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Abstract 
Viscoelastic foundation plays a very important role in civil engineering. It can 
effectively disperse the structural load into the foundation soil and avoid the 
damage caused by the concentrated load. The model of Euler-Bernoulli beam 
on viscoelastic Pasternak foundation can be used to analyze the deformation 
and response of buildings under complex geological conditions. In this paper, 
we use Hermite finite element method to get the numerical approximation 
scheme for the vibration equation of viscoelastic Pasternak foundation beam. 
Convergence and error estimation are rigourously established. We prove that 
the fully discrete scheme has convergence order ( )2 4O hτ + , where τ  is 

time step size and h  is space step size. Finally, we give four numerical exam-
ples to verify the validity of theoretical analysis. 
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1. Introduction 

Beams are one of the most common components in mechanical equipment and 
construction. With the rapid development of science and technology, a variety of 
large bridges have come out one after another. Bridges will produce bending de-
formation and violent vibration under various types of loads, hiding huge safety 
risks. Therefore, the damping problem must be considered in the design and con-
struction of bridges. The viscoelastic foundation can effectively disperse the struc-
tural load to the foundation soil and reduce the deformation, which ensures the 
stability and safety of the whole structure. Studying the characteristics of viscoelastic 
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foundation beams can adapt to the specific geological conditions and make the 
foundation design more accurate and reasonable. 

The beam vibration model on viscoelastic foundation is widely used in engi-
neering practice. For example, in the field of aerospace and automotive manufac-
turing, viscoelastic beam structures can both store and dissipate energy, which is 
of great significance for noise and vibration control. In fact, many common struc-
tures in civil engineering, such as long bridges, tall buildings, tunnels and tracks, 
can be regarded as the viscoelastic foundation beam model. In order to study the 
static deflection and dynamic response of beams on different viscoelastic founda-
tions, many researchers have used various models to do a lot of research. Senalp 
et al. [1] investigated the dynamic response of a finite-length Euler-Bernoulli 
beam on linear and nonlinear viscoelastic foundation which is subjected to the 
moving concentrated force. Babilio [2] studied the nonlinear dynamics of beams 
which rest on a linear viscoelastic foundation. Hörmann et al. [3] focused on in-
vestigating the initial-boundary value problem for an Euler-Bernoulli beam model 
characterized by a discontinuous bending stiffness, which is positioned on a vis-
coelastic foundation. Beskou and Muho [4] investigated the dynamic response of 
a simply supported elastic beam on viscoelastic Winkler foundation under a point 
load with variable speed. Elhuni and Basu [5] present a new method for dynamic 
analysis of Euler-Bernoulli beams resting on multi-layered viscoelastic founda-
tion. Lu et al. [6] obtained the differential equation of the system for lateral vibra-
tion of a viscoelastic rotating beam with fractional derivative by using Hamilton 
principle. Snehasagar et al. [7] studied the effects produced by the viscoelastic 
modelling of pavement on the dynamics of vehicle-pavement coupled system. 
Praharaj and Datta [8] studied the transient response of plates on fractionally 
damped Kelvin-Voigt viscoelastic foundation model. 

However, the equation which can describe the beam vibration problem is a 
fourth-order partial differential equation. It is difficult to obtain the analytical so-
lution of this kind of equation. In view of the important application value of beam 
vibration model, it also attracts many researchers to study its numerical method. 
Frýba et al. [9] made stochastic finite-element analysis for the beam on a random 
foundation with uncertain damping under moving force. Lou [10] proposed sev-
eral new finite element methods to calculate the section force of Euler-Bernoulli 
beam on continuous viscoelastic foundation under concentrated moving load. 
Taeprasartsit [11] developed a finite element model of large amplitude free vibra-
tions of thin functionally graded beams with immovably supported ends. Sánchez 
et al. [12] demonstrated the numerical simulation of non-symmetric laminated 
beams using the three-dimensional finite element program. Wang et al. [13] used 
mixed finite volume element method to solve the time-fractional damping beam 
vibration problem. Sun et al. [14] used the Hermite finite element method to solve 
the vibration problem of a beam with time fractional damping term. 

Euler-Bernoulli beams are widely used in construction and engineering because 
of their simple and refined theoretical expressions. In the following, we take a 
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typical Euler-Bernoulli beam as an example to briefly introduce the derivation of 
the vibration equation of viscoelastic Pasternak foundation beam. 

