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Abstract 
Nowadays presence of crack in different engineering structures becomes a se-
rious threat to the performance. Since most of the civil and mechanical 
structures may be damaged due to material fatigue, mechanical vibration, en-
vironmental attack and long-term service. Moreover, dynamical systems of a 
beam usually possess a non-linear character, which causes practical difficul-
ties on the model-based damage detection techniques. This paper presents a 
novel approach to detect damage in a simply supported beam. In this study, a 
numerical simulation using the Finite Element Method (FEM) has been done 
to determine the frequencies to detect the crack in a concrete beam of length 
0.12 m and width 0.015 m. A vibration-based model is employed to simulate 
the results by using COMSOL Multiphysics. At the tip, by performing the 
computational analysis it is found that the presence of cracks affects the nat-
ural frequencies of the concrete structure. It is observed that after applying 
load, the frequencies of the cracked beam have been changed with the varia-
tion of the location of the crack for all the modes of vibration. It also found 
that maximum frequency reserved at the cracked point so it will also help us 
to detect different hidden defects in any structure. A comparison is also made 
with the experimental results. It is also found that the effect of crack is more 
near the fixed end than at the free end. 
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1. Introduction 

Identification of structural crack location has gained increasing attentions from 
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the scientific and engineering domains since the unpredicted structural failure 
may cause catastrophic, economic, and life loss [1]. So early detection of these 
defects seems pivotal for safety and economic reasons, as their detection can re-
markably extend the existence of the structure, which increases its reliability at 
the same time [2]. The most important technique of structural health monitor-
ing is to provide information on the anticipation of structures, simultaneously 
detects and locates structural fatigue. This needs ideas of the model of structures 
in great detail, which may not be possible all-time. As we know when a structure 
suffers from damage, its dynamic property (like as float, string or object) can 
change and it is observed that crack caused a stiffness reduction in modal natu-
ral frequencies. Consequently it results in the change within the dynamic re-
sponse of the beam [3]. Within the recent years, with the advancement of 
science and technology, the study of detecting the crack has been increasing 
among the researchers. Being very commonly utilized in steel construction and 
machinery industries, health monitoring and thus the analysis of injury within 
the type of crack within the Beam structures pose a crucial role [4]. Since long 
efforts are on their to get a feasible solution for crack detection in beam struc-
tures, during this regard many approaches have so far being considered. Since 
there always exist constraints in ferroconcrete structures and buildings deteri-
orate overtime, cracking seems unavoidable and appears altogether kinds of 
structures, as an example, concrete wall, and beam, slab, and brick walls. The 
presence of the crack not only changes the regional stress and strain fields of the 
crack tip but also effects on structural dynamics [5]. When a structure suffers 
from damages, its dynamic properties can change. If these fatigues cannot be 
timely detected and repaired, subsequent fracture can bring catastrophic failure 
to the beam structures. 

Many extensive researches on crack detection in different methods have been 
performed theoretically and experimentally till today. Kim and Zhao [6] studied 
a very distinctive crack detection technique employing a harmonic response, 
where the displacement and slope modes of a cracked cantilever beam are 
thought of 1st, that the approximate formula for displacement and slope re-
sponse under single-point harmonic excitation comes. They conclude that the 
slope response incorporates a pointy amendment with the crack location and 
additionally the depth of the crack. A new idea has developed by Lee and Chung 
[7] that how to look out the lowest four natural frequencies of the cracked 
structure by FEM and additionally the approximate crack location is obtained by 
exploitation. Later, Owolabi et al. [8] have experimentally investigated of the 
possessions of cracks and damages on the dependability of structures. An ana-
lytical and experimental approach for the fault detection in cantilever beams like 
structure by vibration analysis has developed by Nahvi [9]. Presently numerous 
analytical, numerical and experimental techniques are in use for crack detection 
throughout a fiber-reinforced composite, laminated composites and non-composite 
structures for its vibration analysis. A numerous vibration based fatigue designa-
tion techniques bestowed by Sanjay K. Behera et al. [10] researches for cracked 
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composite and non-composite structures. In the same case I. Goda [11], has ap-
plied numerical study exploitation finite parts is performed to research the free 
vibration response of laminated composite beams. They had a tendency to per-
form dynamic modeling of the laminated beams by associate eigenvalue analysis, 
exploitation associate eight-node bedded shell part to simulate the free vibra-
tions. The major importance of their study was for the mechanical designer to 
conceive and optimize composite structures subjected to dynamic loadings [2]. 
Prasad et al. [12] discussed the effect of location of crack from the free end to the 
fixed end on crack growth rate along vibrating cantilever beam and a mathemat-
ical model was developed using dimensional analysis to find out the value of the 
crack growth rate along vibrating cantilever beam. 

