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Abstract 
The bipartite Turán number of a graph H, denoted by ( )ex , ;m n H , is the 

maximum number of edges in any bipartite graph ( )( ), ;G A B E G=  with 

A m=  and B n=  which does not contain H as a subgraph. When

{ }min , 2m n t> , the problem of determining the value of ( ),ex , ; m t n tm n K − −  

has been solved by Balbuena et al. in 2007, whose proof focuses on the struc-
tural analysis of bipartite graphs. In this paper, we provide a new proof on the 
value of ( ),ex , ; m t n tm n K − −  by virtue of algebra method with the tool of adja-

cency matrices of bipartite graphs, which is inspired by the method using 
{ }0,1 -matrices due to Zarankiewicz [Problem P 101. Colloquium Mathemati-
cum, 2(1951), 301]. 
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1. Introduction 

In this paper, the graphs are all undirected simple graphs. Let G and H be two 
graphs. We say that a graph G is H-free if G does not contain a subgraph isomor-
phic to H. In 1941, Turán proved that the extremal graph which does not contain 

1rK +  as a subgraph is the Turán graph ( )rT n , where Turán graph ( )rT n  is the  

complete r-partite graph on n vertices with each part containing n
r
 
  

 or n
r
 
  

  

vertices. Turán’s theorem [1] is a fundamental theorem in graph theory, which is 
the beginning of extremal graph theory. For a simple graph H, the Turán number 
of H, denoted by ( )ex ,n H , is the maximum number of edges among H-free 
graphs with n vertices, i.e., 
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( ) ( ){ }ex , max : ,n H e G G n H G= = ⊂/ . 

Turán’s theorem states that ( )
2

1
1ex , 1

2r
nn K

r+
 ≤ − 
 

. Erdős, Stone and Si-

monovits [2] [3] generalized this result by using the chromatic number of graph.  
The Erdős-Stone-Simonovits theorem states that, for any given graph H and any 
fixed 0> , there exists a positive integer 0n  such that, for any 0n n≥ , 

( ) ( ) ( )
2 21 11 ex , 1

1 2 1 2
n nn H

H Hχ χ
   
− − ≤ ≤ − +      − −   

  , 

where ( )Hχ  is the chromatic number of H. The theorem means that it is as-
ymptotically best possible for any graph H with ( ) 3Hχ ≥ . 

When the forbidden subgraph H is a bipartite graph, there are lots of interesting 
results. In 1954, Kővári, Sós and Turán [4] showed that, for r t≤ ,  

( )
12

,ex , r
r tn K O n

− 
=  

 
. Call a graph H r-degenerate if each subgraph of H has a 

vertex of degree at most r. Note that ,r tK  is an r-degenerate bipartite graph and

( )
12

,ex , r
r tn K O n

− 
=  

 
. Motivated by the Kővári-Sós-Turán theorem, the follow-

ing conjecture was proposed by Erdős in 1966. 
Conjecture 1. [5] If H is an r-degenerate bipartite graph, then  

( )
12

ex , rn H O n
− 

=  
 

. 

This conjecture is widely open. Alon, Rónyai and Szabó [6], Kollár, Rónyai and 
Szabó [7], respectively, showed that the upper bound of this conjecture is in fact 
sharp for r-degenerate bipartite graph. They proved that there exists a positive  

constant rc  depending on r such that ( )
12

,ex , r
r t rn K c n

−
≥  for 2r ≥  and 

( )1 !t r> − . The following result due to Füredi [8] confirmed the conjecture in  

part in 1991. Later, Alon, Krivelevich and Sudakov [9] gave a new proof for this 
result in 2003. 

Theorem 2. [8] [9] If H is a bipartite graph with maximum degree at most r on 
one part, then there exists a constant c depending only on H such that  

( )
12

ex , rn H c n
−

≤ ⋅ . 

In [9], Alon, Krivelevich and Sudakov showed a weaker bound for Conjecture 
1. 

Theorem 3. [9] If H is an r-degenerate bipartite graph, then  

( )
12
4ex , rn H O n

− 
=  

 
. 

As a generalization of the Turán number, the bipartite Turán number, denoted 
by ( )ex , ;m n H , is the maximum number of edges among H-free bipartite graphs 
with two parts of sizes m and n for a given bipartite graph H. Denote by 

( )EX , ;m n H  the set of extremal bipartite H-free graphs on n vertices with 
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( )ex , ;m n H  edges. The problem of determining the value of ( )ex , ;m n H  for 
any given graph H is called the bipartite Turán problem, which is closely related 
to the Turán problem. Denote a path on l vertices by lP . Gyárfás, Rousseau and 
Schelp [10] considered the bipartite Turán number of paths. 

