantum approach, FDM, as shown in Eq-
uation (1). This technique can be applied for more distribution functions to get 
more accurate results and more numerical stability. Therefore, the extension 
study will apply two-dimensional and three-dimensional lattices arrangement. 
The statistical approach is a conditional numerical technique, which has been em-
ployed in a few years ago. Figure 1(b) shows the case (2) with heat source applied 
to the energy equation, as shown in Equation (5). The results show strong agree-
ment between the classical and statistical numerical method either in heat diffu-
sion equations (case (1 & 2)) or in the momentum Navier Stokes equations as 
shown in Figures 2(a)-(d). The normalized temperature profiles of the fluid 
flow in a heated duct with a single strainer are plotted for both numerical tech-
niques which show strong agreement. 

 

 
(a)                                                     (b) 

Figure 1. (a) A Stability study of case (1) for various Number of Nodes/Lattices and (b) A Study of case (2) for various time step 
using Statistical Approach (LBM) & Quantum Approach (FDM). 
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(b) 

 
(c) 

 
(d) 

Figure 2. The normalized temperature profile plotted for Re = 100 using 
statistical technique (a) for single strainer, (b) for a double strainers and 
quantum technique (FDM) for (c) for a single strainer, (d) for double strainers.  

4. Conclusion 

The three investigated cases have shown identical results; therefore, the statistic-
al approach will become the most popular and powerful numerical technique in 
the coming years. The stability and the accuracy have been employed either us-
ing statistical approach or using Euler’s method (quantum approach). The nu-
merical limitations of using statistical method have been obtained and compared 
with those obtained by Euler’s finite difference method. All the results are exact-
ly the same. Consequently, the statistical approach is able to solve linear and 
nonlinear ODEs and PDE’s with more stable and accurate results. Consequently, 
statistical approach is a powerful and promising numerical technique for scien-
tists who are struggling for solving nonlinear ODEs or PDEs.  
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List of Abbreviations  

S [-] Distribution function of fluid flow 

c [-] Lattice discrete velocity in x-and-y components 

w [-] Weigh Factor 

V1,2 [lu/ts] Total velocity of fluid 1 & 2 per unit lattice-time step 

r [-] Position vector 

t [s] Time 

τ1 [-] Dimensionless relaxation time 

ρ [-] Macroscopic density 

BCs  Boundary conditions 

ω [-] Relaxation frequency 

Seq [-] Local equilibrium distribution function 

∆t [-] Time step 

gx,y [m/s2] Gravitational acceleration 

Re [-] Reynolds Number 

∆x [-] Distance between two adjacent lattice nodes 

PDEs [-] Partial Differential Equations 

ODEs [-] Ordinary Differential Equations 

Special Characters 

υ [m2/s] Kinematic Viscosity 

α [m2/s] Thermal diffusivity 

Subscripts 

M  Lattice nodes in x-direction 

N  Lattice nodes in y-direction 
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