The above papers are studied the changes neighborhood in natural frequen-
cies due to the presence of multiple cracks at intervals associate concrete beam. 
The target of this paper to look out a method for predicting crack parameters 
(crack depth associated its location) throughout the concrete beam from changes 
in natural frequencies. Constant studies are disbursed by using COMSOL Mul-
tiphysics software to judge modal parameters (natural frequencies and deflec-
tions) for various crack position parameters. The technique developed to detect 
crack by using the FEM software has become popular in recent years.  

2. Mathematical Modeling 

The vibration-based damage detection has become one of the commonly used 
tools for crack detection. This approach is mainly based on changes in dynamic 
characteristics, such as natural frequency and crack position parameter [2]. In 
this study we consider a Computational domain of a beam, where the dimen-
sions of the beam and crack dimensions are taken from Yamuna and Sambasi-
varao [13]. 

3. Governing Equation 

The equation of motion in matrix form for vibration of a beam under load is 
given by, 

[ ] ( ) [ ] { }
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where, 
[M] = Consistent mass matrix.  
[K] = Bending stiffness matrix of the beam.  
[Kg] = Geometric stiffness matrix.  
{q} = Displacement vector. 
P = External force vector. 
For free vibration the forcing function p = 0. So the Equation (1) can be writ-

ten as, 
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In-plane, the load P(t) can be expressed in the form as shown below, 

( ) coss tP t P P t= + Ω                      (3) 

where, 
Ps = the static portion of P. 
Pt = the amplitude of the dynamic portion of P and 
Ω = the frequency of excitation. 
Equation (2) represents an eigen value problem and the roots of the equation 

give rise to square of the natural frequency given by the equation, 

[ ] ( ) [ ]2 0nK Mω− =                      (4) 

Finite Element Analysis 

In this analysis we consider a beam with two degrees of freedom (slope and def-
lection) per node [14] which is shown in Figure 1. 

The governing equations of a deformation curved beams can be simplified by 
determining the force, moment, deflection and twist along the fifth metatarsal. 
This can be done subjected to both a point wise and a distributed load by using 
Young’s Modulus and Moments of Inertia given by the following equation,  

( ) ( )2
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d
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m x EI
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=                      (5) 

( ) ( )3

3

d
d
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V x EI
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=                      (6) 

where, 
E = Young’s Modulus. 
I = Moments of Inertia. 
The deflection of the beam due to applied loads on the domain are shown in 

Figure 2.  
Now, 

 

 
Figure 1. A Two noded beam with two degrees of freedom. 

 

 
Figure 2. Distribution of loads and deflection of the beam. 
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If we write these values in the matrix form of the above system then we find, 
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i.e. The Element stiffness matrix due to bending, 
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The stiffness matrix Kcrack or Kc of a cracked beam element: From equilibrium 
condition as in Figure 3. 

Where, 
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Hence the stiffness matrix Kcrack or Kc of a cracked beam element can be ob-
tained, 

1 T
C totalK LC L−=                        (14) 

The cracked element stiffness matrix becomes, 
 

 
Figure 3. Typical Cracked beam element subject to shearing force and bending moment. 
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4. Boundary Conditions 

Since two end sided of beam are fixed and no deformation will occur so q1 = θ1 = 
q3 = θ3 = 0. At that point there is no bending moment, shear force so the loading 
condition F1 = F3 = M1 = M3 = 0. Only the load applied in the middle portion, F2 
= 500 N and the bending moment M2 and the cracked position of the beam will 
remain active. 

There are three faces present bounding the calculation domain which are thin 
Elastic Layer (Boundary 6) is shown in Figure 4. 

For Symmetry thin Elastic Layer, 
0n u⋅ =                             (16) 

5. Computational Domain and Mesh Generation 

A design of computational domain without crack & with crack is shown in Fig-
ure 4. The computational domain is considered as a concrete beam domain with 
length 0.12 m, width 0.015 m and thickness 0.008 m. The geometry and a suita-
ble mesh are generated by COMSOL Multiphysics Software are shown in Figure 
5. To reach a satisfactory computational exactness we continually change the 
mesh design until the outcomes obtained. The Mesh element becomes higher 
near the cracked positions have shown in Figure 5(a) and Figure 5(b). While 
material properties of the computational domain are shown in Table 1 and Ta-
ble 2. As our domain with defect is complicated thus computer processor capac-
ity becomes a significant issue for the computational study. The finer mesh is 
used along the whole computational model for numerical simulation. We had 
used 16 GB DDR3 RAM, Intel core i5 processor based computer for our simula-
tion. 
 

