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Abstract

The bipartite Turan number of a graph A, denoted by ex(m,n;H), is the
maximum number of edges in any bipartite graph G =(4,B;E(G)) with
|4|=m and |B|=n which does not contain H as a subgraph. When
min{m,n} > 2t, the problem of determining the value of ex(m,n;Kannft)

has been solved by Balbuena et al. in 2007, whose proof focuses on the struc-
tural analysis of bipartite graphs. In this paper, we provide a new proof on the

value of ex(m,n;me,ft) by virtue of algebra method with the tool of adja-

cency matrices of bipartite graphs, which is inspired by the method using
{0,1} -matrices due to Zarankiewicz [Problem P 101. Colloquium Mathemati-

cum, 2(1951), 301].
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1. Introduction

In this paper, the graphs are all undirected simple graphs. Let G and H be two
graphs. We say that a graph Gis H-free if G does not contain a subgraph isomor-
phic to A. In 1941, Turan proved that the extremal graph which does not contain
K

r+l

as a subgraph is the Turén graph 7, (n), where Turan graph 7, (n) is the
complete r-partite graph on n vertices with each part containing {%—l or L%J
vertices. Turan’s theorem [1] is a fundamental theorem in graph theory, which is
the beginning of extremal graph theory. For a simple graph A, the Turan number
of H, denoted by ex(n,H), is the maximum number of edges among H-free

graphs with n vertices, ie.,
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ex(n,H)zmax{e(G):|G|:n,H & G} .

2
Turan’s theorem states that ex(n,KHl)S(l—lj%. Erdés, Stone and Si-
r

monovits [2] [3] generalized this result by using the chromatic number of graph.
The Erdds-Stone-Simonovits theorem states that, for any given graph /A and any

fixed e> 0, there exists a positive integer n, such that, forany n>n,,

@m]?w(lﬁ)l]?

where ¥ (H ) is the chromatic number of H. The theorem means that it is as-
ymptotically best possible for any graph Hwith ¥ (H ) >3.
When the forbidden subgraph His a bipartite graph, there are lots of interesting

results. In 1954, K&vari, S6s and Turadn [4] showed that, for »<¢,

1
ex(n,K,J) = O[n2 r J Call a graph H r-degenerate if each subgraph of A has a

vertex of degree at most . Note that K, , isan r~degenerate bipartite graph and

1

2——
ex(n,K,,,t) = O[n *] . Motivated by the Kévari-Sés-Turan theorem, the follow-

ing conjecture was proposed by Erdés in 1966.
Conjecture 1. [5] If His an r~degenerate bipartite graph, then

ex(n,H):O{nz_l].

This conjecture is widely open. Alon, Rényai and Szab¢ [6], Kolldr, Rényai and
Szabé [7], respectively, showed that the upper bound of this conjecture is in fact

sharp for r~degenerate bipartite graph. They proved that there exists a positive
1
2-=

constant ¢, depending on r such that ex(n,K,,’,)ZCVn » for r=2 and

t>(r—1)!. The following result due to Fiiredi [8] confirmed the conjecture in

part in 1991. Later, Alon, Krivelevich and Sudakov [9] gave a new proof for this
result in 2003.
Theorem 2. [8] [9] If His a bipartite graph with maximum degree at most ron

one part, then there exists a constant ¢ depending only on A such that
1

ex(n,H)Sc-nZT.

In [9], Alon, Krivelevich and Sudakov showed a weaker bound for Conjecture

Theorem 3. [9] If His an r-degenerate bipartite graph, then
1
ex(n,H)= O[n2 4*] )

As a generalization of the Turdn number, the bipartite Turan number, denoted
by ex(m,n;H ) , is the maximum number of edges among H-free bipartite graphs
with two parts of sizes m and n for a given bipartite graph H. Denote by

EX(m,n;H) the set of extremal bipartite H-free graphs on n vertices with
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ex(m,n;H) edges. The problem of determining the value of ex(m,n;H) for
any given graph H is called the bipartite Turdn problem, which is closely related
to the Turdn problem. Denote a path on /vertices by F . Gyarfas, Rousseau and
Schelp [10] considered the bipartite Turan number of paths.

