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Abstract 
The purpose of this paper is to investigate the spatial interpolation of rainfall 
variability with deterministic and geostatic inspections in the Prefecture of 
Kilkis (Greece). The precipitation data where recorded from 12 meteorologi-
cal stations in the Prefecture of Kilkis for 36 hydrological years (1973-2008). 
The cumulative monthly values of rainfall were studied on an annual and 
seasonal basis as well as during the arid-dry season. In the deterministic 
tests, the I.D.W. and R.B.F. checks were inspected, while in the geostatic 
tests, Ordinary Kriging and Universal Kriging respectively. The selection of 
the optimum method was made based on the least Root Mean Square Error 
(R.M.S.E.), as well as on the Mean Error (M.E.), as assessed by the cross vali-
dation analysis. The geostatical Kriging also considered the impact of isotropy 
and anisotropy across all time periods of data collection. Moreover, for Uni-
versal Kriging, the study explored spherical, exponential and Gaussian mod-
els in various combinations. Geostatistical techniques consistently demon-
strated greater reliability than deterministic techniques across all time periods 
of data collection. Specifically, during the annual period, anisotropy was the 
prevailing characteristic in geostatistical techniques. Moreover, the results for 
the irrigation and seasonal periods were generally comparable, with few ex-
ceptions where isotropic methods yielded lower (R.M.S.E.) in some seasonal 
observations. 
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1. Introduction 

Global climate change is altering long-term precipitation patterns, ultimately 
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leading to an increase in both droughts and flood events. As per the Intergo-
vernmental Panel on Climate Change (IPCC) reports from 2022 [1] and earlier 
(e.g., IPCC 2007) [2], many changes in the climate system are intensifying di-
rectly due to the rising global temperatures. Precipitation is a crucial factor in 
shaping the climate of a specific region, and having accurate information about 
precipitation patterns is essential for effective water resource management and is 
a prerequisite for conducting impact studies related to climate change concerns. 

The rainfall regime in the Greek territory shows irregular behavior, both on a 
spatial and temporal scale regarding the volume and distribution of rainfall. 
More specifically, the irrigation water pattern shows a strong gradient between 
western (where the total precipitation is two or three times higher) and the rest 
of the regions. The transport of moisture from the western to the eastern Medi-
terranean corresponds to intensification of cyclones in the western Mediterra-
nean and their following eastward motion [3]. Moreover, it is associated to cyc-
logenesis inside the Mediterranean region [4]. Surveys of rain data [5] [6] [7] [8] 
[9] for a large number of stations in Greece in time period 1951-1990, during 
which the data are relatively homogeneous, showed that the rainfall in the Greek 
area, during the aforementioned 40 years, in some areas shows a statistically sig-
nificant trend of decrease. Especially in the last 20 years, they show a drier pe-
riod. Also, a decrease in winter precipitation occurred, although the most statis-
tically significant ones were in the northern and eastern parts as well as the 
western highlands [10]. 

In the Kilkis Regional Unit (R.U.), an investigation into the annual rainfall 
trends revealed a decreasing pattern at the same monitoring stations over the 
identical period (1973-2008). These findings were statistically significant at the 
5% confidence level, particularly at the Kilkis meteorological station [11]. The 
climate of the region is characterized as arid and hot, with limited annual preci-
pitation. Doiran Lake in the year of 2000, leading to the conclusion that drought 
was one of the primary contributing factors to this alteration [6]. Precipitation 
values in the study area are one of the most basic spatially continuous input data 
to the various climate models which in turn are useful tools for management and 
planning of forests, agriculture as well as environmental assessments [12]. Nev-
ertheless, there are not a few times that rainfall “gaps” appear [13], in the range 
of the study time series which are due purely to economic reasons (lack of an 
observer) or other times again to the destruction of the measuring instruments 
at the observation station and in their untimely replacement. However, the 
missing values of precipitation in Kilkis R.U. of the geographical division of 
Central Macedonia (Greece) were fortunately few, while the method of filling the 
gaps of precipitation was the subject of a previous study [14]. The network of 
rain gauge stations in the study area appeared quite satisfactory given the high 
cost of installing a high-density array, combined with any unevenness of the to-
pography. 