Theorem 4. [10] Let n m≥ . Then 

 ( ) ( ) ( )
( )( ) ( )

2

, 1;
ex , ; 1 , 1 2 1 ;

1 2 2 , 2 1 .
l

mn m l
n m P l n l m l

l n m l m l

≤ −
= − − < < −
 − + − + ≥ −

 (1) 

Let kM  be a matching of k edges. The below result, due to Li, Tu and Jin [11], 
shows us ( )ex , ; kn m M  for n m k≥ ≥  and the corresponding extremal graph. 

Theorem 5. [11] Let n m k≥ ≥ . Then 

( ) ( )ex , ; 1kn m M k n= − . 

Moreover, the unique extremal graph is 1, 1,0k n m kK K− − +∪ . 
For two positive integers m, n and a given graph H, let ( ), ;s m n H  denote the 

smallest positive integer s such that if G is a bipartite graph with two parts A, B, 
where A m= , B n= , and G has at least s edges, then G must contain H as a 
subgraph. Clearly, ( ) ( ), ; ex , ; 1s m n H m n H= + . A cycle consisted of l vertices is 
denoted as lC . Kővári, Sós and Turán [4] obtained the classical result that  

( ) ( )( )
3
2

4ex , ; 1 1n n C o n= + . For a constant c, Erdős, Sárközy and Sós [12] conjec-

tured in 1995 that 

 ( ) ( ) ( )
2
36 6ex , ; 1 , ;m n C s m n C c mn+ = <  (2) 

when 2m n m≤ ≤  and 

 ( ) ( ) ( )
2
36 6ex , ; 1 , ; 2m n C s m n C n c mn+ = < +  (3) 

when 2n m> . 
(2) was confirmed by Sárközy [13]. (3) was first studied by Sárközy [13] and it 

was settled by Győri [14]. Motivated by the result on the bipartite Turán number 
of short cycle, Győri [14] proposed a more general conjecture of long cycles. 

Conjecture 6. [14] ( ) ( ) ( )2 2ex , ; 1 , ; 1 2t tm n C s m n C t n m t+ = ≤ − + − + , where 
2n m≥ , 3m t≥ ≥ .1 

Győri [15] himself disproved Conjecture 6 for 3t = . Balbuena et al. [16] fur-

ther disproved it when 1
2

mt +
≤ . In 2021, Li and Ning [17] showed that 

( ) ( )2ex , ; 1 1tm n C t n m t= − + − +  for 1
2
mn m t≥ ≥ ≥ + , which improved a result 

of Jackson in [18]. 
When the forbidden subgraph H is a complete bipartite graph, the problem of 

determining the value ( )ex , ;m n H  is closely related to the Zarankiewicz 

 

 

1The original conjectured value ( )1 1t n m t− + − +  in [14] may be a misprint (see the remark on page 
748 in [16]). 
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problem. In 1951, Zarankiewicz [19] proposed the following question: Determine 
the smallest positive integer ( ), ; ,z m n s t  such that each { }0,1 -matrix with m 
rows and n columns containing ( ), ; ,z m n s t  1’s has a submatrix with s rows and 
t columns consisting entirely of 1’s. Combined with the adjacency matrix of bi-
partite graph, this extremal problem may be formulated in graph-theoretic terms. 
It is equivalent to find the least positive integer ( ), ; ,z m n s t  such that each bipar-
tite graph on m black vertices and n white vertices with ( ), ; ,z m n s t  edges has a 
complete bipartite subgraph on s black vertices and t white vertices. In [20]-[22], 
use ( ), ; ,z m n s t  to represent the maximum number of edges among bipartite 
graphs ( )( ), ;G A B E G=  with A m=  and B n=  such that they do not con-
tain any complete bipartite graph with s vertices in A and t vertices in B. The cor-
responding extremal family of bipartite graphs is denoted by ( ), ; ,Z m n s t . Obvi-
ously, ( ) ( ), ; , , ; , 1z m n s t z m n s t= +  and ( ) ( ),ex , , , ; ,s tm n K z m n s t≤ ,  

( ) ( ),ex , ; , ; ,s tm n K z m n t s≤ . Note that, when 2 s m≤ < , 2 t n≤ <  and m t<  or 
n s< , ( ) ( ), ,ex , ; ex , ;s t t sm n K m n K= ; however, there is  
( ) ( ), ; , , ; ,z m n s t z m n t s mn< = . 
Goddard, Henning and Oellermann [20] obtained the exact values of ( ), ;2,2z n n  

for 20n ≤  and showed that in some cases the family ( ), ;2,2Z n n  contains only  

one extremal graph. Kővári, Sós and Turán [4] proved that ( )
3
2, ;2,2 2z n n n n≤ + .  

