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Abstract 
The strong photoluminescence properties of europium complexes with or-
ganic ligands attracted the attention of many researchers and found a wide 
range of uses in medical, industrial and biological fields. In this article, four 
new Tetrakis europium complexes 3a, 3b, 3c and 3d have been prepared us-
ing 1-phenyl-4,4,4-trifluoro-1,3-butenedionato ligand and pyridinium, bipy-
ridinium, piperazinium and piperidinium counter cations. These complexes 
have been characterized by negative FAB-mass. The crystal structures of 3a, 
3b, 3c and 3d were determined by single crystal X-ray diffraction analysis. 
The complex 3a crystallized in monoclinic form, space group P21/n with four 
molecules in the unit cell. The complex 3b crystallized in monoclinic form, 
space group P2/n with two complex molecules in the unit cell. The complex 
3c crystallized in monoclinic form, space group C2/c with sixteen molecules 
in the unit cell. The complex 3d crystallized in monoclinic form, space group 
P21/n with four complex molecules in the unit cell. The complex 3a has 
1,2-alternative structure, 3b has 1,3-alternative structure, 3c has cone like 
structure and 3d has partial cone like structure. The photoluminescence 
properties of these complexes have been evaluated. Strong red emissions were 
observed in all four complexes due to 5D0 → 7F2 transition of Europium (III) 
ions under UV excitation. Four β-diketone ligands acted as strong antenna li-
gands and transferred the absorbed energy to europium (III) ion effectively; 
consequently strong red luminescence was observed. 
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Pyridine, Bipyridine, Piperazine, Bipiperidine 

 

1. Introduction 

The photoluminescence properties of Lanthanide complexes with organic li-
gands have been greatly enhanced, and led to the development of strong lumi-
nescent Lanthanide complexes with important applications in medical, industri-
al and biological fields [1]-[7]. Europium (III) complex with organic ligands is 
an example of strong luminescent Lanthanide complex and Europium (III) 
complexes that have great importance in materials engineering chemistry due to 
significant improvement in photophysical parameters such as high luminescence 
emission efficiency, long fluorescence life time, large stokes shift, sharp emission 
bands [8] [9] [10] [11]. In the past decade various high luminescent europium 
complexes have been engineered and evaluated for their photoelectronic proper-
ties such as OLEDs, electroluminescent displays, bioimaging, sensing and tar-
geting specific DNA structures, melamine detection in milk protein. Europium 
(III) complexes have also found applications as sensor materials to detect pesti-
cides, temperature, HCl, NO2 gas, HOCl, pH, phosphate, mitochondria and, 
8-oxo-dGTP [12]-[20]. Albumin proteins in human serum have also been de-
tected by Europium complexes, which act as sensor materials [21].  

Search for novel europium complexes that uses less energy and exhibits de-
sired application such as sensors, OLEDS, etc. is of great importance in photoe-
lectronic materials. Therefore, new europium complexes should have enhanced 
degree of change in luminescence to be a good sensor material. On the other 
hand, understanding the relationship between molecular structures and photoe-
lectronic properties of europium (III) complexes gives valuable information in 
designing future photoelectronic materials with improved properties. It is stated 
that luminescence of Europium (III) ion originates from forbidden f-f transi-
tions that totally hinder the Europium (III) ion interaction with light. The ligand 
that forms complexes with Europium (III) ion acts as antenna. This absorbs 
energy and transfers to Europium (III) ion through intersystem crossing to trip-
let excited states. In this context, europium complexes with substituted aromatic 
β-diketones as organic ligands were explored due to efficiency in generating 
triplet excited states in close contact with europium (III) ion. Thus, various Eu-
ropium (III) complexes with β-diketones were synthesized and evaluated for 
their photoluminescent properties [22] [23] [24] [25] [26].  

In our previous studies, we synthesized and investigated the molecular struc-
tures and photoelectronic properties of octa-coordinate europate (III) complexes 
using substituted β-diketone ligands [27] [28]. In this study, we want to investi-
gate the molecular structures and photoluminescence properties of four new 
octa-coordinate Europium (III) complexes 3a, 3b, 3c and 3d, possessing pyridi-
nium, bipyridinium, piperazinium and bipiperidinium as counter cations. 
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2. Experimental 
2.1. Materials and Methods 