The ultimate goal of this study is the spatial interpolation of rainfall variability 
with various deterministic and geostatic techniques [15]-[26], and the selection 
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of the optimal interpolation based on the smallest root of root mean square error 
of prediction (R.M.S.E.). Deterministic techniques include inverse distance checks 
(I.D.W.) as well as radial basis function (R.B.F.) checks, which project spatial 
distribution surfaces according to the degree of similarity (I.D.W.) or smoothing 
(R.B.F.) exploiting the known precipitation values of stations as input data. 
Geostatic techniques on their part (Kriging algorithms) estimate with various 
assumptions the value of precipitation at an unknown point in the area taking 
into account the spatial correlation and statistical properties of neighboring 
known points [27]. Each method has advantages and disadvantages, and the best 
method is the one that appears to the best fit the characteristics of the input data. 
The study area of the present research consists of 12 meteorological stations dis-
tributed as evenly as possible in the geographical area of Kilkis R.U. 

2. Materials and Methods 
2.1. Study Area 

Kilkis R.U. belongs to the region of central Macedonia, bordering to the north 
with F.Y.R.O.M., to the south with Thessaloniki R.U., east with Serres R.U., and 
west with Pella R.U. Based on the available data from the meteorological station 
of Kilkis, the climate of the region is characterized as dry and hot (semi-arid) 
with limited annual rainfall. 

From a geomorphological point of view, the relief of Kilkis Prefecture (Figure 
2), is determined by the morphological characteristics of its individual hydro-
logical basins according to Figure 1. The basins into which the Prefecture is di-
vided are the Doiran lake basin (only a part of the basin from the side of 
Greece), the Gallikos River basin, the basin of the Axios River and finally the 
Strimonas River basin (a part of Prefecture of Kilkis) (Figure 1). The data on 
atmospheric precipitation received by the R.U. of Kilkis have been obtained 
from 12 specific stations of the study area.  

 

 
Figure 1. Study area, water basins and the distribution of selected stations 
(Basemap: Esri & OpenStreetMap). 
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2.2. Data 

The provision of the rain gauge data, which were used for the preparation of this 
thesis, was made following a relevant request to Kilkis Sanitary Improvement 
Department, of Y.P.E.K.A. as well as from E.K.V.Y. These data come from the 
file of the above services, from 12 stations within the study area. Table 1 below 
shows the meteorological stations that were used in this research, the watersheds 
in which it is located, its area, the average annual rainfall of each station (time 
range of 36 years), as well as the altitude of the location of each station from the 
mean sea level. 

The range of observation data as well as station elevations are listed in Table 
1. Figure 2 illustrates the location of the study area as well as the locations of 
rain gauge stations. 

The stations have a single chronological beginning of data recording as well as 
the same chronological end of recording. The number of stations used is the 
maximum possible for the study area. A preliminary examination of the monthly 
values showed that the station records contain few measurement gaps. Specifi-
cally, in the time series Nov. Doiran 2 missing values appeared in the year 2001 
during the months of January and February, one value in the year 2007 in the 
same time series in the month of July and one more in 2008 in the month of 
August [14], which are almost zero percentage of the total range of values 
(0.08%). 

 

 
Figure 2. Study area and locations of meteorological stations in Kilkis R.U. (Greece) sta-
tion Nov. Doiran (F.Y.R.O.M.). 
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Table 1. Characteristics of weather stations in the study area. 

Station 
Water 
Basin 

Extent of water 
basin (Km2) 

Latitude Longitude 
m.a.s.l. of  

station (m) 
Mean Annual  
Precipit. (mm) 