Further, if q is a prime, then ( )2 2 3 2, ;2,2z q q q q q+ = + . Griggs and Ouyang [21] 
studied the so-called “half–half” case, i.e., the function ( )2 ,2 ; ,z s t s t . 

Theorem 7. [21] Let s t≤ . Then 

( )( ) ( ) ( )4 2 2 gcd , 1 2 ,2 ; , 4 2 1st t s s t z s t s t st t s− + − + ≤ ≤ − + + , 

where ( )gcd ,s t  is the greatest common divisor of s and t. 
In 2007, Balbuena et al. [22] determined the exact value of ( ), ; ,z m n s t  and 

characterized the family ( ), ; ,Z m n s t  of extremal graphs if { }max ,m n s t< + . 
They gave the following results. 

Theorem 8. [22] Let , , ,m n s t  be four integers with 2 s m≤ < , 2 t n≤ <  and 
such that { }max ,m n s t< + . Then 

 
( ) ( ) ( )
( ) ( ) { }

,

, ,

, ; , ex , ; 1 ,

, ; , EX , ; ,
s t

s t m n

z m n s t m n K mn m n s t

Z m n s t m n K K M

 = = − + − − +


= = −
 (4) 

where M is any matching with cardinality 1m n s t+ − − + . 
In this article, we prove the following result by virtue of algebra method. Our 

proof is different from the one of Theorem 8, but it is inspired by the method 
using { }0,1 -matrices due to Zarankiewicz in [19]. 

Theorem 9. Let , ,m n t  be three positive integers with { }min , 2m n t> . Then 

( ),ex , ; 2 1m t n tm n K mn t− − = − − . 
The rest of this paper is organized as follows. In Section 2, we first introduce 

some notations and definitions. By virtue of adjacency matrix, the proof of Theo-
rem 9 is given. In Section 3, we give some concluding remarks. 
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2. Preliminaries and Proofs 

Before giving the proof, we introduce some notations and definitions. In this paper, 
a graph ( )( ), ;G A B E G=  is denoted as a bipartite graph, where ( )V G A B= ∪ , 
A B∩ =∅  and every edge in ( )E G  has one endpoint in A and the other in B. 

Call ( )( ), ;G A B E G=  a complete bipartite graph if every vertex in A is adjacent 
to all vertices in B and usually denote it by ,m nK  when A m=  and B n= . A 
bipartite graph ( )( ), ;G A B E G=  is balanced if A B= . A matching of graph H 
is a subset of ( )E H  in which no two edges share a same vertex. We say that 
vertex v is a saturated vertex of M if v is incident with an edge in the matching M. 
Otherwise, the vertex v is an exposed vertex of M. A matching of H is maximum 
if there is no matching with greater cardinality in H. 

Next, we introduce the adjacency matrix of a bipartite graph that describes 
structural properties of graphs. Let ( )( ), ;F A B E F=  be a bipartite graph with 
two parts { }1 2, , , mA u u u=   and { }1 2, , , nB v v v=  . The adjacency matrix of F 
is an m n×  matrix M with 1 or 0 in the position of ( ),i ju v  corresponding to 

iu  and jv  are adjacent or not, respectively, for 1 i m≤ ≤  and 1 j n≤ ≤ . When 
we delete t edges of a bipartite graph, its adjacency matrix will have t correspond-
ing elements changed from 1 to 0. 

For example, let ( )( ), ;F A B E F=  be a bipartite graph as shown in Figure 1 
with { }1 2 3 4, , ,A u u u u= , { }1 2 3 4 5, , , ,B v v v v v=  and  
( ) { }1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5, , , , , , ,E F u v u v u v u v u v u v u v u v= . 
 

 
Figure 1. Bipartite graph F. 

 
Denote the adjacency matrix of bipartite graph F by M. Then we have 

 

1 1 0 0 0
0 1 1 0 0

.
0 0 1 1 0
0 0 0 1 1

M

 
 
 =
 
 
 

 (5) 

After deleting the edges 1 1 2 3,u v u v  and 4 5u v  of graph F, the corresponding adja-
cency matrix M ′  is as below. 