Theorem 4. [10] Let n>m . Then

mn, m<l-1;
ex(n,m;By)=1(I-1)n, I-1<m<2(1-1); (1)
(I=1)(n+m=20+2), m=2(I-1).

Let M, beamatching of kedges. The below result, due to Li, Tuand Jin [11],
shows us ex(n,m;M,) for n2m2k and the corresponding extremal graph.
Theorem 5. [11] Let n>m >k . Then

ex(n,m;M,)=(k-1)n.

Moreover, the unique extremal graphis K, |, UK, . ,-
For two positive integers m, nand a given graph H, let s(m,n;H) denote the
smallest positive integer s such that if G'is a bipartite graph with two parts 4, B,

where |d|=m,

B| =n, and G has at least s edges, then G must contain H as a
subgraph. Clearly, s(m,n; H)=ex(m,n;H)+1. A cycle consisted of / vertices is

denoted as C,. Kévari, S6s and Turan [4] obtained the classical result that
3

ex(n,n;C,)= (1+o(1))n5. For a constant ¢ Erdés, Sarkdzy and Sos [12] conjec-
tured in 1995 that
2
ex(m,n;C6)+1=S(m,n;C6)<c(mn)5 (2)
when m<n<m’ and
2

ex(m,n;C6)+1=s(m,n;C6)<2n+c(mn)5 (3)
when n>m’.

(2) was confirmed by Sarkoézy [13]. (3) was first studied by Sarkoézy [13] and it
was settled by Gy6ri [14]. Motivated by the result on the bipartite Turan number
of short cycle, Gy6ri [14] proposed a more general conjecture of long cycles.

Conjecture 6. [14] ex(m,n;C,,)+1=s(m,n;C, )<(t—1)n+m—t+2, where
n>m’, m>t=3.!

Gy6ri [15] himself disproved Conjecture 6 for ¢=3. Balbuena et al [16] fur-

m+1

ther disproved it when ¢< . In 2021, Li and Ning [17] showed that

ex(m,m Gy )=(t—1)n+m—1+1 forn2m2t2%+1, which improved a result

of Jackson in [18].
When the forbidden subgraph His a complete bipartite graph, the problem of

determining the value ex(m,n;H) 1is closely related to the Zarankiewicz

'The original conjectured value (¢— l)n +m~—t+1 in[14] may be a misprint (see the remark on page

748 in [16]).
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problem. In 1951, Zarankiewicz [19] proposed the following question: Determine
the smallest positive integer Z(m, n;s,t) such that each { 0,1} -matrix with m
rows and 1z columns containing Z (m, n;s,t) 1’s has a submatrix with srows and
t columns consisting entirely of 1’s. Combined with the adjacency matrix of bi-
partite graph, this extremal problem may be formulated in graph-theoretic terms.
It is equivalent to find the least positive integer Z(m,n;s,t) such that each bipar-
tite graph on m black vertices and 1 white vertices with Z(m,n;s,t) edgeshasa
complete bipartite subgraph on sblack vertices and ¢ white vertices. In [20]-[22],
use z(m, n;s,t) to represent the maximum number of edges among bipartite
graphs G =(4,B;E(G)) with |A| =m and |B| =n such that they do not con-
tain any complete bipartite graph with svertices in A and ¢vertices in B. The cor-
responding extremal family of bipartite graphs is denoted by Z (m,n;s,t ) . Obvi-
ously, Z(m,n;s,t)=z(m,n;s,t)+1 and ex(m,n.K,, ) <z(m,n;s,1),
ex(m,n;KS’,) <z(m,n;t,s). Note that, when 2<s<m, 2<t<n and m<t or
n<s, ex(m,n;Kw ) = ex(m,n;Km) ; however, there is
z(m,n;s,t) < z(m,n;t,s)=mn .

Goddard, Henning and Oellermann [20] obtained the exact values of z(n, n;2, 2)

for n<20 andshowed thatin some cases the family Z (n,n; 2, 2) contains only
3

one extremal graph. Kévari, S6s and Turén [4] proved that z(n,n;2,2)<2n+ n*.
Further, if ¢is a prime, then z(q2 + q,q2;2,2) =¢’ +¢" . Griggs and Ouyang [21]
studied the so-called “half-half” case, i.e., the function Z(ZS,Zt;S,t ) .