Nov. Dojran Doiran Lake 190 41˚13'60.00"N 22˚43'0.00"E 141 632.2 

Ano Theodoraki Gallikos River 756 41˚9'27.41"N 23˚0'33.18"E 480 433.6 

Metaxochori Gallikos River 756 41˚4'10.26"N 22˚57'33.90"E 277 521.6 

Kilkis Gallikos River 756 40˚59'30.73"N 22˚53'0.51"E 275 441.7 

Melanthio Gallikos River 756 40˚57'20.00"N 23˚3'26.54"E 490 587.6 

Anthofito Axios River 1457 40˚51'11.07"N 22˚42'39.80"E 60 514.6 

Megali Sterna Axios River 1457 41˚5'23.91"N 22˚43'32.72"E 125 541.3 

Evzonoi Axios River 1457 41˚6'15.04"N 22˚33'26.59"E 90 566.2 

Polikastro Axios River 1457 40˚59'46.32"N 22˚34'22.90"E 50 589.8 

Evropos Axios River 1457 40˚53'53.82"N 22˚33'4.10"E 70 488.0 

Goumenissa Axios River 1457 40˚56'48.11"N 22˚27'4.74"E 260 719.2 

Skra Axios River 1457 41˚5'37.25"N 22˚22'56.77"E 540 736.8 

 
The rain gauge data of the work stations are cumulative monthly values of 

rain, as recorded at each meteorological station. The data were studied on an 
annual basis (hydrological year), on a seasonal basis, as well as during the 
non-rainy-dry-season. A hydrological year is defined as a continuous 12-month 
period, chosen in such a way that changes, generally in available water supplies, 
are minimal and the remaining water resources at the end of the period are re-
duced to a minimum. This period, for the regions of the Northern Hemisphere 
with a temperate climate, to which Greece also belongs, begins in October of 
each year and ends in September of the following year. In seasonal values, winter 
refers to the months of December, January, February, spring to the months of 
March, April, May, summer to the months of June, July, August and autumn, to 
the months of September, October, and November. In the hydrological year, two 
periods can be distinguished: the wet period (October-April), during which the 
largest amounts of rain are recorded in the Greek area, with the consequence 
that there is an increasing trend of water reserves, and the dry-rainless period 
(May-September), by in which rainfall is generally reduced. 

2.3. Spatial Interpolation Methods 
2.3.1. Deterministic Methods 

Inverse Distance Weighted (I.D.W.) 
It is applied on the condition that points adjacent to each other show similar 

precipitation values compared to those located at a far distance [16]. The I.D.W. 
method in predicting an unknown value of a variable (e.g. precipitation) at a lo-
cation, it uses the already known values from points around it locally. So any lo-
cal effect on the value of the unknown point decreases with distance (hence its 
name, distance weighted inversely). Valid according to the following formula: 
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As the distance increases, the weight decreases from the value p, while as 0id  
the distance between the prediction points 0s  and its neighboring points is . 
The optimal p-value is determined by minimizing the mean square error of pre-
diction. The R.M.S.E. is obtained by calculating the cross validation. Thus, the 
cross validation value is subtracted from each measurement point and compared 
to the predicted value at that point. The value of the mean square error of pre-
diction changes as the value of R.M.S.E. also determines the critical value of the 
variable p. As the distance between the prediction point and the known neigh-
boring points increases, the value of the variable p decreases and the spatial in-
terpolation effect is local [16] in the present study, a value of 2 was used for the p 
variable, while values greater than 1 are usually used. 

Radial Basis Functions (R.B.F.) 
Radial Basis Function (R.B.F.) deterministic control is a series of interpolation 

techniques where the surface of the study area should pass through each meas-
ured value of the sample. There are five (5) different basis functions, thin-plate 
spline, spline, multiquadric function and inverse multiquadric spline. Each of 
the above basis functions has a different interference surface. Radial Basis Func-
tion (R.B.F.) control illustrates one form of artificial neural networks.  

R.B.F. method tries through the measured values of the sample on a surface to 
minimize its total curvature. The way in which the specific adjustment is 
changed also achieves the best match between the (rainfall) values. The ultimate 
goal is to minimize the curvature between points which depends on which of the 
different basis functions will be chosen. The R.B.F. methods are accurate inter-
polations while differing from global and local interpolations, which appear 
more imprecise as they do not require the surface to pass through the point val-
ues. The difference of the R.B.F. with the I.D.W. method is that the latter will 
never be able to predict values greater than the maximum measurement value or 
less than the minimum value. In contrast, the R.B.F. can predict values greater 
than the maximum sample value and less than the minimum. The optimal value 
is obtained with the criterion of the cross validation value just like in the I.D.W. 
method. 

Polynomial simulation functions of points in space are characterized by a de-
gree m, while a term r symbolizes the various constraints on the choice of the 
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type of radial basis function. When the value of the parameter r = 0 then there 
are no restrictions on the function, while when the value of the parameter r = 1 
the only restriction is that the function is continuous. When the value of the pa-
rameter r = m + 1 then the constraints depend on the degree of the variable m. 
For value m = 1, r = 2, the radial basis function is called linear spline, for value m 
= 2, r = 3, quadratic spline and for value m = 3, r = 4 cubic spline. The radial ba-
sis functions create smooth projection surfaces, while the results they provide 
are satisfactory. Finally, because the predictions are exact, the control of radial 
basis functions is locally sensitive to outliers. 