 

0 1 0 0 0
0 1 0 0 0

.
0 0 1 1 0
0 0 0 1 0

M

 
 
 ′ =
 
 
 

 (6) 

Next, we give the proof of our result by virtue of adjacency matrices of bipartite 
graphs and graph structural analysis. 
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Proof of Theorem 9. 
Proof. Let , ,m n t  be three positive integers with 2n m t≥ > . Assume that 

complete bipartite graph ( )( ), ,, ;m n m nK A B E K=  and A m= , B n= . 
Firstly, we prove that ( ),ex , ; 2 1m t n tm n K mn t− − ≥ − − . Consider graph  

( )( )1 1 1 1, ;G A B E G=  which is obtained by deleting a matching 1M  of cardinality 
2 1t +  from the complete bipartite graph ( )( ),, ; m nA B E K . We prove that 1G  
does not contain ,m t n tK − −  as a subgraph. Otherwise, we may assume that 1G  
contains a ,m t n tK − −  which has two parts A A′ ⊆  and B B′ ⊆  and A m t′ = − ,
B n t′ = − . Then A′  contains at least 1t +  saturated vertices of 1M . Noting 

that the number of vertices in \B B′  is t, at least one saturated vertex in A′  is 
adjacent to some saturated vertex of B′ , which implies that at least one edge in 

,m t n tK − −  belongs to 1M . It is a contradiction. So 1G , with 2 1mn t− −  edges, does 
not contain ,m t n tK − −  as a subgraph. Therefore, ( ),ex , ; 2 1m t n tm n K mn t− − ≥ − − . 

Next, we prove that ( ),ex , ; 2 1m t n tm n K mn t− − ≤ − − . That is to say, it needs to be 
proved that after arbitrarily deleted 2t edges of ,m nK , the resulting graph contains 

,m t n tK − −  as a subgraph. We use the adjacency matrix of the bipartite graph to 
prove this. After 2t edges are deleted from ,m nK , there are 2t elements in the ad-
jacency matrix of ,m nK  changed from 1 to 0. Denote this adjacency matrix by C. 
We need to prove that C has a sub-matrix C′  with m t−  rows and n t−  col-
umns whose elements are all 1’s. We rearrange the rows of matrix C in the order 
of increasing numbers of 0’s and label them row (1), row (2),  , row (m). Denote 
such a matrix by Ĉ . Obviously, for 1 2j m t≤ ≤ − , the number of 0’s in row (j) 
is 0. Besides, we have the following claim. 

Claim 1. For 1 i t≤ ≤ , the number of 0’s in the row ( )2m t i− +  is at most 1 
in Ĉ . 

Proof. If the number of 0’s in the row ( )m t−  is at least 2, then the number of 
0’s in each row ( )m t k− +  is at least 2, where 1 k t≤ ≤ . Hence, the number of 
0’s in matrix Ĉ  is at least 2 2t + , contradicting that matrix Ĉ  has 2t 0’s. 
Therefore, the number of 0’s in the row ( )m t−  is at most 1. It follows that the 
number of 0’s in row ( )2m t i− +  is also at most 1, where 1 1i t≤ ≤ − . The proof 
is completed. 

Therefore, the number of 0’s in the first m t−  rows is at most t. For the first 
m t−  rows, we delete the columns of Ĉ  which include element 0. Then there 
are at least n t−  columns whose elements are all 1’s. We label these n t−  col-
umns as column (1), column (2),  , column ( )n t− . Now the intersection of 
row (1), row (2),  , row ( )m t−  and column (1), column (2),  , column 
( )n t−  forms a sub-matrix C′  whose elements are all 1’s. Hence, after arbitrar-
ily deleted 2t edges of ,m nK , the resulting graph contains ,m t n tK − −  as a subgraph. 
So ( ),ex , ; 2 1m t n tm n K mn t− − ≤ − − . 

Therefore, we have ( ),ex , ; 2 1m t n tm n K mn t− − = − − . The proof is completed. 

3. Concluding Remarks 

As it well known, for positive integers m, n and t with { }min , 2m n t> , the value 
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of ( ),ex , ; m t n tm n K − −  has been solved by Balbuena et al. [22] in 2007, whose proof 
focuses more on the structural analysis of bipartite graphs. However, in this arti-
cle, we provide a new perspective to prove the value of ( ),ex , ; m t n tm n K − − . By the 
virtue of algebra method, we use the tool of adjacency matrices of bipartite graphs 
to prove this result. By Theorem 9, the result of the Turán number of the balanced 
bipartite graphs may be drawn naturally. 

Corollary 10. Let ,n t  be two positive integers with 2t n< . Then  

( ) 2
,ex , ; 2 1n t n tn n K n t− − = − − . 

When 2t n= , Balbuena et al. [22] proved that ( ) 2
,ex , ; 3 1n t n tn n K n t− − = − − . 

And for 2t n> , the value of ( ),ex , ; n t n tn n K − −  has only been resolved in a few 
cases. There are still a lot of works that can be studied for the bipartite Turán 
number problem of bipartite graphs. Other tools may be explored to solve the 
related questions. For instance, laplacian spectral radius of bipartite graphs [23] 
may be used to solve bipartite Turán number problem of bipartite graphs. And in 
[24], the methods of finding rainbow matching in bipartite graphs are also worth 
learning to solve the related extreme value problem. 
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