First of all, the axis of the beam without deformation is taken as the x-axis on 
the premise of ignoring shear deformation and rotation of the section around the 
neutral axis. Assuming that the beam has a symmetric plane, the direction per-
pendicular to the x-axis in the symmetric plane is taken as the y-axis. Considering 
the force on the element with thickness dx , we can obtain the dynamic equation 
of the element along the y direction  

( ) ( )
2

2d d , d ,s
s s

FuA x x F F x f x t x
xt

ρ ∂∂  = − + + ∂∂  
              (1) 

where ( )A xρ  is the mass per unit length, sF  is the shear force, and ( ),f x t  is 
the load on the beam. When the influence of shear deformation and section rota-
tion is not considered, the micro-element body meets the condition of moment 
balance. Taking any point on the section as the center of moment, we get  

( ) dd d , d 0,
2s

M xM x M F x f x t x
x

∂ + − − − = ∂ 
              (2) 

where M  is the bending moment. Ignoring high order small quantities, we can 
derive  

.s
MF
x

∂
=

∂
                            (3) 

According to the analysis of material mechanics and the relationship between 
bending moment and deflection, we have  

( ) ( ) ( )2

2

,
, ,

u x t
M x t EI x

x
∂

=
∂

                   (4) 

where E  is the Young’s modulus, I  is the area moment of the beam with re-
spect to the neutral axis. Substituting formula (3) and (4) into formula (1), we can 
obtain the bending vibration equation of the beam.  

( ) ( ) ( ) ( ) ( )
2 22

2 2 2

, ,
, .

u x t u x t
EI x A x f x t

x x t
ρ

 ∂ ∂∂
+ = ∂ ∂ ∂ 

           (5) 

If the beam is of equal section, it becomes 

( ) ( ) ( )
4 2

4 2

, ,
, .

u x t u x t
EI A f x t

x t
ρ

∂ ∂
+ =

∂ ∂
                 (6) 

Since Winkler first studied the characteristics of foundations, viscoelastic foun-
dation beams have been widely concerned in science and engineering. He built 
a model of the foundation, which simulates the elastic factor by assuming infi-
nitely close continuous linear springs. The image of Winkler model is shown in 
Figure 1. 

The vibration equation of the viscoelastic Winkler foundation beam can be ob-
tained as follows: 
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Figure 1. The model of viscoelastic Winkler foundation. 

 

( ) ( ) ( ]
4 2

4 2 , , 0, , 0, ,u u uEI A ku f x t x L t T
tx t

ρ µ∂ ∂ ∂
+ + + = ∈ ∈

∂∂ ∂
         (7) 

where ρ  is the density of beam material, A  is the cross sectional area, µ  is 
the viscosity coefficient, k  is the elastic coefficient, L  is the length of the beam, 
and T  is the length of the time interval. 

However, the Winkler model doesn’t do well in approximating the mechanical 
behavior of real foundation, which mainly fails to take into account the continuity 
or cohesion of the foundation. And it ignores the influence of foundation acting 
on the side of the beam. Pasternak proposed a new model that reconsiders the 
shear effect on the basis of Winkler model. Wang and Stephens [15] studied the 
natural frequencies of transverse vibration under a variety of classical boundary 
conditions by means of variable separation method, which concluded that the fre-
quency of Pasternak-type foundation beams affected by shear is greater than that 
of Winkler-type foundation beams. Yu et al. [16] gave the dynamic response of an 
infinite beam on Pasternak foundation under arbitrary dynamic load in the form 
of an analytical solution. Cai et al. [17] proposed a fractional Pasternak-type foun-
dation model to characterize the time-dependent properties. Miao et al. [18] ob-
tained the analytical solution for the dynamic response of an infinite beam sup-
ported on Pasternak foundation under inclined travelling loads. All these results 
show that damping factors and shear factors have obvious effects on the transverse 
response of beams. Therefore, we introduced the Pasternak foundation model 
which is based on the comprehensive consideration of elasticity, damping and 
shear. The image of Pasternak model is shown in Figure 2. 

 

 

Figure 2. The model of viscoelastic Pasternak foundation. 