2.3.2. Geostatic Methods 
Ordinary Kriging 
It follows the following formula: 

( ) ( ) ,Z s sµ ε= +                        (3) 

where μ is an unknown constant mean value and ε is the value of the error be-
tween point Z(s) and the constant mean value (Figure 3). It is one of the sim-
plest forecasting methods that have remarkable flexibility. It can also work for 
trending data while to express autocorrelation between projection points it uses 
either semivariograms or covariances (they are the mathematical forms that ex-
press autocorrelation). 

In addition, it can use various transformations, as well as remove the voltage 
from the focus area with a criterion of the smallest measurement error. It is used 
for prediction maps as well as error display maps. 

Universal Kriging 
The geostatic Universal Kriging method follows the following formula: 

( ) ( ) ( ) ,Z s s sµ ε= +                       (4) 

where μ(s) some deterministic function, ε the value of the error between the 
point Z(s) and the deterministic function μ(s). 

The autocorrelation in Universal Kriging is modeled by the random errors 
ε(s). The Universal Kriging method uses either semivariograms or convolutions 
which are the mathematical forms of expressing autocorrelation and additionally 
uses various transformation models, which in turn will be mentioned below, 
from which any trends should be removed, leaving some room for measurement 
errors (Figure 4). 

1) Types of Models 
When the experimental semivariogram shows variations (e.g. extreme value 

phenomena in precipitation values), an adjustment is made to theoretical models 
[28] [29] which are briefly described below. 

1) Spherical model: 
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Figure 3. Illustration of the Ordinary Kriging spatial prediction method. 

 

 
Figure 4. Illustration of the Universal Kriging spatial prediction.  

 
With r the range of influence within which the differences between points are 

spatially dependent, h the spatial lag interval, C0, the non-spatial noise or nugget 
variance, and A the structural variance. 

2) Exponential model: 

( )
3

0 1 e 0
h

rh C A hγ για
− 

+ ∗ − >  
 

=                 (6) 

3) Gaussian model: 

( )
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h
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− 

 
 

 
 + ∗ − >
 
 

=                (7) 

It is observed that as the values of the spatial lag h increase the value γ(h) in-
creases asymptotically tending to the upper limit called the threshold (partial 
sill) (Figure 5). In the Gaussian or exponential model the threshold does not 
meet the asymptote at any point. 
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Figure 5. Example semivariogram with range, nugget 
and partial sill. 

 
2) Anisotropy on Models 
Anisotropy is the appearance of a change in the properties of a variable in 

terms of its position but also its orientation in space. The only difference be-
tween anisotropic and isotropic models is that the former provides additional 
information concerning the direction within the parameter boundaries. Aniso-
tropy is a property of a spatial process in which the spatial dependence (auto-
correlation) changes with both distance and direction between two locations 
[30]. This means that the anisotropic model reaches the sill faster in some direc-
tions than others. That is, similar things are more similar over long distances in 
some directions than in others [30]. In the present study and purely for the sake 
of completeness, the anisotropy was used only in the case of the spatial distribu-
tion of precipitation with the Kriging method, while the optimal value of the p 
parameter was chosen which minimizes the mean squared prediction error of 
the model. In the same method, the corresponding equations describing the iso-
tropic models were checked. 

The parameter values in the anisotropic models in the present study were val-
ues for spatial noise (nugget), threshold (partial sill) and range of influence val-
ues (Figure 5). Table 2 below shows the various combinations tested in the spa-
tial investigation of precipitation for Ordinary Kriging and Universal Kriging 
interpolation respectively. 

3. Explore Data 

Prior to calculating the spatial interpolation methods, the time series data were 
collected and qualitatively examined. Both the various histograms (Figure 6) 
and the semivariograms as well as the Q-Q plots, as well as those of the cova-
riances, were a criterion in the separation of spatial interferences with the vari-
ous spatial interpolation methods. All the above elements had as their ultimate 
purpose the illustration of the best graphic technique.  