Theorem 7. [21] Let s<¢.Then

4st—(2t+2s—ged(s,0)+1) < 2(2s,265,1) S dst — (2 +s+1),

where ged(s,) is the greatest common divisor of sand ¢

In 2007, Balbuena et al. [22] determined the exact value of Zz (m,n;s,t) and
characterized the family Z(m,n;s,t) of extremal graphs if max{m,n}<s+t.
They gave the following results.

Theorem 8. [22] Let m,n,s,t be four integers with 2<s<m, 2<t<n and

such that max {m,n} <s+¢.Then

{z(m,n;s,t)=ex(m,n;Ku)=mn—(m+n—s—t+1), @

Z(m,n;s,t)=EX(m,n;KSJ)={K —M},

m,n

where M is any matching with cardinality m+n—s—z¢+1.

In this article, we prove the following result by virtue of algebra method. Our
proof is different from the one of Theorem 8, but it is inspired by the method
using {0,1} -matrices due to Zarankiewicz in [19].

Theorem 9. Let m,n,t be three positive integers with min {m,n} > 2¢. Then
ex(m, mK, . ) =mn-2t-1.

The rest of this paper is organized as follows. In Section 2, we first introduce
some notations and definitions. By virtue of adjacency matrix, the proof of Theo-

rem 9 is given. In Section 3, we give some concluding remarks.
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2. Preliminaries and Proofs

Before giving the proof, we introduce some notations and definitions. In this paper,
agraph G= (A,B;E(G)) is denoted as a bipartite graph, where V' (G)=A4UB,
ANB=0 and every edgein E(G) has one endpoint in 4 and the other in B.
Cal G= (A,B;E (G)) a complete bipartite graph if every vertex in A is adjacent
to all vertices in Band usually denote it by K, , when |A| =m and |B| =n.A
bipartite graph G =(4,B;E(G)) isbalancedif |4|=|B|. A matching of graph /
is a subset of £ (H ) in which no two edges share a same vertex. We say that
vertex vis a saturated vertex of Mif vis incident with an edge in the matching M.
Otherwise, the vertex vis an exposed vertex of M. A matching of A is maximum
if there is no matching with greater cardinality in A.

Next, we introduce the adjacency matrix of a bipartite graph that describes
structural properties of graphs. Let F = (A,B;E (F )) be a bipartite graph with
two parts 4= {ul,uz,---,um} and B= {VI,VQ,---,vn} . The adjacency matrix of F
isan mxn matrix M with 1 or 0 in the position of (ui,vj) corresponding to
u; and v, areadjacent or not, respectively, for 1<i<m and 1<;<n.When
we delete #edges of a bipartite graph, its adjacency matrix will have ¢ correspond-
ing elements changed from 1 to 0.

For example, let F = (A, B;E(F )) be a bipartite graph as shown in Figure 1
with 4= {ul,u2,u3,u4}, B= {vl,vz,VS,v4,v5} and
E(F) = {ulvl,ulvz,uzvz,u2v3,u3v3,u3v4,u4v4,u4v5} .

ul uz u3 u4

Yy V) V3 V4 Vs

Figure 1. Bipartite graph F.

Denote the adjacency matrix of bipartite graph Fby M. Then we have

1 1.0 00
01 100
M = . (5)
00110
00 011

After deleting the edges u,v,,u,v; and u,v; of graph F the corresponding adja-
cency matrix M' is as below.

01000
01000

M'= (6)
00110
00010

Next, we give the proof of our result by virtue of adjacency matrices of bipartite

graphs and graph structural analysis.
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Proof of Theorem 9.

Proof. Let m,n,t be three positive integers with »>m >2¢. Assume that
complete bipartite graph K, , = (A,B;E(KW )) and |A| =m, |B| =n.