 
The vibration equation of the viscoelastic Pasternak foundation beam can be 

obtained as follows:  

( ) ( ) ( ]
4 2 2

4 2 2 , , 0, , 0, ,p
u u u uEI A ku G f x t x L t T

tx t x
ρ µ∂ ∂ ∂ ∂

+ + + − = ∈ ∈
∂∂ ∂ ∂

   (8) 

where pG  is the shear coefficient. 
In this paper, the numerical method of equation (8) is discussed. And it is 
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organized as follows: In section 2, we use Hermite finite element method to deal 
with the vibration equation of viscoelastic Pasternak foundation beam. Semi-dis-
crete scheme and fully discrete scheme are proposed, and the convergence order 
is proved respectively. In section 3, we present four numerical examples to verify 
the conclusions of the previous theoretical analysis. In section 4, the main conclu-
sions of this paper are summarized. 

2. Hermite Finite Element Scheme 

Consider the following vibration equation of viscoelastic Pasternak foundation 
beam  

( ) ( ) ( ]
4 2 2

4 2 2 , , 0, , 0, .p
u u u uEI A ku G f x t x L t T

tx t x
ρ µ∂ ∂ ∂ ∂

+ + + − = ∈ ∈
∂∂ ∂ ∂

     (9) 

Initial value conditions are given: 

( ) ( ) ( ) ( ) [ ],0 , ,0 , 0, .uu x x x x x L
t

ϕ ψ∂
= = ∈

∂
              (10) 

The boundary value conditions about beam structure with fixed supports at 
both ends can be written as 

( ) ( ) ( ) ( ) [ ]0, , 0, 0, , 0, 0, ,u uu t u L t t L t t T
x x
∂ ∂

= = = = ∈
∂ ∂

        (11) 

where ( ),u x t  is the deflection, ( )xϕ , ( )xψ  and ( ),f x t  are known smooth 
functions. The physical meanings of the remaining parameters are given in Sec-
tion 1. 

When the finite element method is used to solve these equations, the time var-
iable is usually taken as the parameter. We let [ ]0,I L=  and introduce the Sob-
olev space ( ) ( ) ( ) ( ) ( ) ( ){ }2 2

0 | , 0, , 0, 0, , 0x xH I u u H I u t u L t u t u L t= ∈ = = = = . 
Multiplying both sides of Equation (9) by ( ) ( )2

0v x H I∈  and integrating, we 
have  

( ) ( )
4 2 2

4 2 2, , , , , , ,p
u u u uEI v A v v ku v G v f v

tx t x
ρ µ

     ∂ ∂ ∂ ∂ + + + − =      ∂∂ ∂ ∂      
  (12) 

where ( ),⋅ ⋅  is the ( )2 ΩL  inner product. Using Green’s formula and the initial-
boundary value conditions, we can obtain the variational form: ( )2

0v H I∀ ∈ , find 
( )2

0u H I∈  to satisfy  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

, , , , , , .

,0 , ,0 .
xx xx tt t p x x

t

EIu v Au v u v ku v G u v f v

u x x u x x

ρ µ

ϕ ψ

 + + + + =


= =
    (13) 

2.1. Semi-Discrete Scheme and Error Analysis 

The finite element semi-discrete scheme is derived below. Let  

0 1: 0h MI x x x L= < < < =  be a uniform subdivision of interval [ ]0, L ,  
Lh
M

= , jx jh= , 0,1,2, ,j M=  . The finite element space is  

( ){ }2
0 3: ,h hV v H I v P= ∈ ∈                      (14) 
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where 3P  is the piecewise cubic Hermite polynomial on hI . The Hermite inter-
polation method can satisfy the global continuity of the first derivative of u, which 
corresponds to two basis functions at each node. One is  

( ) ( )
2

0 0 0
0 0 1

1 1

1 2 1 , if ,x x x xx x x x
h h

ϕ
   − −

= − + ≤ <   
   

 

( ) ( )

2

1

0 2

1
1 1

1 2 1 , if ,

1 2 1 , if ,

0, otherwise,

i i
i i

i i

i
i i

i i
i i

x x x x x x x
h h

x x x x x x x x
h h

ϕ

−

+
+ +

   − − − + ≤ <   
   
=    − −

− + ≤ <   
   



 

( ) ( )
2

0
11 2 1 , if .M M

M M M
M M

x x x xx x x x
h h

ϕ −

   − −
= − + ≤ <   
   

 

The other is 

( ) ( ) ( )
2

1 0
0 0 0 1

1

1 , if ,x xx x x x x x
h

ϕ
 −

= − − ≤ < 
 

 

( ) ( )

( )

( )

2

1

1 2

1
1

1 if ,

1 if ,

0, otherwi

,

,

se,

i
i i i

i

i
i

i i i
i

x xx x x x x
h

x x xx x x x x
h

ϕ

−

+
+

  − − − < 
  
=   −

− − <  
 

≤




≤



 

( ) ( ) ( )
2

1
11 , if ,M

M M M M
M

x xx x x x x x
h

ϕ −

 
≤ 

 

−
= − − <  

where 1,2,3, , 1i M= − . The finite element space hv  is constructed on the ba-
sis functions of all ( ) ( )0 xϕ  and ( ) ( )1 xϕ . 