Reagent grade europium (III) chloride, pyridine, bipyridine, piperazine and 
bipiperidine were purchased from the TCI chemicals industry, Tokyo and used 
as such to prepare europium complexes. The ligand 1-phenyl-4,4,4-trifluoromethyl- 
1,3-butanedione was synthesized in the laboratory. The positive fast atom bom-
bardment (FAB) mass spectrum (MS) of the complexes was obtained on a Nip-
pon Densi JEOL JMS-SX102A spectrometer (JEOL, Tokyo, Japan) using NBA 
(nitrobenzyl alcohol) as the matrix and DCM (dichloromethane) as the solvent. 
The instrument was operated in negative ion mode over an m/z range of 100 - 
2000. Elemental analysis data were recorded on a Yanako MT-4 analyzer (Ya-
nako Group, Kyoto, Japan). A JASCO V-550 spectrophotometer (JASCO Cor-
poration, Tokyo, Japan) was used for obtaining UV-Vis spectra in dichlorome-
thane with 250 - 900 nm range. HITACHI F-8700 spectrophotometer (Hitachi 
High-Technologies Corporation, Tokyo, Japan) was used for fluorescence spec-
tra measurements in dichloromethane with 250 - 900 nm range. CCDC No. 
1962454, 2047729, 1563207 and 1563206 contain the supplementary crystallo-
graphic data for the complexes 3a, 3b, 3c and 3d, respectively. 

2.2. General Procedure for the Synthesis of Complexes 3a, 3b, 3c  
and 3d 

In a RB flask, a solution of europium (III) chloride (0.650 g, 0.41 mmol) and 
1-phenyl-4,4,4-trifluoromethyl-1,3-butanedione 1 (0.370 g, 1.65 mmol) in abso-
lute ethanol (30 mL) was prepared at room temperature. Under protection from 
air, slightly excess of pyridine, bipyridine, piperazine, bipiperidine were added to 
the solution to get complexes 3a, 3b, 3c and 3d respectively. Ethanol was re-
moved by rotary evaporator under reduced pressure. Under protection from air, 
the residue was repeatedly washed with small portions (5 mL) of warm, dry 
ethanol. The residual powders were dissolved in ethanol for crystallization. 
Without protection from air, the crystallized product was filtered off, washed 
with two portions of cold ethanol, and dried under reduced pressure, affording 
the complexes 3a, 3b, 3c and 3d as a powder. All four complexes were obtained 
in moderate to good yields (68% for 3a, 65% for 3b, 75% for 3c and 60% for 3d, 
respectively). 

2.3. Single-Crystal X-Ray Analysis and Structure Determination 

Crystals of four compounds 3a, 3b, 3c and 3d were obtained at room tempera-
ture by crystallization in DCM-ethanol mixed solvent. 

The crystal data were recorded on a Bruker APEX II KY CCD diffractometer 
equipped with graphite monochromatized Mo-Kα radiation of wavelength 
0.71073 Å from a sealed micro focus tube, and a nominal crystal to area detector 
distance of 58 mm. X-ray generator settings were 50 kV and 30 mA. The data 
were collected at −153˚C (120 K) for 3b-3c and at −123˚C (150 K) for 3a.  
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The crystallographic data of these complexes were summarized in Table 1. 
APEX2 software was used for preliminary determination of the unit cell [29]. 
Determination of integrated intensities and unit cell refinement were performed 
using SAINT program [30]. The structures were solved with SHELXS-2014/7 
[31] and subsequent structure refinements were performed with SHELXL-2014/7. 

3. Results and Discussion 

Complexes 3a, 3b, 3c and 3d were synthesized from the corresponding ligand 
1,3-diphenyl-1,3-propanedione by complexation reaction with europium (III) 
chloride in the presence of pyridine, bipyridine, piperazine and bipiperidine as 
counter cations (Scheme 1). This reaction is a standard preparation procedure  
 

Table 1. Crystallographic data for the complexes (3a, 3b, 3c and 3d). 

Parameters measured 3a 3b 3c 3d 

Empirical formula C45H30Eu1F12NO8 C50H33Eu F12N2O8 C44H35Eu1 F12N2O8 C45H35Eu1F12NO8 

Formula weight 1092.67 1169.8 1099.71 1097.71 

Crystal shape, color Prism, colorless Prism, colorless Prism, colorless Prism, colorless 