Firstly, we prove that ex (m,n;KnH‘H) >mn—2t—1. Consider graph
G, =(4,B;E(G,)) whichis obtained by deleting a matching M, of cardinality
2¢t+1 from the complete bipartite graph (A,B;E (Km)n)) . We prove that G,
does not contain K, ,,, as a subgraph. Otherwise, we may assume that G,
containsa K, _,,, which hastwo parts 4'c 4 and B'C B and |A'| =m-t,
|B'|:n—t. Then A' contains at least 7+1 saturated vertices of M,. Noting
that the number of vertices in B\ B’ is £ at least one saturated vertex in 4" is
adjacent to some saturated vertex of B', which implies that at least one edge in
K, .. belongsto M,.Itisacontradiction.So G,with mn—2t—1 edges,does

not contain K, , , asasubgraph. Therefore, ex(m, mK, . ) 2mn—2t-1.

Next, we prove that ex(m, mK, . ) <mn—2t—1.Thatis to say, it needs to be

proved that after arbitrarily deleted 2fedges of K

m,n >

the resulting graph contains
K as a subgraph. We use the adjacency matrix of the bipartite graph to

m—t,n—t

prove this. After 27 edges are deleted from K, ,, there are 2¢ elements in the ad-

jacency matrix of K, , changed from 1 to 0. Denote this adjacency matrix by C.
We need to prove that Chas a sub-matrix C' with m—¢ rowsand n-¢ col-
umns whose elements are all 1’s. We rearrange the rows of matrix Cin the order
of increasing numbers of 0’s and label them row (1), row (2), ---, row (un1). Denote
such a matrix by C . Obviously, for 1< j<m—2¢, the number of 0’s in row ()
is 0. Besides, we have the following claim.

Claim 1. For 1<i<t, the number of 0’s in the row (m—27+i) isat most 1
in C.

Proof If the number of 0’s in the row (m —t ) is at least 2, then the number of
0’s in each row (m—t+k) is at least 2, where 1<k <t. Hence, the number of
0’s in matrix C is at least 2¢+2, contradicting that matrix C has 2¢ 0’s.
Therefore, the number of 0’s in the row (m—t ) is at most 1. It follows that the
number of 0’s in row (m -2t+ i) is also at most 1, where 1<i<¢—1. The proof
is completed.

Therefore, the number of 0’s in the first m—¢ rows is at most £ For the first
m—t rows, we delete the columns of C which include element 0. Then there
are at least n—¢ columns whose elements are all 1’s. We label these n—t col-
umns as column (1), column (2), ---, column (n —t ) . Now the intersection of
row (1), row (2), ---, row (m—t) and column (1), column (2), -+, column
(n —t) forms a sub-matrix C' whose elements are all I’s. Hence, after arbitrar-
ily deleted 2tedges of K, ,,
So ex(m,n;Km_,’n_, ) <mn-2t-1.

Therefore, we have ex (m,n;K,HJH) =mn—2t—1. The proof is completed.

the resulting graph contains K, as a subgraph.

m—t,n—t

3. Concluding Remarks

As it well known, for positive integers m, nand fwith min{m,n} > 2t, the value
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of ex(m,n; K ) has been solved by Balbuena et al. [22] in 2007, whose proof

met.nt
focuses more on the structural analysis of bipartite graphs. However, in this arti-
cle, we provide a new perspective to prove the value of ex(m,n;KnH’nft) . By the
virtue of algebra method, we use the tool of adjacency matrices of bipartite graphs
to prove this result. By Theorem 9, the result of the Turan number of the balanced
bipartite graphs may be drawn naturally.

Corollary 10. Let n,7 be two positive integers with 2¢ <n. Then
ex(n,n;Kn_,,n_, ) =n"-2t-1.

When 2¢=n, Balbuena et al [22] proved that ex(n,n;KM,,H ) =n"-3t-1.
And for 2¢>n, the value of ex(n,n;Kn_,)n_,) has only been resolved in a few
cases. There are still a lot of works that can be studied for the bipartite Turdn
number problem of bipartite graphs. Other tools may be explored to solve the
related questions. For instance, laplacian spectral radius of bipartite graphs [23]
may be used to solve bipartite Turan number problem of bipartite graphs. And in
[24], the methods of finding rainbow matching in bipartite graphs are also worth
learning to solve the related extreme value problem.
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