We propose a finite element semi-discrete scheme: h hv V∀ ∈ , find h hu V∈  to 
satisfy  

( ) ( ) ( ) ( ) ( ) ( ), , , , , ,, , , , , , .h xx h xx h tt h h t h h h p h x h x hEIu v Au v u v ku v G u v f vρ µ+ + + + =  (15) 

We define bilinear form as follows: 

( )
2 2

2 20
, d .

L
p

u v u va u v EI kuv G x
x xx x

 ∂ ∂ ∂ ∂
= + + ∂ ∂∂ ∂ 
∫              (16) 

We let ( ),i h iu u x t= , 
( ),h i

i
u x t

u
x

∂
′ =

∂
, and hu  can be expressed as: 

( ) ( ) ( ) ( )0 1

0
.

M

h i i i i
i

u u x u xϕ ϕ
=

 ′= + ∑                   (17) 

Substituting it into the finite element semi-discrete scheme (15) and letting 
( ) ( )l

h jv xϕ= , ( )0,1l = , we have 
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( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( ) ( )( )

2 2
0 1 0 1

2 2
0

0 1

, , , ,

, , , , 0,1,2, ,

M
l l l li i

i i j i i j i j i j
i

l l li i
i j i j j

u uu a u a A A
t t

u u f j M
t t

ϕ ϕ ϕ ϕ ρ ϕ ϕ ρ ϕ ϕ

µϕ ϕ µϕ ϕ ϕ

=

 ′∂ ∂′+ + + ∂ ∂
′∂ ∂ + + = =∂ ∂ 

∑



 (18) 

According to the boundary conditions that 0 0, 0Mu u= = , we can define 

( )T
0 1 1 2 2 1 1, , , , , , , , .M M MU u u u u u u u u− −′ ′ ′ ′ ′=                  (19) 

( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) T
1 0 1 0 1 1

0 1 1 1 1, , , , , , , , , , , , .M M MF f f f f f fϕ ϕ ϕ ϕ ϕ ϕ− −
 =     (20) 

Then Equation (18) can be rewritten in the following form 
2

2 ,U UA B CU F
tt

∂ ∂
+ + =

∂∂
                    (21) 

where , ,A B C  are all seven diagonal matrices. Then we can use numerical meth-
ods to solve the linear equations and get numerical solutions. 

To estimate the error, we define 
uDu
x
∂

=
∂

 and introduce the biharmonic pro-

jection ( )2
0:h hR H I V→  which satisfies 

( )( ) ( )( ) ( )( )2 2, , , 0.h h h h p h hEI D u R u D v k u R u v G D u R u Dv− + − + − =    (22) 

The projection has the following estimation [19]. 
Lemma 2.1  k  (1 3k≤ ≤ ) is the degree of piecewise polynomial, and for any 

2 1
0

ku H H +∈  , we have the following conclusion:  
2 1

11 2 .k
h h h ku R u h u R u h u R u Ch u+

+
− + − + − ≤             (23) 

Here, we use the standard notation ( ), Ωm qW  for Sobolev space on Ω  with 
norm 

,m q⋅ . When 2q = , we denote ( ) ( ),2Ω Ωm mH W= , and in the format of 
norm it is ,2m m⋅ = ⋅ . For 0m = , we denote 0⋅ = ⋅ . C  is a general con-
stant. We are now ready to prove the error estimation. 