Temperature 150 K 120 K 120 K 120 K 

Radiation type Mo Kα Mo Kα Mo Kα Mo Kα 

Wavelength (Å) 0.71073 0.71073 0.71073 0.71073 

Crystal system Monoclinic Monoclinic Monoclinic Monoclinic 

Space group P21/n P2/n C2/c P21/n 

Unit cell dimensions 

a = 11.144 (11) Å a = 12.711 (4) Å a = 36.894 (5) Å a = 11.547 (19) Å 

b = 22.034 (2) Å b = 12.672 (4) Å b = 22.068 (3) Å b = 21.886 (4) Å 

c = 18.770 (2) Å c = 14.755 (5) Å c = 21.916 (3) Å c = 18.005 (3) Å 

β = 107.112 (1)˚ β = 99.126 (3)˚ β = 92.682 (1)˚ β = 99.550 (2)˚ 

Cell volume 4405.1 (8) Å 3 2360.9 (13) Å 3 17,825 (1) Å 3 4487.1 (13) Å 3 

Z 4 2 16 4 

Calculated density 1.648 g/cm3 1.643 g/cm3 1.639 g/cm3 1.625 g/cm3 

Absorption coefficient 1.53 mm−1 1.433 mm−1 1.512 mm−1 1.501 mm−1 

F (000) 2168 1164 8768 2188 

Crystal size (mm) 0.35 × 0.35 × 0.10 0.20 × 0.15 × 0.10 0.43 × 0.25 × 0.10 0.15 × 0.15 × 0.10 

T Theta range for data collection 1.5˚ to 29˚ 1.54˚ to 20.48˚ 1.075˚ to 25.027˚ 1.48˚ to 24.97˚ 

Limiting Indices 

−14 ≤ h ≤ 14, −15 ≤ h ≤ 15, −43 ≤ h ≤ 43, −13 ≤ h ≤ 13, 

−29 ≤ k ≤ 29, −15 ≤ k ≤ 15, −26 ≤ k ≤ 26, −25 ≤ k ≤ 25, 

−24 ≤ l ≤ 24 −17 ≤ l ≤ 17 −26 ≤ l ≤ 26 −21 ≤ l ≤ 21 

Reflections 52,471/11,725 4258/20,234 15,738/84,697 7862/41,761 

collected/unique [R(int) = 0.037] [R(int) = 0.084] [R(int) = 0.0321] [R(int) = 0.049] 

Completeness to theta ˚ 100% 99.0% 99.9% 99.8% 
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Scheme 1. Reaction scheme for the preparation of 3a, 3b, 3c and 3d. 

 
for lanthanide (III) complex [32]. Structures of complexes were determined by 
mass spectrometry and X-ray single crystal structure analyses. 

We have measured the UV-Vis and Fluorescence spectra of 3a, 3b, 3c and 3d. 
The UV-Vis and Fluorescence spectra of 3a, 3b, 3c and 3d were measured in 
solution phase (dichloromethane, 1 × 10−5 mol/L).  

The fluorescence spectrum was measured in solution and solid state as well. 
The solution state fluorescence measurements were carried out in dichlorome-
thane solution (1 × 10−3 mol/L). The corresponding absorption and emission 
spectrum of 3a, 3b, 3c and 3d were shown below (Figures 1-8, respectively). 
Complexes 3a, 3b, 3c and 3d exhibited absorption maxima at 327, 330, 326 and 
313 nm, respectively. These strong absorption bands were assigned to the π-π* 
enol absorptions of the β-diketone ligand.  

The fluorescence spectrum of 3a was measured by exiting the complex at 379 
nm in solution and 307 nm in solid state. Strong emission band was observed 
from 600 to 630 nm. The complex 3b was exited at 379 nm in solution and 368 
nm in solid state. Strong emission band was observed from 590 to 620 nm.  

The fluorescence spectrum of 3c was measured by exiting the complex at 378 
nm in solution and 307 nm in solid state. Strong emission band was observed 
from 600 to 650 nm. The complex 3d was exited at 377 nm in solution and 306 
nm in solid state. Strong emission band was observed from 610 to 653 nm.  

Suitable single crystals for X-ray structure analysis were easily obtained for all 
complexes. Since, europium (III) complexes are air stable, preparation of crystals 
is has been easy. All four complexes were dissolved in suitable solvents and left 
to slow evaporation at room temperature that resulted in crystals of complex 3a, 
3b, 3c and 3d. 

The complex 3a has 1,2-alternative structure, 3b has 1,3-alternative structure, 
3c has cone like structure and 3d has partial cone like structure. In the crystal, 
complex 3a crystallized in monoclinic form with P21/n space group and it has 
four molecules in unit cell with pyridinium cation (Figure 9). The complex 3b 
also crystallize monoclinic form with P2/n space group and it has two molecules  
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Figure 1. UV-Vis spectra of complex 3a. 
 

 

Figure 2. Emission spectra of complex 3a. Blue and red color represents, spectrum in so-
lution and solid phase, respectively. 
 

 

Figure 3. UV-Vis spectra of complex 3b. 
 