The trend was included in some methods (Table 3), while it was not taken 
into account in some others (Ordinary Kriging). 
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Figure 6. Histogram of the distribution of precipitation (top) and Q-Q plot curve (bottom) in the annual time series of the study 
area before transforming data into a Log-transformation. 
 
Table 2. Combinations of models with or without the effect of trend in area for the Ordinary and Universal Kriging spatial con-
trols. 

Methods Trend Removal Transformation 
Ordinary Kriging None Stable 
Universal Kriging Exponential kernel (1) Spherical (1) Exponential (2) Gaussian (3) 
Universal Kriging Constant kernel (2) Spherical (1) Exponential (2) Gaussian (3) 
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Table 3. Statistical characteristics of precipitation data. 

Statistics None Log Box-Cox 

Count (12 × 36) 432 432 432 

min 16.5 5.201 6.124 

max 1426 7.263 62.118 

mean 564.4 6.266 44.737 

median 541.5 6.307 44.997 

stdev 205.3 0.357 7.644 

skew 0.972 −0.731 −0.037 

kurtosis 4.880 3.035 1.275 

Cross Validation Interpolation 

In this work, the results of precipitation in 13 different combinations of spatial 
interpolations were investigated while comparing them with the criterion of 
choosing the optimal spatial interpolation based on the smallest Root Mean 
Square Error of prediction as well as the Mean Error. In all sub-cases, 4 determi-
nistic and 9 geostatic through the software package ArcGis 10, the mean values 
of the Log time series were selected for each time period separately in the area. 
The time periods tested with the spatial methods were the hydrological year, the 
dry season (May-September) or irrigation season, the four seasons as well as the 
months for 36 hydrological years (1973-2008). There are various validation cri-
teria for spatial interpolation methods, which exhibit sensitivities depending on 
the input data. Root mean square error as well as mean error were used in this 
particular study. These two specific criteria were chosen as they are the only 
ones in the I.D.W. methods and R.B.F. which are included in the spatial inter-
polation methods of the specific study. They are expressed by the following for-
mulas: 

( ) ( )( )2

1
ˆR.M.S.E. n

i ii z s z s n
=

= −∑                  (8) 

( ) ( )( )1
ˆM.E. n

i ii z s z s n
=

= −∑                   (9) 

where ( )ˆ iz s  the normalized Log forecast values and ( )iz s  the recorded nor-
malized values of precipitation for each study time period separately and n the 
number of intervention points (meteorological stations). The method of spatial 
interpolation with the smallest values of R.M.S.E. will be the optimal combina-
tion. 

4. Results and Discussion 

In Kilkis R.U., the spatial interpolation of precipitation during the period of the 
hydrological year was studied with both deterministic and geostatic methods 
[31]. The average annual rainfall in the 12 meteorological division of Central 
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Macedonia (Greece), as well as in the sole representative of the Doiran basin, 
station Nov. Doiran of F.Y.R.O.M., (Figure 7) shows in a 3D projection the an-
nual trend at the 12 stations in two directions (north and west) [30]. 

An upward trend is observed from south to north and a strong U-shaped 
trend from west to east. The curves in Figure 7 depict the trend with a manipu-
lation criterion of the average value of the points (stations) of the precipitation 
in the normalized Log annual time series of the area during the time range 
1973-2008. 

Table 3 above shows the most important statistics such as the minimum, 
mean and maximum value of precipitation, the median, the skewness, the kurto-
sis as well as the standard deviation. 

By observing, it is evident that the Log-transformed rainfall series better si-
mulates the Gaussian distribution as the mean value of rainfall is very close to 
the median, the skewness is close to 0 and the convexity is close to 3 (moderate 
distribution). In the present study, Log transformed was selected compared to 
Box-Cox, yielding optimal rainfall prediction values (lower R.M.S.E. values). The 
parameter λ in the Box-Cox transformations was set equal to 0.5, while in the 
Log transformations it was set to the value 0. 

In general, the anisotropy in combinations of spatial interpolation, Universal 
and Ordinary Kriging gave the most accurate results and appeared optimal in 
most study time periods. Figure 10 presents the outcomes related to isotropy 
during the hydrological year, showcasing the diverse combinations of Universal 
Kriging. In contrast, Figure 10 (bottom), illustrates anisotropy patterns ob-
served during the irrigation period using the same combinations of Universal 
Kriging. 