Theorem 2.1  Assuming that u  and hu  are solutions to equation (13) and 
(15) respectively, 2 4

0 ‍u H H∈  , we have  

( )( )
1

2 2 24
4 4 40

d ,
t

h tt tu u Ch u u u s− ≤
 
 


+
 

+
∫             (24) 

where C  is a constant, independent of h . 
Proof. From Lemma 2.1, we can get  

4
4 .hu R u Ch u− ≤                      (25) 

Letting hv v=  in the variational form (13) and subtracting (15) from (13), we 
have  

( )( ) ( )( )
( )( ) ( )( ) ( )( )

, , ,

, , ,

, ,

, , , 0.

xx h xx h xx tt h tt h

t h t h h h p x h x h x

EI u u v A u u v

u u v k u u v G u u v

ρ

µ

− + −

+ − + − + − =
     (26) 

We introduce the following notation  
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( ) ( ) .h h h hu u u R u R u u η θ− = − + − = +                 (27) 

Using the projection hR  in (22), we can rewrite (26) as 

( ) ( ) ( ) ( ) ( )
( ) ( )

, ,, , , , ,

, , .
xx h xx tt h t h h p x h x

tt h t h

EI v A v v k v G v

A v v

θ ρ θ µθ θ θ

ρ η µη

+ + + +

= − −
       (28) 

Letting h tv θ= , we get 

( ) ( ) ( ) ( ) ( )
( ) ( )

, ,, , , , ,

, , .
xx t xx tt t t t t p x t x

tt t t t

EI A k G

A

θ θ ρ θ θ µθ θ θ θ θ θ

ρ η θ µη θ

+ + + +

= − −
        (29) 

Using Cauchy-Schwarz inequality and ε -inequality, we obtain 

( )
2 2

2 2 2 2 22d .
d xx t p x tt t

AEI A k G
t

ρθ ρ θ θ θ η µ η
µ

+ + + ≤ +     (30) 

According to the finite element method and the theory of biharmonic projec-
tion, we can suppose that ( )0

0h hu R u t= . Integrating the above formula from 0 to 
t  with respect to time, we get  

2 2
2 2 2 2 22

0 0
d d .

t t
xx t p x tt t

AEI A k G s sρθ ρ θ θ θ η µ η
µ

+ + + ≤ +∫ ∫   (31) 

According to Lemma 2.1, the following estimates can be obtained  

4
4 .tt tt h tt ttu R u Ch uη = − ≤                    (32) 

4
4 .t t h t tu R u Ch uη = − ≤                    (33) 

Substituting them into (31) and after simplification, we have  

( )( )
1

2 2 24
4 40

d .
t

tt tCh u u sθ ≤ +∫                    (34) 

Using triangle inequality, we can get 

( )( )
1

2 2 24
4 4 40

d .
t

h tt tu u Ch u u u sη θ− ≤ + ≤ + +
 
 
  

∫          (35) 

We complete the proof of this theorem. 

2.2. Fully Discrete Scheme and Error Analysis 

In this section, we propose a fully discrete Hermite finite element approximation 
scheme for the vibration equation of Pasternak-type viscoelastic foundation beam. 
The error convergence order is obtained and proved. 

First, we consider that 0 10 Nt t t T= < < < =  is a uniform partition over the 

interval [ ]0,T , 
T
N

τ = , nt nτ= , 0,1,2, ,n N=  . Then, partial derivatives with  

respect to time are approximated using the central difference scheme. So we can 
get the fully discrete scheme: h hv V∀ ∈ , find n

h hu V∈  to satisfy 
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( )

1 1 1 1 1 1
, ,

, 2

1 11 1
, ,

,

2, , ,
2 2

, , , .
2 2

n n n n n n n
h xx h xx h h h h h

h xx h h

n nn n
h x h x nh h

h p h x h

u u u u u u uEI v A v v

u uu uk v G v f v

ρ µ
ττ

+ − + − + −

+ −+ −

 +    − + −
+ +           
 + +

+ + =       

  (36) 

Now we are ready to present and prove the main convergence theorem. 
Theorem 2.2  Assuming that nu  and n

hu  are solutions to equation (13) and 
(36) respectively, 2 4

0u H H∈  , we have  

( )2 4 ,n n
hu u C hτ− ≤ +                       (37) 

where C  is a constant, independent of τ  and h . 
Proof. Choosing hv v=  in (13) and subtracting (36) from (13), we get the er-

ror equation  

1 1 1 1
, ,

, 2

1 1 1 1

1 1
, ,

,

2, ,
2

, ,
2 2

,
2

n n n n n
h xx h xxn n h h h

xx h xx tt h

n n n n
n nh h h h
t h h

n n
h x h xn

p x h x

u u u u uEI u v A u v

u u u uu v k u v

u u
G u v

ρ
τ

µ
τ

+ − + −

+ − + −

+ −

    +  − +
− + −             

      − +
+ − + −               
  +

+ −     
0.