 

Figure 4. Emission spectra of complex 3b. Blue and red color represents, spectrum in so-
lution and solid state, respectively. 
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Figure 5. UV-Vis spectra of complex 3c. 
 

 

Figure 6. Emission spectra of complex 3c. Blue and red color represents, spectrum in so-
lution and solid state, respectively. 
 

 

Figure 7. UV-Vis spectra of complex 3d. 
 

 

Figure 8. Emission spectra of complex 3d. Blue and red color represents, spectrum in 
solution and solid state, respectively. 
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Figure 9. ORTEP view of the complexes 3a, 3b, 3c and 3d. Ellipsoids are drawn at 50% 
probability level. Aqua blue, blue and red ellipsoids show Eu, N and O atom(s), respec-
tively. 
 
in unit cell with bipyridinium monocation. The complex 3c crystallized in mo-
noclinic form with C2/C space group and it has sixteen molecules in unit cell with 
piperazinium cation. The complex 3d also crystallized in monoclinic form with 
P21/n space group and it has two molecules in unit cell with bipiperidinium ca-
tion.  

The europium (III) ions of four complexes are coordinated by a distorted 
octahedral arrangement of eight oxygen atoms from four chelating β-diketone 
ligands (Figure 10). The average Eu1-O bond lengths are moderately normal, and 
these values are 2.384Å for 3a, 2.40 Å for 3b, 2.39Å for 3c and 2.38Å for 3d, re-
spectively (Tables 2-5). The bond distances and bond angles are in good agree-
ment with those reported for other analogous Eu-β-diketone complexes [33]. 
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Figure 10. Crystal packing diagram of the complexes 3a, 3b, 3c and 3d respectively. 
Aqua blue, pale green, darkblue, red and green ellipsoids show Eu, F, N, O and Cl atoms, 
respectively. 
 
Table 2. Selected bond lengths (Å) and angles (˚) for the complex 3a. 

Eu1-O1 2.365 (2) Eu1-O2 2.390 (2) 

Eu1-O3 2.399 (2) Eu1-O4 2.370 (2) 

Eu1-O7 2.390 (2) Eu1-O8 2.394 (4) 

O1-Eu1-O2 91.6 (7) O3-Eu1-O4 81.92 (6) 

O7-Eu1-O8 149.53 (7)   

 
Table 3. Selected bond lengths (Å) and angles (˚) for the complex 3b. 

Eu1-O1 2.392 Eu1-O2 2.394 

Eu1-O3 2.408 Eu1-O4 2.409 

O1-Eu1-O2 71.7 O3-Eu1-O4 73.3 

O1-Eu1-O4 96.2 O2-Eu1-O3 129 

 
Table 4. Selected bond lengths (Å) and angles (˚) for the complex 3c. 

Eu1-O1 2.387 (3) Eu1-O2 2.412 (2) 

Eu1-O3 2.403 (3) Eu1-O4 2.370 (3) 

Eu1-O5 2.373 (2) Eu1-O6 2.354 (3) 

Eu1-O7 2.429 (2) O3-Eu1-O4 157.02 (9) 

O1-Eu1-O2 70.14 (9) O5-Eu1-O7 69.24 (9) 

O5-Eu1-O6 117.99 (9)   
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Table 5. Selected bond lengths (Å) and angles (˚) for the complex 3d. 

Eu1-O1 2.375 (7) Eu1-O2 2.346 (7) 

Eu1-O3 2.401 (6) Eu1-O4 2.382 (5) 

Eu1-O5 2.424 (7) Eu1-O6 2.382 (6) 

Eu1-O7 2.377 (6) Eu1-O8 2.355 (7) 

O1-Eu1-O2 70.9 (2) O3-Eu1-O4 70.2 (2) 

O5-Eu1-O6 71.0 (2) O7-Eu1-O8 72.5 (2) 

4. Conclusion 

In conclusion, four new europium complexes have been synthesized and cha-
racterized. Further, molecular structures and photoelectronic properties of four 
europium complexes were determined. All four complexes exhibited strong 
emission between 590 - 640 nm, which could find prominent applications in 
light emitting devices. The absorbance and emission of the four complexes are 
quite the same. The fluorescence properties of all four crystals were very strong 
in solid state and very weak in solution state. These strong emissions were attri-
buted to the 5D0 → 7F0-4 transition of Europium (III) ions under UV excitation. 
To further improve the scope of applications of these complexes, introduction of 
electron withdrawing groups such as -CN, -F on phenyl rings of fluorinated 
β-diketone ligand may improve the photoluminescence intensity and emission 
life time. 
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