 

 
Figure 7. Spatial distribution of the trend in the average values of 
the precipitation of the hydrological year in the 12 meteorological 
scales of the area under study during the time period 1973-2008. 
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More in detail, in the annual observations, the deterministic techniques pre-
sented a smaller approximation compared to the geostatic ones (Table 4). The 
average error values showed that only in the I.D.W. method the predicted preci-
pitation value was slightly overestimated compared to the recorded value, while 
the opposite was found for all other combinations of spatial interpolation tech-
niques. The most reliable according to all the combinations tested was the aniso-
tropic Universal Kriging method [2.3] (Table 4) with constant trend subtraction 
and the use of the Gaussian transformation. This particular combination yielded 
the lowest R.M.S.E. of the order of 0.1444 (Table 4), while the isotropic method 
yielded an R.M.S.E. value of 0.1590 (Figure 8). In the irrigation season (May- 
September), the anisotropic methods of isotropic isotopes also came to be ad-
vantageous. 

 
Table 4. Pooled R.M.S.E. results and M.E. of all combinations of spatial interpolations for the time periods of the year, irrigation 
period and four seasons. 

Spatial Interpolation Methods 

IDW Μ.Ε. R.M.S.E. 
Universal 

Kriging [1.1] 
Μ.Ε. R.M.S.E. 

Universal 
Kriging [2.1] 

Μ.Ε. R.M.S.E. 

H.Y. 0.0350 0.3860 H.Y. Isot. −0.0125 0.1620 H.Y. Isot. −0.0090 0.1600 

I.P. 0.1120 1.4040 H.Y. Anis. −0.0254 0.1532 H.Y. Anis. −0.0200 0.1460 

Winter 0.1350 1.1490 I.P. Isot. −0.0098 0.2368 I.P. Isot. −0.0100 0.2380 

Spring 0.0350 1.6730 I.P. Anis. −0.0292 0.2329 I.P. Anis. −0.0290 0.2280 

Summer 0.0970 1.4970 Winter Isot. −0.0086 0.2274 Winter Isot. −0.0080 0.2270 

Autumn 0.0840 1.4150 Winter Anis. −0.0253 0.2089 Winter Anis. −0.0260 0.2090 

IDW (Average) M.E. R.M.S.E. Spring Isot. −0.0090 0.2590 Spring Isot. −0.0090 0.2590 

H.Y. −0.1855 0.1625 Spring Anis. −0.0105 0.2644 Spring Anis. −0.0110 0.2650 

I.P. −0.0390 0.2370 Summer Isot. −0.0164 0.2548 Summer Isot. −0.0110 0.2470 

Winter −0.0110 0.2370 Summer Anis. −0.0189 0.2483 Summer Anis. −0.0200 0.2520 

Spring −0.0460 0.2730 Autumn Isot. −0.0097 0.3522 Autumn Isot. −0.0100 0.3620 

Summer −0.0360 0.2490 Autumn Anis. −0.0252 0.3324 Autumn Anis. −0.0210 0.3310 

Autumn −0.0510 0.3540       

RBF (Complete  
regularized spline) 

Μ.Ε. R.M.S.E. 
Universal 

Kriging [1.2] 
Μ.Ε. R.M.S.E. 

Universal 
Kriging [2.2] 

Μ.Ε. R.M.S.E. 

H.Y. −0.0080 0.1620 H.Y. Isot. −0.0136 0.1645 H.Y. Isot. −0.0104 0.1617 

I.P. −0.0180 0.2390 H.Y. Anis. −0.0192 0.1558 H.Y. Anis. −0.0216 0.1513 

Winter −0.0060 0.2800 I.P. Isot. −0.0123 0.2354 I.P. Isot. −0.0130 0.2364 

Spring −0.0020 0.2850 I.P. Anis. −0.0276 0.2191 I.P. Anis. −0.0308 0.2191 

Summer −0.0170 0.2550 Winter Isot. −0.0083 0.2278 Winter Isot. −0.0079 0.2286 

Autumn −0.0190 0.3360 Winter Anis. −0.0186 0.2093 Winter Anis. −0.0186 0.2090 
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Continued 