     
(a)                             (b) 

Figure 4. Computational domain of the concrete beam. 
 

    
(a)                                    (b) 

Figure 5. Mesh design of the computational domain: (a) At the Inlet of the beam; (b) 
Along the concrete beam. 
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Table 1. Mesh properties of the computational domain. 

Description Value 

Minimum element quality 0.2093 

Average element quality 0.6135 

Tetrahedron 1424 

Triangle 863 

Edge element 232 

Vertex element 32 

 
Table 2. Properties of the simulation of computational domain. 

Description Value 

Number of degrees of freedom solved for 10,093 

Space dimension 3 

Number of domains 1 

Number of boundaries 23 

Number of edges 52 

Number of vertices 32 

Space dimension 3 

6. Numerical Results and Discussions 

In this study, we have investigated the frequency of the concrete beam contain-
ing double crack using finite element method. For our simulation, we construct 
a solid concrete beam and have used different parameter values according to 
Table 3 and Table 4. 

In Figure 6 it is shown that a load of 500 N is applied vertically on the top 
phase of the concrete beam. Figure 7 shows that the deflection and the phase of 
the computational domain after applying load. After applying the load, it is 
found that the load affects the body and frequency variability is observed essen-
tially in the affected area. 

Figure 8 shown that different magnitudes of stress applied in the domain and 
corresponding deflection due to load. It is observed that, after applying load on 
the beam, a vibration on the structural body is created. The natural frequencies 
become maximum at the crack position due to the presence of vibration on that 
point. The maximum portion of load is absorbed in the middle part on the body, 
so there will be maximum absorption of load on that point. It is also noted that 
maximum load creates much vibration, which is the major causes to creating 
crack on any structural body. 

Figure 9 shows that the slices of the Load distribution at different crack posi-
tions of the domain. We observed the load is maximum at the bottom of the 
domain. It is also found that the load was applied at the crown edge of the do-
main and distributed to bottom edge especially at the cracked position with high  
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Figure 6. Applying loads on the computational domain. 
 

 
Figure 7. Deflection of the computational domain after applying load. 
 
Table 3. Properties of beam. 

Description Value 

Length of the beam (L) 0.12 m 

Width of the beam (h) 0.015 m 

Thickness of the beam (H) 0.008 m 

Depth of First crack (D1) 0.001 m 

Length of First crack (c1l) 0.001 m 

Height of First crack (c1h) 0.008 m 

Depth of the second crack (D2) 0.017 m 

Length of second crack (c2l) 0.001 m 

Height of second crack (c2h) 0.001 m 

 
Table 4. Properties of material. 

Description Value 

Density of concrete 1570 kg/m3 

Young’s modulus 122.7 [GPa] 

Poisson’s ratio 0.2 

Shear modulus 3.7 [GPa] 

Tensile strength (σ) 2 - 5 Mpa 

Shear strength (τ) 6 - 17 MPa 

 
vibration and differs the frequency. But there is a difference is formed for the (f) 
that, after the load the beam distorted and deflected. So due to double deflection 
in this situation, the applied loads distributed into two end sides. Finally we ob-
served that, at the cracked position vibration and frequencies are increased as 
the load increased and the presence of crack affects the natural frequency of the 
structure. 
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Figure 8. Load absorbs and Frequency gained in the respective crack position. (a) The position of first crack is at 0.01 m and 
second crack is at 0.06 m; (b) The position of first crack is at 0.02 m and second crack is at 0.07 m; (c) The position of first crack is 
at 0.03 m and second crack is at 0.08 m; (d) The position of first crack is at 0.04 m and second crack is at 0.09 m; (e) The position 
of first crack is at 0.05 m and second crack is at 0.10 m; (f) The position of first crack is at 0.06 m and second crack is at 0.11 m. 