=



     (38) 

According to the notation of (27), we can rewrite the error Equation (38) in the 
following equivalent form. 

1 1 1 1 1 1

, 2

1 11 1

,

1 1 1 1

, ,

2, , ,
2 2

, ,
2 2

, ,
2 2

n n n n n n n
xx xx

h xx h h

n nn n
x x

h p h x

n n n n
nxx xx xx xx
xx h xx h xx

n

EI v A v v

k v G v

u uEI u v EI v

uA

θ θ θ θ θ θ θρ µ
ττ

θ θθ θ

η η

ρ

+ − + − + −

+ −+ −

+ − + −

     + − + −
+ +     
    

   ++
+ +   
   

    + +
= − −         

+
1 1 1 1

2 2

1 1 1 1

1 1 1 1

1 1

,

2 2, ,

, ,
2 2

, ,
2 2

,
2

n n n n n
n
tt h h

n n n n
n
t h h

n n n n
n

h h

n n
nx x

p x h

u u u v A v

u u u v v

u uk u v k v

u uG u v

η η ηρ
τ τ

η ηµ µ
τ τ

η η

+ − + −

+ − + −

+ − + −

+ −

    − + − +
− −         

    − −
+ − −         

    + +
+ − −         

 +
+ − 

 

1 1

,, .
2

n n
x x

x p h xG vη η+ −   +
−       

  (39) 

Using the projection hR  in (22), we can obtain  
1 1 1 11 1

, ,, , , 0.
2 2 2

n n n nn n
xx xx x x

h xx h p h xEI v k v G vη η η ηη η+ − + −+ −    + ++
+ + =    
    

   (40) 
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Substitute (40) into (39) and let 
1 1

2

n n

hv θ θ+ −+
= . Using Cauchy-Schwarz ine-

quality and ε -inequality, we obtain 

( )
2 21 1 2 21 1

2 22 2 1 1 2 2 1 1

2 2

2 2 22 1 1 2 1 1 1 1

2 21 1 1 1

2 4

2 2 2 2

2 2
2 2 2 2

.
4 2 4 2

n n n n
n n

n n n n n n
n
tt

n n n n n n
n n
t

n n n n
pn nxx xx x x

xx x

A

A A u u u u
k k

u u k u uu u
k k

Gu u u uEI u u

ρ θ θ θ θ µ θ θ
τ τ τ

ρ η η η ρ
τ τ

µ η η µ
τ τ

+ −
+ −

+ − + −

+ − + − + −

+ − + −

 − − − + −
 
 

− + − +
+ −

− − +
+ − + −

+ +
− + −

≤

+

+

   (41) 

According to Taylor expansion formula and Lemma 2.1, we have the following 
proved estimations. 

1

1

21 1 8
2

2 4

2 dn

n

n n n t
ttt

Ch u sη η η
ττ

+

−

+ −− +
≤ ∫                 (42) 

1

1

21 1 8
2

4 d
2

n

n

n n t
tt

Ch u sη η
τ τ

+

−

+ −−
≤ ∫                   (43) 

1

1

2 21 1 3 4

2 4
2 d

126
n

n

n n n tn
tt t

u u u uu s
t

τ
τ

+

−

+ −− + ∂
− ≤

∂∫               (44) 

1

1

2 21 1 3 3

3 d
2 80

n

n

n n tn
t t

u u uu s
t

τ
τ

+

−

+ −− ∂
− ≤

∂∫                  (45) 

1

1

21 1 3
2 d

2 6
n

n

n n tn
ttt

u u u u sτ +

−

+ −+
− ≤ ∫                  (46) 

1

1

2 21 1 3 4

2 2 d
2 6

n

n

n n tnxx xx
xx t

u u uu s
x t

τ +

−

+ −+ ∂
− ≤

∂ ∂∫                (47) 

1

1

2 21 1 3 3

2 d
2 6

n

n

n n tnx x
x t

u u uu s
x t

τ +

−

+ −+ ∂
− ≤

∂ ∂∫                (48) 

Substituting them into (41), we get 

( )
1 1 1

1 1 1

1 1 1

1 1 1

1

1

2 21 1 2 21 1

28 4 8
2 23

44 4

2 23 4
23 3 3

3 2 2

23
3

2

2 4

d d d

d d d

d .