RBF (Multiquadric) Μ.Ε. R.M.S.E. Spring Isot. −0.0090 0.2590 Spring Isot. −0.0090 0.2590 

H.Y. −0.0180 0.1759 Spring Anis. −0.0188 0.2552 Spring Anis. −0.0202 0.2535 

I.P. −0.0477 0.2720 Summer Isot. −0.0216 0.2583 Summer Isot. −0.0109 0.2508 

Winter −0.0121 0.2414 Summer Anis. −0.0203 0.2537 Summer Anis. −0.0218 0.2523 

Spring −0.0605 0.3373 Autumn Isot. −0.0101 0.3555 Autumn Isot. −0.0096 0.3622 

Summer −0.0351 0.2796 Autumn Anis. −0.0261 0.3313 Autumn Anis. −0.0208 0.3320 

Autumn −0.0330 0.3440       

Ordinary Kriging Μ.Ε. R.M.S.E. 
Universal 

Kriging [1.3] 
Μ.Ε. R.M.S.E. 

Universal 
Kriging [2.3] 

Μ.Ε. R.M.S.E. 

H.Y. Isot. −0.0117 0.1609 H.Y. Isot. −0.0117 0.1609 H.Y. Isot. −0.0080 0.1590 

H.Y. Anis. −0.0255 0.1475 H.Y. Anis. −0.0255 0.1475 H.Y. Anis. −0.0226 0.1444 

I.P. Isot. −0.0073 0.2388 I.P. Isot. −0.0073 0.2388 I.P. Isot. −0.0074 0.2393 

I.P. Anis. −0.0288 0.2390 I.P. Anis. −0.0288 0.2390 I.P. Anis. −0.0311 0.2417 

Winter Isot. −0.0126 0.2237 Winter Isot. −0.0126 0.2237 Winter Isot. −0.0100 0.2223 

Winter Anis. −0.0276 0.2036 Winter Anis. −0.0276 0.2036 Winter Anis. −0.0284 0.2043 

Spring Isot. −0.0090 0.2590 Spring Isot. −0.0090 0.2590 Spring Isot. −0.0090 0.2590 

Spring Anis. −0.0212 0.2508 Spring Anis. −0.0145 0.2634 Spring Anis. −0.0145 0.2635 

Summer Isot. −0.0120 0.2542 Summer Isot. −0.0120 0.2542 Summer Isot. −0.0091 0.2446 

Summer Anis. −0.0168 0.2441 Summer Anis. −0.0168 0.2441 Summer Anis. −0.0155 0.2463 

Autumn Isot. −0.0092 0.3495 Autumn Isot. −0.0092 0.3495 Autumn Isot. −0.0096 0.3622 

Autumn Anis. −0.0223 0.3255 Autumn Anis. −0.0223 0.3255 Autumn Anis. −0.0195 0.3269 

 
The anisotropic Universal Kriging method by exponentially removing the 

stress and by testing the Exponential model emerged as the best with the lowest 
R.M.S.E. equal to 0.2191 (Figure 9). Same price R.M.S.E. gave the previous 
combination with a constant trend removal but with a greater deviation in the 
value of the mean error which was the main reason for its rejection as optimal. 

Moreover, in the seasonal observations (winter, summer and autumn) the Or-
dinary Kriging method and the combination [1.3] of the Universal Kriging me-
thod showed the same M.E. values, and R.M.S.E values in the anisotropic me-
thod, (Table 4). Finally, in the spring time the anisotropic combination of Or-
dinary Kriging produced a value of R.M.S.E. equal to 0.2508. Collectively, the 
results are presented in detail in Table 4, while the most important of them 
(annual and irrigation season) are shown in Figure 10 below. Annually, the iso-
tropic combinations [1.1], [1.2], [1.3], [2.1], [2.2], [2.3], Universal Kriging and 
for the irrigation season the same anisotropic combinations.  

Figure 11 (down) shows the results of deterministic spatial interpolations 
(I.D.W. Average, R.B.F. Complete Regularized Spline, R.B.F. Multiquadric) during 
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the annual, irrigation and seasonal periods. In the context of deterministic me-
thods and across all temporal study periods, the Inverse Distance Weighting 
(I.D.W.) method exhibited the highest Root Mean Square Error (Table 4), whe-
reas the rest deterministic spatial distribution techniques demonstrated R.M.S.E. 
values approaching zero, with minimal deviations among them (Figure 11, Ta-
ble 4). 