 
Figure 10 shows the line graph of the crack with frequency at different 

position of this computational domain. It is observed that, the natural frequency 
graph shows irregularity at the crack positions. According to the graph (a), (b), 
(c), (d), (e) and (f) we found that, at the respective crack position the graph is 
fluctuated. So, we can say that at irregular of frequency curve generate the  
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Figure 9. Slices of the load distributions at different crack position of the domain. (a) The 
position of first crack is at 0.01 m and second crack is at 0.06 m; (b) The position of first 
crack is at 0.02 m and second crack is at 0.07 m; (c) The position of first crack is at 0.03 m 
and second crack is at 0.08 m; (d) The position of first crack is at 0.04 m and second crack 
is at 0.09 m; (e) The position of first crack is at 0.05 m and second crack is at 0.10 m; (f) 
The position of first crack is at 0.06 m and second crack is at 0.11 m. 
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Figure 10. Line graph of the relative position of crack v/s frequency. (a) The position of first crack is at 0.01 m and second crack is 
at 0.06 m; (b) The position of first crack is at 0.02 m and second crack is at 0.07 m; (c) The position of first crack is at 0.03 m and 
second crack is at 0.08 m; (d) The position of first crack is at 0.04 m and second crack is at 0.09 m; (e) The position of first crack is 
at 0.05 m and second crack is at 0.10 m; (f) The position of first crack is at 0.06 m and second crack is at 0.11 m. 

 
position of crack. It is also seen that as long as the crack changes its position 
(goes to end points) its frequencies are also increased gradually. Finally from the 
graph it is clear to us that natural frequencies of the beam are directly affected by 
the location of the cracks. 
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Validation of the Study 

In Table 5 we collect data and tried to compare with the results. According to 
Figure 11 it is observed that when the position of the crack moves from the fixed 
end towards the free end of the beam, the effect of the crack also decreases 
gradually. In order to check the accuracy of the present analysis, we tried to 
compare our experiment with the experiment done by Priyadarshini A [14] and 
Kisa et al. [15] the case is considered to validate the program. The presence and 
position of the crack are typically detected from the comparison of the basic 
modes of cracked beam. It should be mentioned here that they have used differ-
ent models and different computational method for their experiments. By com-
paring with the study of Priyadarshini A [14] and Kisa et al. [15] our results 
shows an agreement with their results though initially different approach for 
first two cracks. The analysis was performed on the first six mode shapes. Results 
of this research on the effectiveness of the damage detection technique applied to 
higher vibration modes lead to the conclusions that, in practical the presence of 
crack affects the natural frequency of the structure. The changes of the natural 
frequency are directly influenced by the different location of the crack. 
 

 
Figure 11. A comparison of the frequencies in different positions of the crack of present 
analysis with Priyadarshini A [14] and Kisa et al. [15] experiments. 
 
Table 5. Mesh Properties of the computational domain. 

Serial 
no 

Difference 
between 

cracks (m) 

Crack 
position 
of first 

crack (m) 

Crack 
position 

of second 
crack (m) 

Present 
analysis FEA 
Frequency 

(Hz) 

Priyadarshini 
A [14] 

Frequency 
(Hz) 

Kisa 
et al. [15] 
Frequency 

(Hz) 

1st 0.05 0.01 0.06 6356.1 6465.83 6458.34 

2nd 0.05 0.02 0.07 6423.6 6470.53 6457.4 

3rd 0.05 0.03 0.08 6485.5 6465.81 6454.48 

4th 0.05 0.04 0.09 6442.3 6451.41 6448.18 

5th 0.05 0.05 0.10 6398.3 6397.71 6436.01 

6th 0.05 0.06 0.11 6233.2 6211.68 6174.71 
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7. Conclusion 

A numerical simulation is done for a cracked concrete beam with different 
locations to detect the cracks. The flexibility matrix method is used to calculate 
the stiffness of the cracked beam by using FEM based vibration model using 
COMSOL Multiphysics [16]. In this study it is observed that, the frequencies of 
the cracked beam have been changed with the change of the location of the crack 
for all the modes of vibration. The effect of crack is higher at near the fixed end 
than at the free end. From our simulation it is found that the frequencies in-
crease proportional to load distribution and at cracked position the body gets 
much frequency. Finally we come to the conclusion that the presence of crack 
and different amounts of loads has a great influence on changing the mode 
shapes and frequencies of beam. The results confirm that detection of crack size, 
crack location in a concrete beam depends on natural frequencies and mode 
shapes. For the established curvature function, if the load is higher, the value of 
the curvature modulus is also higher, which indicates that higher modes are 
more sensitive to the presence of the defect. In future our model can be used for 
crack inclination and different depths. 
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