n n n

n n n

n n n

n n n

n

n

n n n n
n n

t t t
tt tt t t

t t t
ttt t t

t

t

A

Ch u Chu s C s u s
t

u uC s C u s C s
t x t

uC s
x t

ρ θ θ θ θ µ θ θ
τ τ τ

τ
τ τ

τ τ τ

τ

+ + +

− − −

+ + +

− − −

+

−

+ −
+ −

 − − − + −
 
 

∂
≤ + +

∂

∂ ∂
+ + +

∂ ∂ ∂

∂
+

∂ ∂

∫ ∫ ∫

∫ ∫ ∫

∫

     (49) 
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Multiplying both sides by 4τ
µ

 and summing the above formula from 1 to n , 

we obtain 

( )
1 1 1

0 0 0

1 1 1

0 0 0

1

0

2 21 1 0 2 2 2 21 1 0

24
2 28 4 8

44 4

2 23 4
24 4 4

3 2 2

23
4

2

2

d d d

d d d

d .

n n n

n n n

n

n n
n n

t t t
tt tt t t

t t t
ttt t t

t

t

A

uCh u s C s Ch u s
t

u uC s C u s C s
t x t

uC s
x t

ρ τ θ θ θ θ θ θ θ θ
µ τ τ

τ

τ τ τ

τ

+ + +

+ + +

+

+
+

 − − − + + − −
 
 

∂
+ +

∂

∂ ∂
+ +

∂ ∂ ∂

∂
∂ ∂

≤

+

+

∫ ∫ ∫

∫ ∫ ∫

∫

     (50) 

According to the finite element method and the theory of biharmonic projec-
tion, we can suppose that ( )0

0h hu R u t=  and ( )1
1h hu R u t= . So 0 0θ =  and 

1 0θ = . (50) can be rewritten as 

( )2 4 8 .n C hθ τ≤ +                       (51) 

So 

( )2 4 .n C hθ τ≤ +                        (52) 

Using triangle inequality and Lemma 2.1, we get  

( )2 4 .n n n n n n
hu u C hη θ η θ τ− = + ≤ + ≤ +            (53) 

We complete the proof. 

3. Numerical Example 

In this section, we present four examples. The first example tests the validity of 
Hermite finite element method. The last three examples explore the influence of 
viscoelastic Pasternak foundation parameters on beam vibration.  

Example 1 Consider the following initial-boundary value problem of Euler-
Bernoulli beam on viscoelastic Pasternak foundation  

( ) ( ) [ ] ( ]
( ) ( ) [ ]
( ) ( ) ( ) ( ) [ ]

, , , 0,1 0,1 ,
,0 0, ,0 0, 0,1 ,

0, 1, 0, 0, 1, 0, 0,1 .

xxxx tt t p xx

t

x x

EIu Au u ku G u f x t x t
u x u x x
u t u t u t u t t

ρ µ + + + − = ∈ ×
 = = ∈
 = = = = ∈

    (54) 

We choose ( ) ( )( )2, 1 cos 2u x t t x= − π  as the exact solution, which satisfies the 
initial-boundary value condition. Table 1 lists the physical parameters of Euler-
Bernoulli beams and viscoelastic Pasternak foundation. 

For convenience of calculation, we process the parameters to get dimensionless 
quantity and substitute them into the equation. First of all, we fix time step 

1 10000τ =  and change space step to obtain the error results under different 
norms in Table 2. The results show that the space convergence order in the sense 
of 2L -norm is approximately 4, which is consistent with the theoretical results in 
Theorem 2.1. 
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Table 1. The physical parameters in the equation. 

Name Symbol Value Unit 

Young modulus E  210 GPa 

Moment of inertia I  3.055 × 10−5 m4 

Density ρ  7850 kg/m3 

Cross sectional area A  7.69 × 10−3 m2 

Elastic coefficient k  3.5 × 107 N/m2 

Viscosity coefficient µ  1732.5 N∙s/m2 

Shear coefficient pG  5.92 × 108 N 

 
Table 2. 2L -norm, 1H -norm and 2H -norm error and space convergence order. 

h  τ  0hu u−  Order 1hu u−  Order 2hu u−  Order 

3

1
2

 1
10000

 2.9201 × 10−4 - 1.1324 × 10−2 - 6.7444 × 10−1 - 

4

1
2

 1
10000

 2.0402 × 10−5 3.8392 1.5140 × 10−3 2.9030 1.6185 × 10−1 2.0590 

5

1
2

 1
10000

 1.3452 × 10−6 3.9229 1.9300 × 10−4 2.9716 4.0156 × 10−2 2.0110 

6

1
2

 1
10000

 8.0162 × 10−8 4.0687 2.4451 × 10−5 2.9807 1.0121 × 10−2 1.9882 

 
And then, we fix space step 1 1000h =  and change time step to obtain the er-

ror results under different norms in Table 3. The results show that the time con-
vergence order in the sense of 2L -norm is approximately 2, which is consistent 
with the theoretical results in Theorem 2.2. 