 

 
Figure 8. Semivariogram of isotropic combination of spatial interpolation during the hydrological year (U.K. [2.3]). 
 

 
Figure 9. Semivariogram of anisotropic combination of spatial interpolation during the irrigation period (U.K. [1.2]). 
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Figure 10. R.M.S.E. in combinations of spatial interpolation of precipitation in the annual (top) 
and for the irrigated season (bottom) observations. 
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Figure 11. R.M.S.E. in combinations of spatial interpolation of precipitation in the annual, 
irrigation and seasonal periods with deterministic methods (top) and geostationary (bot-
tom). 

 
The I.D.W. Average method appears marginally better than the R.B.F. (Com-

plete), except for the autumn season, while the R.B.F., (Multiquadric) shows to de-
viate from the other two methods, except for the winter and autumn. Furthermore, 
in the same Figure 11 the isotropy and anisotropy in the spatial interpolation 
method Ordinary Kriging (constant remove trend) are presented. In most time 
periods the anisotropy shows optimal values compared to the isotropic method 
(Ordinary Kriging) (Table 4). 

In the below Figure 12 are depicted the most important combinations of spa-
tial interferences in Kilkis R.U. Figure 12 focuses mainly on the geostatic spatial 
interpolation methods which achieved optimal results compared to the determi-
nistic ones. The stations are depicted, while the distribution of precipitation in 
the area is show in different colors. Areas with cool colors are characterized as 
areas with low annual precipitation, while with warm colors (red shades) the sta-
tions with the highest.  

Figure 13 below shows the most important combinations of spatial interfe-
rences in Kilkis R.U., during the irrigation period (May-September) the time 
range 1973-2008. The validation of each method separately was carried out on 
the four methods (I.D.W., R.B.F., Ordinary and Universal Kriging) for three 
types of models (Spherical, Exponential, Gaussian) only for the Universal Krig-
ing method. The inclusion of trend was absent in the Ordinary Kriging method, 
while constant and exponential trend were respectively incorporated within the 
Universal Kriging. 

Finally, isotropy as well as anisotropy in methods was involved for the 2 
aforementioned results based on the M.E. criteria and R.M.S.E., while Figure 14 
shows some maps of deterministic methods (I.D.W., I.D.W. Average. and R.B.F. 
Complete Regularized Spline) in the annual and irrigation precipitation observa-
tions in the region. One of the characteristic features in the deterministic spatial 
interpolation methods are the so-called “bull eyes” around the locations of the 
rainfall stations as shown in Figure 14. 
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Figure 12. Spatial interpolation combinations of precipitation over the period of the hydrological year. 
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Figure 13. Spatial interpolation combinations of precipitation during the irrigation season. 
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Figure 14. Deterministic combinations of annual and irrigation period of spatial 
interpolation of precipitation. 

5. Conclusion 

The aim of the present study was to visualize the rainfall spatially at the 12 me-
teorological stations of the Kilkis R.U. of the geographical division of Central 
Macedonia (Greece), as well as in one and only station Nov. Doiran on the part 
of F.Y.R.O.M. The methods used were deterministic and geostatic with the main 
purpose of comparing the forecast values and presenting the best method. The 
initial cumulative monthly precipitation values deviated from the model of the 
standard normal distribution and thus the input data were normalized to the 
corresponding Log cumulative monthly precipitation values. Log time series of 
36 hydrological years beginning on 1973 and ending in 2008 were again input 
data to the ArcGis 10 software package and evaluated according to some valida-
tion criteria. The control criteria for all combinations of the spatial interpolation 
were the Mean Error (M.E.) and the Root Mean Square Error (R.M.S.E.). The 
results verified according to the literature the dominance of geostatic methods 
generally yielded better validation results as it performed the most optimal spa-
tial interpolation methods, e.g. during the irrigation season the combination 
[1.2] of Universal Kriging. Seasonally, the combination of Ordinary Kriging 
presented exactly the same results as those of Universal [1.3] for winter, summer 
autumn, while in spring the optimal combination was that of Ordinary Kriging. 
Finally, the anisotropic combination [2.3] of Universal Kriging was the best spa-
tial interpolation of the annual observations (Figure 11). 
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