 
Table 3. L∞ -norm and 2L -norm error and time convergence order. 

h  τ  hu u
∞

−  Order 0hu u−  Order 

1
1000

 3

1
2

 5.4539 × 10−2 - 3.6863 × 10−2 - 

1
1000

 4

1
2

 1.2855 × 10−2 2.0849 9.2058 × 10−3 2.0016 

1
1000

 5

1
2

 3.1744 × 10−3 2.0178 2.2935 × 10−3 2.0050 

1
1000

 6

1
2

 7.9838 × 10−4 1.9913 5.7227 × 10−4 2.0028 

1
1000

 7

1
2

 1.9973 × 10−4 1.9990 1.4294 × 10−4 2.0013 

 
We can obtain the three-dimensional images of numerical solution and exact 

solution in Figure 3. 
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Figure 3. 3D images of numerical solution and exact solution of the deflection u . 

 
Example 2 In order to explore the influence of viscosity coefficient of founda-

tion on beam vibration, We let ( ), 0f x t = , that is, the beam is assumed to be in 
a state of free vibration. A suitable initial value is assigned to the beam vibration 
equation. We change the value of viscosity coefficient and fix the remaining pa-
rameters. The vibration image of the beam midpoint is obtained, as shown in Fig-
ure 4. It shows that the viscosity coefficient can affect the amplitude, but it does 
not change the free vibration frequency. The amplitude of beam vibration de-
creases with the increase of viscosity coefficient. 

 

 

Figure 4. The deflection at the midpoint of beam corresponding to different viscosity co-
efficients µ . 

 
Example 3 In order to explore the influence of elastic coefficient of foundation 

on beam vibration, we change the elastic coefficient and fix the remaining param-
eters. The vibration image of the beam midpoint is obtained, as shown in Figure 
5. It shows that the vibration frequency increases with the increase of elastic coef-
ficient. 
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Figure 5. The deflection at the midpoint of beam corresponding to different elastic coeffi-
cients k . 

 
Example 4 The biggest difference between Pasternak foundation model and 

Winkler foundation model is that the former takes shear force into account. To 
explore the impact of this distinction, we plot the image of beam vibration on 
Winkler foundation ( 0pG = ) and on Pasternak foundation ( 85.92 10pG = × ), re-
spectively, as shown in Figure 6. We can draw a conclusion that the added con-
sideration of shear force leads to greater stiffness between the structure and foun-
dation, resulting in an increase in the free vibration frequency.  

 

 

Figure 6. The deflection at the midpoint of beam on Winkler foundation and Pasternak 
foundation. 

4. Conclusions 

Considering that the beam vibration equation requires the first derivative of de-
flection u  to be continuous on the whole, we choose Hermite finite element 
method, which has some advantages. Compared with other numerical methods, 
Hermite finite element method has a higher order of error convergence, which 
can reach ( )4O h  in the sense of 2L -norm (Theorem 2.1). In addition, it can 
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ensure that the interpolation function has continuous first derivative. Due to the 
characteristics of Hermite finite element method, when we calculate the deflection 
u , we can also directly get the u′  ((19)-(21)), that is, the angle value. This also 
reduces the error caused by the intermediate process.  

In this article, we propose the Hermite finite element scheme to solve the vibra-
tion equation of viscoelastic Pasternak foundation beam. Semi-discrete and fully 
discrete schemes are given and their error estimation in the sense of 2L  norm is 
proved, which has fourth-order convergence accuracy in space and second-order 
in time. The results of theoretical analysis are verified in numerical examples, and 
the effects of foundation coefficients on beam vibration are investigated. It can be 
seen from the experiment that the shear coefficient can affect the free vibration 
characteristics of the foundation beam, including vibration frequency and ampli-
tude. In engineering practice, it is necessary to focus on the effects of shear forces 
to ensure the stability and safety of the structure. 
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